Logo Uni Bremen

Zentrum für Technomathematik

ZeTeM > Über das ZeTeM > Mitarbeiter > Prof. Dr. Dr. h.c. Peter Maaß

Kontakt Sitemap Impressum [ English | Deutsch ]
Bild Prof. Dr. Dr. h.c. Peter Maaß

Prof. Dr. Dr. h.c. Peter Maaß

Leiter der AG Technomathematik
Direktor des Zentrums für Technomathematik

Raum: MZH 2250
E-Mail: pmaass@math.uni-bremen.de
Telefon: (0421) 218-63801
ORCID iD:  0000-0003-1448-8345

Lebenslauf

26.10.59 geboren in Karlsruhe
1979-81 Mathematik-Studium an der TH Karlsruhe
1981-82 Pembroke College, Cambridge, England (DAAD-Stipendium)
1982-85 Studium an der Universität Heidelberg
5.6.1985 Diplom in Mathematik (Diplomarbeit bei Prof. Dr. E. Hairer)
 
1985-87 Mitarbeiter im DFG-Projekt (Prof. Dr. A.K. Louis) "Entwicklung effizienter Algorithmen für die Computer-Tomographie"
1987-90 wissenschaftlicher Mitarbeiter am Fachbereich Mathematik TU Berlin
3.2.1988 Promotion in Berlin
 
1990-91Assistant Professor, Tufts University, Boston (Tomographie Arbeitsgruppe: A. Cormack, E.T. Quinto), 1990-1991
1991-93 Hochschul-Assistent, Universität Saarbrücken
21.5.1993 Habilitation in Saarbrücken
 
1993-99 Professur (C4) für Numerische Mathematik in Potsdam
seit 1999 Professur (C4), Direktor des Zentrums für Technomathematik in Bremen

Sonstiges:

Forschungsgebiete

Leitung von Projekten

  1. Design-KIT: Künstliche Intelligenz in der mechanischen Bauteilentwicklung; TP: Deep Learning zur Geometrieerzeugung von mechanischen Bauteilen (01.10.2020 - 31.03.2022)
  2. AGENS - Analytisch-generative Netzwerke zur Systemidentifikation (01.04.2020 - 31.03.2023)
  3. HYDAMO - Hybride datengetriebene und modellbasierte Simulation komplexer Strömungsprobleme in der Fahrzeugindustrie (01.04.2020 - 31.03.2023)
  4. SPAplus: Small Data Probleme in der digitalen Pathologie und programmbegleitende Maßnahmen (01.04.2020 - 31.03.2023)
  5. DIAMANT - Digitale Bildanalyse und bildgebende Massenspektrometrie zur Differenzierung von nichtkleinzelligem Lungenkrebs (01.01.2020 - 31.12.2022)
  6. Studie zur Qualitätsbewertung, Standardisierung und Reproduzierbarkeit von Daten der bildgebenden MALDI-Massenspektrometrie – MALDISTAR (01.07.2019 - 30.06.2022)
  7. EU-ROMSOC: Teilprojekt ''Data Driven Model Adaptations of Coil Sensitivities in MR Systems'' (01.11.2017 - 30.04.2021)
  8. BMBF-MPI²: Modellbasierte Parameteridentifikation in Magnetic Particle Imaging (01.12.2016 - 30.11.2019)
  9. DFG-Graduiertenkolleg: π³ Parameter Identification – Analysis, Algorithms, Applications (01.10.2016 - 31.03.2021)
  10. Neuronale Netze im MALDI Imaging (seit 01.10.2016)

Veranstaltungen (Auswahl)vollständige Liste

  1. Mathematische Grundlagen des maschinellen Lernens (Sommersemester 2021)
  2. Nicht-linearen inversen Probleme: Analysis, Anwendungen und Algorithmen (Wintersemester 2020/2021)
  3. Oberseminar: Deep Learning, Inverse Probleme und Datenanalyse (Wintersemester 2020/2021)
  4. Oberseminar: Deep Learning, Inverse Probleme und Datenanalyse (Sommersemester 2020)
  5. Funktionalanalysis (Sommersemester 2020)

betreute/begutachtete Dissertationen (Auswahl)vollständige Liste

  1. On deep learning applied to inverse problems - A chicken-and-egg problem (Sören Dittmer)
  2. Neural Networks for solving Inverse Problems. Applications in Materials Science and Medical Imaging (Daniel Otero Baguer)
  3. Recurrence Quantification Compared to Fourier Analysis for Ultrasonic Non-Destructive Testing of Fibre Reinforced Polymers” (Carsten Brandt)
  4. Double Backpropagation with Applications to Robustness and Saliency Map Interpretability (Christian Etmann)
  5. Principles of Neural Network Architecture Design:Invertibility and Domain-Knowledge (Jens Behrmann)

Abschlussarbeiten (Auswahl)vollständige Liste

  1. Long-Term Time Series Forecasting and Uncertainty Estimation with Bayesian Neural Networks (David Erzmann)
  2. Using Neural Networks to Denoise CT Images (Rudolf Herdt)
  3. Out of Distribution Detection for Purity Assessment of Pellets using Neural Networks (Jannik Wildner)
  4. Differentiable architecture search - Fractional Kernel sizes in convolutional neural networks (Daniel Klosa)
  5. Invertible U-Nets for Memory-Efficient Backpropagation (Nick Heilenkötter)

