Logo Uni Bremen

Center for Industrial Mathematics

ZeTeM > Research and Applications > Projects > Micro Cold Forming - Subproject A3: Material accumulation

Contact Sitemap Impressum [ English | Deutsch ]

Micro Cold Forming - Subproject A3: Material accumulation

Working Group:WG Numerics of PDEs
Leadership: Prof. Dr. Alfred Schmidt ((0421) 218-63851, E-Mail: alfred.schmidt@uni-bremen.de )
Processor: Dr. Andreas Luttmann
Dr. Mischa Jahn
Funding: DFG
Project partner: BIAS, Bremer Institut für Angewandte Strahltechnik
Time period: 01.01.2007 - 31.12.2018
Bild des Projekts Mikrokaltumformen - Teilprojekt A3: Stoffanhäufen The aim of the Collaborative Research Centre 747 „Micro cold forming“ is the supply of processes and methods for the forming and technical manufacturing of metallic components that are smaller than 1mm in two dimensions. Part of the CRC 747is the subproject A3 which addresses the problem of material accumulation using laser- based free form heading. In detail, the project A3 deals with an process chain for the production of preforms for forging and sheet metal forming. Laser rod end melting enables upset ratios >>200 instead of an upset ratio of approximately 2, which can be achieved using conventionally methods.

For handling the process, a finite element simulation is used to compute process parameters, e.g. laser heating duration and laser beam deflection velocity. This simulation bases on „Navier“ by E. Bänsch (University of Erlangen-Nürnberg). Navier is a finite element method for the simulation of the incompressible Navier-Stokes equations including a capillary surface which has been extended so that melting and solidification process described by the Stefan problem can be considered. 

Prozessskizze SFB-A3FE-Simulation des Laserumschmelzprozesses am Draht (2D)FE-Simulation des Laserumschmelzprozesses am Draht                       FE-Simulation des Laserumschmelzprozesses an der Blechkante

While 2D situations including 2D rotational symmetric and cross section models can already be handled, the development of a full 3D version to handle general situations is still going on.


Publications

  1. B. Kuhfuß, C. Schattmann, M. Jahn, A. Schmidt, F. Vollertsen, E. Moumi, C. Schenck, M. Herrmann, S. Ishkina, L. Rathmann, L. Heinrich.
    Micro Forming Processes.
    Cold Micro Metal Forming, F. Vollertsen, S. Friedrich, B. Kuhfuß, P. Maaß, C. Thomy, H. Zoch (Eds.), Lecture Notes in Production Engineering, pp. 27-94, Springer Verlag, 2020.
  2. E. Bänsch, A. Schmidt.
    Free boundary problems in fluids and materials.
    Geometric Partial Differential Equations - Part I, A. Bonito, R. H. Nochetto (Eds.), Handbook of Numerical Analysis Vol. 21, pp. 555-619, Elsevier, 2020.
  3. E. Bänsch, A. Luttmann, J. Montalvo Urquizo, A. Schmidt, M. G. Villarreal-Marroquin.
    Simulation and multi-objective optimization to improve the final shape and process efficiency of a laser-based material accumulation process.
    Journal of Mathematics in Industry, 10(2), 30 p., 2020.
  4. M. Jahn, J. Montalvo Urquizo.
    Modeling and simulation of keyhole-based welding as multi-domain problem using the extended finite element method.
    Applied Mathematical Modelling, 82:731-747, Elsevier, 2020.
  5. A. Luttmann, M. Jahn, A. Schmidt.
    Modeling and Simulation Approaches for the Production of Functional Parts in Micro Scale.
    Springer Mathematics in Industry Vol. 30, 51-58 pages, Springer Verlag, 2019.
  6. A. Luttmann.
    Modellierung und Simulation von Prozessen mit fest-flüssig Phasenübergang und freiem Kapillarrand.
    Dissertationsschrift, Universität Bremen, 2018.

    online at: Elektronische Bibliothek der Universität Bremen

  7. M. Jahn.
    miXFEM- an XFEM toolbox to tackle multiphysics problems with FEniCS.
    Projektbericht, Poster, FEniCS'18 Workshop at Oxford University, März 2018.
  8. M. Jahn.
    An automated hierarchical eXtended finite element approach for multiphysics problems involving discontinuities.
    Dissertationsschrift, Universität Bremen, 2018.

    online at: Elektronische Bibliothek der Universität Bremen

  9. D. . Rippel, C. Schattmann, M. Jahn, M. Lütjen, A. Schmidt.
    Application of Cause-Effect-Networks for the process planning in laser rod end melting.
    ICNFT 2018.
    MATEC Web Conf. , F. Vollertsen (Eds.), 190:15005, 2018.

