Prof. Dr. Dr. h.c. Peter Maaß
Leader of WG Industrial MathematicsRoom: MZH 2250
Email: pmaass@math.uni-bremen.de
Phone: (0421) 218-63801
ORCID iD: 0000-0003-1448-8345
Email: pmaass@math.uni-bremen.de
Phone: (0421) 218-63801
ORCID iD: 0000-0003-1448-8345
Research Areas
- Inverse problems
- Machine learning
- signal and image analysis in life sciences
- computational engineering
- system theory and parameteridentifikation
Leader of Projects
- Design-KIT: Artificial Intelligence in mechanical component development; TP: Deep Learning for geometry generation of mechanical components (01.10.2020 - 31.03.2022)
- AGENS - Analytical-generative Networks for System Identification (01.04.2020 - 31.03.2023)
- HYDAMO - Hybrid data-driven and model-based simulation of complex flow problems in the automotive industry (01.04.2020 - 31.03.2023)
- SPAplus: Small data problems in digital pathology and measures accompanying the programme (01.04.2020 - 31.03.2023)
- DIAMANT - Digital Image Analysis and Imaging Mass Spectrometry to Differentiate Non-small Cell Lung Cancer (01.01.2020 - 31.12.2022)
- Studie zur Qualitätsbewertung, Standardisierung und Reproduzierbarkeit von Daten der bildgebenden MALDI-Massenspektrometrie – MALDISTAR (01.07.2019 - 30.06.2022)
- EU-ROMSOC: Project ''Data Driven Model Adaptations of Coil Sensitivities in MR Systems'' (01.11.2017 - 30.04.2021)
- BMBF-MPI²: Model-based parameter identification in magnetic particle imaging (01.12.2016 - 30.11.2019)
- DFG-Graduiertenkolleg: π³ Parameter Identification – Analysis, Algorithms, Applications (01.10.2016 - 31.03.2021)
- Neural networks in MALDI imaging (since 01.10.2016)
Courses (Selection)
- Challenges in Inverse Problems (Wintersemester 2024/2025)
- Mathematical Methods in Machine Learning (Wintersemester 2024/2025)
- Modelling Project (Part 2) (Wintersemester 2024/2025)
- Advanced Topics in Image Processing – The Beauty of Variational Calculus (Wintersemester 2024/2025)
- Deep Learning for Inverse Problems (Sommersemester 2024)
betreute/begutachtete Dissertationen (Selection)
- Equivariant Deep Learning for 3D Topology Optimization (David Erzmann)
- 3D Image Analysis and Microstructure Models for Simulation of Materials Properties. (Dascha Dobrovolskij)
- Invertible Neural Networks and Normalizing Flows for Image Reconstruction. (Alexander Denker)
- Unsupervised Deep Machine Learning Methods to Discriminate Icequakes in Seismological Data from Neumayer Station, Antarctica. (Louisa Kinzel)
- On the Interplay between Deep Learning Partial Differential Equations and Inverse Problems (Derick Nganyu Tanyu)
Theses (Selection)
- A different approach of the Deep Image Prior on CT-Imaging (Pegah Golchian)
- Inversion of the Modulo Radon Transform via direct Fourier Reconstruction Methods (Meira Iske)
- Das universelle Approximationsproblem für neuronale Netze und numerische Tests für niedrig-dimensionale inverse Probleme (Malte Lorenzen)
- Long-term Forecasting of Energy Consumption Data using Attention-based Neural Networks (Cécile Pot d'or)
- Optimal Filter Functions in X-Ray Computed Tomography (Judith Nickel)
Patents
-
P. Maaß, J. H. Kobarg, F. Alexandrov, P. Vandergheynst, M. Goldabaee.
Verfahren zum rechnergestützten Verarbeiten von räumlich aufgelösten Hyperspektraldaten, insbesondere von Massenspektrometriedaten.
German Patent and Trade Mark Office DE102013207402A1,
Number of registration: 1020132074, Date of registration: 24.04.2013.