Patente

  1. P. Maaß, J. H. Kobarg, F. Alexandrov, P. Vandergheynst, M. Goldabaee.
    Verfahren zum rechnergestützten Verarbeiten von räumlich aufgelösten Hyperspektraldaten, insbesondere von Massenspektrometriedaten.
    Deutsches Patent- und Markenamt DE102013207402A1,
    Anmeldenummer: 1020132074, Anmeldedatum: 24.04.2013.
    Veröffentlicht in Patenblatt Nr.: am 30.10.2014.
  2. P. Maaß, J. Oetjen, L. Hauberg-Lotte, F. Alexandrov, D. Trede.
    Verfahren zur rechnergestützten Analyse eines oder mehrerer Gewebeschnitte des menschlichen oder tierischen Körpers.
    Deutsches Patent- und Markenamt DE102014224916A1,
    Anmeldenummer: 1020142249, Anmeldedatum: 04.12.2014.
    Veröffentlicht in Patenblatt Nr.: am 06.09.2016.
    US Patent & Trademark Office, US 20160163523 A1,
    Anmeldenummer: 14/959967 , Anmeldedatum: 04.12.2014.
    Veröffentlicht am 09.06.2016
    Intellectual Property Office, GB 2535586,
    Anmeldenummer: GB1521058.6, Anmeldedatum: 30.11.2015.
    Veröffentlicht am 24.08.2016
    Institut national de la propriété industrielle, FR 3029671 A1,
    Anmeldenummer: FR1561774, Anmeldedatum: 03.12.2015.
    Veröffentlicht am 10.06.2016
  3. D. Trede, P. Maaß, H. Preckel.
    Method for analysing the effect of a test substance on biological and/or biochemical samples.
    US Patent and Trademark Office US2011/0098198 A1,
    Anmeldenummer: 2011009819, Anmeldedatum: 29.04.2009.
    Veröffentlicht in Patenblatt Nr.: PCT/EP09/55187 am 28.04.2011.
  4. D. Trede, P. Maaß, F. Alexandrov.
    Verfahren und Vorrichtung zur rechnergestützten Verarbeitung eines digitalisierten Bildes sowie maschinenlesbarer Datenträger.
    Deutsches Patent- und Markenamt 10 2011 003 242.8,
    Anmeldenummer: 102011003, Anmeldedatum: 27.01.2011.
    Veröffentlicht in Patenblatt Nr.: am 02.08.2012.
  5. D. Trede, P. Maaß, H. Preckel.
    Verfahren zur Analyse der Wirkung einer Testsubstanz auf biologische und/oder biochemische Proben.
    Europäisches Patentamt EP2128815,
    Anmeldenummer: 8155784, Anmeldedatum: 07.05.2008.
    Veröffentlicht in Patenblatt Nr.: 2009/49 am 02.12.2009.
  6. P. Maaß, A. K. Louis.
    Verfahren und Vorrichtung zur dreidimensionalen Computertomographie.
    Deutsches Patent- und Markenamt DE19623271A1,
    Anmeldenummer: 19623271, Anmeldedatum: 31.05.1996.
    Veröffentlicht in Patenblatt Nr.: 1997/49 am 04.12.1997.
  7. P. Maaß.
    Verfahren zur Segmentierung von Zeichen.
    Deutsches Patent- und Markenamt DE19533585C1,
    Anmeldenummer: 19533585, Anmeldedatum: 01.09.1995.
    Veröffentlicht in Patenblatt Nr.: 1997/02 am 09.01.1997.

Publikationen (Auswahl)vollständige Liste

  1. T. H. Nguyen, D. Nho Hào, P. Maaß, L. Colombi Ciacchi.
    Mathematical aspects of catalyst positioning in lithium/air batteries.
    Inverse Problems, 36(4), 2020.

    DOI: 10.1088/1361-6420/ab47e6

  2. T. Kluth, C. Bathke, M. Jiang, P. Maaß.
    Joint super-resolution image reconstruction and parameter identification in imaging operator: Analysis of bilinear operator equations, numerical solution, and application to magnetic particle imaging.
    Inverse Problems, 36 124006 36(12), 2020.

    online unter: https://arxiv.org/abs/2004.13091

  3. S. Dittmer, C. Schönlieb, P. Maaß.
    Ground Truth Free Denoising by Optimal Transport.
    Zur Veröffentlichung eingereicht.

    online unter: https://arxiv.org/abs/2007.01575

  4. S. Dittmer, T. Kluth, M. Henriksen, P. Maaß.
    Deep image prior for 3D magnetic particle imaging: A quantitative comparison of regularization techniques on Open MPI dataset.
    Zur Veröffentlichung eingereicht.

    online unter: https://arxiv.org/abs/2007.01593

  5. A. Denker, M. Schmidt, J. Leuschner, P. Maaß, J. Behrmann.
    Conditional Normalizing Flows for Low-Dose Computed Tomography Image Reconstruction.
    ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 18.07-18.07.2020, Wien, Österreich.

    online unter: https://invertibleworkshop.github.io/accepted_papers/index.html