    DOI: https://doi.org/10.1051/matecconf/201819015005

  10. A. Schmidt, E. Bänsch, M. Jahn, A. Luttmann, C. Niebuhr, J. Vehmeyer.
    Optimization of Engineering Processes Including Heating in Time-Dependent Domains.
    IFIP AICT Series Vol. 494, 452-461 pages, Springer Verlag, 2017.
  11. A. Schmidt, E. Bänsch, M. Jahn, A. Luttmann, C. Niebuhr, J. Vehmeyer.
    Optimization of Engineering Processes Including Heating in Time-Dependent Domains.
    27th IFIP TC 7 Conference, CSMO 2015, 29.06.-03.07.2015.
    IFIP AICT Series , 494:452-461, Springer Verlag, 2017.
  12. H. Brüning, M. Jahn, F. Vollertsen, A. Schmidt.
    Influence of laser beam absorption mechanism on eccentricity of preforms in laser rod end melting.
    11th International Conference on Micro Manufacturing (ICOMM), 29.03-31.03.2016, Orange County, USA.
  13. A. Schmidt, C. Niebuhr.
    (Ideas about) Adaptive FEM for problems with time-dependent domains.
    Oberwolfach Report 42/2016, 56-58 pages, Mathematisches Forschungsinstitut Oberwolfach (MFO), 2016.
  14. M. Jahn, A. Luttmann, T. Klock.
    An XFEM toolbox for FEniCS.
    Projektbericht, Poster, FEniCS'16 Workshop at Simula Research Laboratory, Mai 2016.
  15. M. Jahn, T. Klock, A. Luttmann.
    Levelset methods (and XFEM) in FEniCS.
    Projektbericht, Poster, FEniCS'15 Workshop at Imperial College London, Juni 2015.
  16. M. Jahn, A. Luttmann, A. Schmidt.
    Finite element simulation for material accumulation and welding processes including a free melt surface.
    PAMM, 13(1), 235–236 pp., Wiley, 2013.

    DOI: 10.1002/pamm.201310113
    online at: http://onlinelibrary.wiley.com/doi/10.1002/pamm.201310113/abstract

  17. M. Jahn, H. Brüning, A. Schmidt, F. Vollertsen.
    Energy dissipation in laser-based free form heading: a numerical approach.
    Production Engineering - Research and Development, , Springer Verlag, 2013.

    DOI: 10.1007/s11740-013-0509-8
    online at: http://link.springer.com/article/10.1007%2Fs11740-013-0509-8

  18. H. Brüning, M. Jahn, A. Schmidt.
    Process Window For Forming Of Micro Preforms At Different Temperatures.
    Advanced Materials Research, 769:173-180, Trans Tech Publications, 2013.

    DOI: doi:10.4028/www.scientific.net/AMR.769.173
    online at: http://www.scientific.net/AMR.769.173

  19. M. Jahn, A. Luttmann, A. Schmidt.
    A FEM simulation for solid-liquid-solid phase transitions during the production of micro-components.
    11th International Scientific Conference on Advanced Production Technologies (MMA 2012), 20.09.-21.09.2012, Novi Sad, Serbia.
    Proceedings of the 11th International Scientific Conference on Advanced Production Technologies (MMA 2012), 11(1):231-234, 2012.
  20. M. Jahn, A. Luttmann, A. Schmidt, J. Paul.
    Finite element methods for problems with solid-liquid-solid phase transitions and free melt surface.
    PAMM, 12(1):403-404, Wiley, 2012.

    DOI: 10.1002/pamm.201210190
    online at: http://onlinelibrary.wiley.com/doi/10.1002/pamm.201210190/abstract

  21. E. Bänsch, J. Paul, A. Schmidt.
    An ALE finite element method for a coupled Stefan problem and Navier-Stokes equations with free capillary surface.
    International Journal for Numerical Methods in Fluids, Article first published online : 6 AUG 2012, DOI: 10.1002/fld.3711 , Wiley, 2012.

    DOI: 10.1002/fld.3711