Logo Uni Bremen

Zentrum für Industriemathematik

ZeTeM > Über das ZeTeM > Mitarbeiter*innen > Prof. Dr. Dr. h.c. Peter Maaß

Kontakt Sitemap Impressum [ English | Deutsch ]
Bild Prof. Dr. Dr. h.c. Peter Maaß

Prof. Dr. Dr. h.c. Peter Maaß

Leiter der AG Technomathematik

Raum: MZH 2250
E-Mail: pmaass@math.uni-bremen.de
Telefon: (0421) 218-63801
ORCID iD:  0000-0003-1448-8345

Lebenslauf

26.10.59 geboren in Karlsruhe
1979-81 Mathematik-Studium an der TH Karlsruhe
1981-82 Pembroke College, Cambridge, England (DAAD-Stipendium)
1982-85 Studium an der Universität Heidelberg
5.6.1985 Diplom in Mathematik (Diplomarbeit bei Prof. Dr. E. Hairer)
 
1985-87 Mitarbeiter im DFG-Projekt (Prof. Dr. A.K. Louis) "Entwicklung effizienter Algorithmen für die Computer-Tomographie"
1987-90 wissenschaftlicher Mitarbeiter am Fachbereich Mathematik TU Berlin
3.2.1988 Promotion in Berlin
 
1990-91Assistant Professor, Tufts University, Boston (Tomographie Arbeitsgruppe: A. Cormack, E.T. Quinto), 1990-1991
1991-93 Hochschul-Assistent, Universität Saarbrücken
21.5.1993 Habilitation in Saarbrücken
 
1993-99 Professur (C4) für Numerische Mathematik in Potsdam
1999-2021Professur (C4), Direktor des Zentrums für Technomathematik in Bremen
seit 1999 Professur (C4) am Zentrum für Technomathematik in Bremen, Leiter der AG Technomathematik

Sonstiges:

Forschungsgebiete

Leitung von Projekten

  1. Design-KIT: Künstliche Intelligenz in der mechanischen Bauteilentwicklung; TP: Deep Learning zur Geometrieerzeugung von mechanischen Bauteilen (01.10.2020 - 31.03.2022)
  2. AGENS - Analytisch-generative Netzwerke zur Systemidentifikation (01.04.2020 - 31.03.2023)
  3. HYDAMO - Hybride datengetriebene und modellbasierte Simulation komplexer Strömungsprobleme in der Fahrzeugindustrie (01.04.2020 - 31.03.2023)
  4. SPAplus: Small Data Probleme in der digitalen Pathologie und programmbegleitende Maßnahmen (01.04.2020 - 31.03.2023)
  5. DIAMANT - Digitale Bildanalyse und bildgebende Massenspektrometrie zur Differenzierung von nichtkleinzelligem Lungenkrebs (01.01.2020 - 31.12.2022)
  6. Studie zur Qualitätsbewertung, Standardisierung und Reproduzierbarkeit von Daten der bildgebenden MALDI-Massenspektrometrie – MALDISTAR (01.07.2019 - 30.06.2022)
  7. EU-ROMSOC: Teilprojekt ''Data Driven Model Adaptations of Coil Sensitivities in MR Systems'' (01.11.2017 - 30.04.2021)
  8. BMBF-MPI²: Modellbasierte Parameteridentifikation in Magnetic Particle Imaging (01.12.2016 - 30.11.2019)
  9. DFG-Graduiertenkolleg: π³ Parameter Identification – Analysis, Algorithms, Applications (01.10.2016 - 31.03.2021)
  10. Neuronale Netze im MALDI Imaging (seit 01.10.2016)

Veranstaltungen (Auswahl)vollständige Liste

  1. Challenges in Inverse Problems (Wintersemester 2024/2025)
  2. Mathematical Methods in Machine Learning (Wintersemester 2024/2025)
  3. Modelling Project (Part 2) (Wintersemester 2024/2025)
  4. Advanced Topics in Image Processing – The Beauty of Variational Calculus (Wintersemester 2024/2025)
  5. Mathematical Foundations of Machine Learning (Sommersemester 2024)

betreute/begutachtete Dissertationen (Auswahl)vollständige Liste

  1. Equivariant Deep Learning for 3D Topology Optimization (David Erzmann)
  2. 3D Image Analysis and Microstructure Models for Simulation of Materials Properties. (Dascha Dobrovolskij)
  3. Invertible Neural Networks and Normalizing Flows for Image Reconstruction. (Alexander Denker)
  4. Unsupervised Deep Machine Learning Methods to Discriminate Icequakes in Seismological Data from Neumayer Station, Antarctica. (Louisa Kinzel)
  5. On the Interplay between Deep Learning Partial Differential Equations and Inverse Problems (Derick Nganyu Tanyu)

Abschlussarbeiten (Auswahl)vollständige Liste

  1. A different approach of the Deep Image Prior on CT-Imaging (Pegah Golchian)
  2. Inversion of the Modulo Radon Transform via direct Fourier Reconstruction Methods (Meira Iske)
  3. Das universelle Approximationsproblem für neuronale Netze und numerische Tests für niedrig-dimensionale inverse Probleme (Malte Lorenzen)
  4. Long-term Forecasting of Energy Consumption Data using Attention-based Neural Networks (Cécile Pot d'or)
  5. Optimal Filter Functions in X-Ray Computed Tomography (Judith Nickel)