Published in patent bulletin no.: on 30.10.2014. -
P. Maaß, J. Oetjen, L. Hauberg-Lotte, F. Alexandrov, D. Trede.
Verfahren zur rechnergestützten Analyse eines oder mehrerer Gewebeschnitte des menschlichen oder tierischen Körpers.
German Patent and Trade Mark Office DE102014224916A1,
Number of registration: 1020142249, Date of registration: 04.12.2014.
Published in patent bulletin no.: on 06.09.2016.
US Patent & Trademark Office, US 20160163523 A1,
Anmeldenummer: 14/959967 , Anmeldedatum: 04.12.2014.
Veröffentlicht am 09.06.2016
Intellectual Property Office, GB 2535586,
Anmeldenummer: GB1521058.6, Anmeldedatum: 30.11.2015.
Veröffentlicht am 24.08.2016
Institut national de la propriété industrielle, FR 3029671 A1,
Anmeldenummer: FR1561774, Anmeldedatum: 03.12.2015.
Veröffentlicht am 10.06.2016 -
D. Trede, P. Maaß, H. Preckel.
Method for analysing the effect of a test substance on biological and/or biochemical samples.
US Patent and Trademark Office US2011/0098198 A1,
Number of registration: 2011009819, Date of registration: 29.04.2009.
Published in patent bulletin no.: PCT/EP09/55187 on 28.04.2011. -
D. Trede, P. Maaß, F. Alexandrov.
Verfahren und Vorrichtung zur rechnergestützten Verarbeitung eines digitalisierten Bildes sowie maschinenlesbarer Datenträger.
German Patent and Trade Mark Office 10 2011 003 242.8,
Number of registration: 102011003, Date of registration: 27.01.2011.
Published in patent bulletin no.: on 02.08.2012. -
D. Trede, P. Maaß, H. Preckel.
Verfahren zur Analyse der Wirkung einer Testsubstanz auf biologische und/oder biochemische Proben.
European Patent Office EP2128815,
Number of registration: 8155784, Date of registration: 07.05.2008.
Published in patent bulletin no.: 2009/49 on 02.12.2009. -
P. Maaß, A. K. Louis.
Verfahren und Vorrichtung zur dreidimensionalen Computertomographie.
German Patent and Trade Mark Office DE19623271A1,
Number of registration: 19623271, Date of registration: 31.05.1996.
Published in patent bulletin no.: 1997/49 on 04.12.1997. -
P. Maaß.
Verfahren zur Segmentierung von Zeichen.
German Patent and Trade Mark Office DE19533585C1,
Number of registration: 19533585, Date of registration: 01.09.1995.
Published in patent bulletin no.: 1997/02 on 09.01.1997.
Publications (Selection)
- J. G. Maaß, R. Herdt, L. Kinzel, M. Walther, H. Fröhlich, T. Schubert, C. Schaaf, P. Maaß.
Enhancing the analysis of murine neonatal ultrasonic vocalizations: Development, evaluation, and application of different mathematical models.
Zur Veröffentlichung eingereicht. - D. Nganyu Tanyu, J. Ning, A. Hauptmann, B. Jin, P. Maaß.
Electrical Impedance Tomography: A Fair Comparative Study on Deep Learning and Analytic-based Approaches.
Zur Veröffentlichung eingereicht.online at: https://arxiv.org/abs/2310.18636
- A. Denker, I. Singh, R. Barbano, Z. Kereta, B. Jin, K. Thielemans, P. Maaß, S. Arridge.
Score-Based Generative Models for PET Image Reconstruction.
Erscheint in Machine Learning for Biomedical Imagingonline at: https://arxiv.org/abs/2308.14190
- F. Altenkrüger, A. Denker, P. Hagemann, P. Maaß, G. Steidl.
PatchNR: Learning from Very Few Images by Patch Normalizing Flow Regularization.
Inverse Problems, 39(6), 2023.online at: https://iopscience.iop.org/article/10.1088/1361-6420/acce5e/meta
- R. Herdt, M. Schmidt, D. Otero Baguer, J. Le Clerc Arrastia, P. Maaß.
Model Stitching and Visualization How GAN Generators can Invert Networks in Real-Time.
Zur Veröffentlichung eingereicht.online at: https://arxiv.org/abs/2302.02181