Patente

  1. P. Maaß, J. H. Kobarg, F. Alexandrov, P. Vandergheynst, M. Goldabaee.
    Verfahren zum rechnergestützten Verarbeiten von räumlich aufgelösten Hyperspektraldaten, insbesondere von Massenspektrometriedaten.
    Deutsches Patent- und Markenamt DE102013207402A1,
    Anmeldenummer: 1020132074, Anmeldedatum: 24.04.2013.
    Veröffentlicht in Patenblatt Nr.: am 30.10.2014.
  2. P. Maaß, J. Oetjen, L. Hauberg-Lotte, F. Alexandrov, D. Trede.
    Verfahren zur rechnergestützten Analyse eines oder mehrerer Gewebeschnitte des menschlichen oder tierischen Körpers.
    Deutsches Patent- und Markenamt DE102014224916A1,
    Anmeldenummer: 1020142249, Anmeldedatum: 04.12.2014.
    Veröffentlicht in Patenblatt Nr.: am 06.09.2016.
    US Patent & Trademark Office, US 20160163523 A1,
    Anmeldenummer: 14/959967 , Anmeldedatum: 04.12.2014.
    Veröffentlicht am 09.06.2016
    Intellectual Property Office, GB 2535586,
    Anmeldenummer: GB1521058.6, Anmeldedatum: 30.11.2015.
    Veröffentlicht am 24.08.2016
    Institut national de la propriété industrielle, FR 3029671 A1,
    Anmeldenummer: FR1561774, Anmeldedatum: 03.12.2015.
    Veröffentlicht am 10.06.2016
  3. D. Trede, P. Maaß, H. Preckel.
    Method for analysing the effect of a test substance on biological and/or biochemical samples.
    US Patent and Trademark Office US2011/0098198 A1,
    Anmeldenummer: 2011009819, Anmeldedatum: 29.04.2009.
    Veröffentlicht in Patenblatt Nr.: PCT/EP09/55187 am 28.04.2011.
  4. D. Trede, P. Maaß, F. Alexandrov.
    Verfahren und Vorrichtung zur rechnergestützten Verarbeitung eines digitalisierten Bildes sowie maschinenlesbarer Datenträger.
    Deutsches Patent- und Markenamt 10 2011 003 242.8,
    Anmeldenummer: 102011003, Anmeldedatum: 27.01.2011.
    Veröffentlicht in Patenblatt Nr.: am 02.08.2012.
  5. D. Trede, P. Maaß, H. Preckel.
    Verfahren zur Analyse der Wirkung einer Testsubstanz auf biologische und/oder biochemische Proben.
    Europäisches Patentamt EP2128815,
    Anmeldenummer: 8155784, Anmeldedatum: 07.05.2008.
    Veröffentlicht in Patenblatt Nr.: 2009/49 am 02.12.2009.
  6. P. Maaß, A. K. Louis.
    Verfahren und Vorrichtung zur dreidimensionalen Computertomographie.
    Deutsches Patent- und Markenamt DE19623271A1,
    Anmeldenummer: 19623271, Anmeldedatum: 31.05.1996.
    Veröffentlicht in Patenblatt Nr.: 1997/49 am 04.12.1997.
  7. P. Maaß.
    Verfahren zur Segmentierung von Zeichen.
    Deutsches Patent- und Markenamt DE19533585C1,
    Anmeldenummer: 19533585, Anmeldedatum: 01.09.1995.
    Veröffentlicht in Patenblatt Nr.: 1997/02 am 09.01.1997.

Publikationen (Auswahl)vollständige Liste

  1. J. G. Maaß, R. Herdt, L. Kinzel, M. Walther, H. Fröhlich, T. Schubert, C. Schaaf, P. Maaß.
    Enhancing the analysis of murine neonatal ultrasonic vocalizations: Development, evaluation, and application of different mathematical models.
    Zur Veröffentlichung eingereicht.
  2. M. Nittscher, M. F. Lameter, R. Barbano, J. Leuschner, B. Jin, P. Maaß.
    SVD-DIP: Overcoming the Overfitting Problem in DIP-based CT Reconstruction.
    Medical Imaging with Deep Learning (MIDL 2023), 10.07.-12.07.2023.

    online unter: https://2023.midl.io/papers/p014

  3. D. Nganyu Tanyu, J. Ning, A. Hauptmann, B. Jin, P. Maaß.
    Electrical Impedance Tomography: A Fair Comparative Study on Deep Learning and Analytic-based Approaches.
    Zur Veröffentlichung eingereicht.

    online unter: https://arxiv.org/abs/2310.18636

  4. A. Denker, I. Singh, R. Barbano, Z. Kereta, B. Jin, K. Thielemans, P. Maaß, S. Arridge.
    Score-Based Generative Models for PET Image Reconstruction.
    Erscheint in Machine Learning for Biomedical Imaging

    online unter: https://arxiv.org/abs/2308.14190

  5. F. Altenkrüger, A. Denker, P. Hagemann, P. Maaß, G. Steidl.
    PatchNR: Learning from Very Few Images by Patch Normalizing Flow Regularization.
    Inverse Problems, 39(6), 2023.

    online unter: https://iopscience.iop.org/article/10.1088/1361-6420/acce5e/meta