Logo Uni Bremen

Center for Industrial Mathematics

ZeTeM > Research and Applications > Projects > Dynamics of Automatic Control

Contact Sitemap Impressum [ English | Deutsch ]

Dynamics of Automatic Control

Working Group:Former AWG Mathematical Modeling of Complex Systems
Leadership: Prof. Dr. Sergey Dashkovskiy
Processor: Dr. Andrii Mironchenko
Dr. Lars Naujok
Funding: DFG (SFB 637 „Selbststeuerung logistischer Prozesse - Ein Paradigmenwechsel und seine Grenze“, Teilprojekt A5)
Project partner: Fachbereich Produktionstechnik, Universität Bremen
Fachbereich Physik/Elektrotechnik, Universität Bremen
Fachbereich Wirtschaftswissenschaft, Universität Bremen
BIBA, Bremer Institut für Produktion und Logistik GmbH (BIBA)
Time period: 01.01.2004 - 31.12.2011
Bild des Projekts Dynamics of Automatic Control The dynamic and structural complexity of logistical networks is making it increasingly difficult to provide all the information which a central planning and control instance requires to make decisions, and it therefore requires adaptive logistical processes which have an autonomous control capability. Autonomous control here means the decentralised coordination of autonomous logistical objects in a heterarchical organisational structure. The autonomy of the logistical objects such as piece goods, transport equipment and transport systems is made possible as a result of new information and communication technologies such as radio frequency identification (RFID) and wireless communication networks. These and related technologies facilitate and necessitate new control strategies and autonomous, decentralised control systems for logistical processes. The main focus is on aspects such as flexibility, adaptivity and reactivity to dynamically changing external influences while maintaining the global objectives. The aims of the SFB Sub project are the development of models of transport networks and the integration of various autonomous control strategies. On the one hand, it is intended that qualitative statements concerning the behaviour of autonomously controlled transport processes will be obtained which will provide a general understanding of the dynamics which are to be expected. On the other, models will be investigated which provide a good approximation to the system behaviour in order to thus be able to provide a tool for the simulation and specific prediction of the dynamics of transport processes. From a mathematical point of view, methods of stochastic queuing theory and fluid models as well as systems of differential equations will be used for the abstract representation of the problems considered. This will be used to derive statements concerning the existence of invariant distributions and other stability characteristics. One stage of the work is to simulate various stochastic models with MATLAB and C/C++ programs which we have developed ourselves. This will ensure, among other things, that the models used do in fact provide a good representation of the problem considered.

Publications

  1. S. Dashkovskiy, M. Görges, L. Naujok.
    Autonomous control methods in logistics - a mathematical perspective.
    Applied Mathematical Modelling, 36(7):2947-2960, Elsevier, 2012.
  2. S. Dashkovskiy, D. Efimov, E. Sontag.
    Input to State Stability and Allied System Properties.
    Automation and Remote Control, 72(8), 1579–1614, 2011.
  3. S. Dashkovskiy, S. Pavlichkov.
    Backstepping for nonsmooth MIMO nonlinear Volterra systems with noninvertible input-output maps and controllability of their large-scale interconnections.
    Nonlinear Dynamics and Systems Theory, 11(4):411-424, 2011.

    online at: http://sunrise-0014438.e-ndst.kiev.ua/v11n4/V11N4.pdf#page=79

  4. S. Dashkovskiy, A. Mironchenko.
    Local ISS of Reaction-Diffusion Systems.
    18th IFAC World Congress, 28.08.-02.09.2011, Milan, Italy.
    Proceedings of the 18th IFAC World Congress, pp. 11018-11023, 2011.
  5. S. Dashkovskiy, A. Mironchenko, L. Naujok.
    Autonomous and Central Control of Production Networks.
    Autonomous Cooperation and Control in Logistics, M. Hülsmann, B. Scholz-Reiter, K. Windt (Eds.), pp. 27-43, Springer Verlag, 2011.

    DOI: 10.1007/978-3-642-19469-6_4
    online at: http://link.springer.com/chapter/10.1007%2F978-3-642-19469-6_4#page-2

  6. S. Dashkovskiy, M. Görges, L. Naujok.
    Local input to state stability of production networks.
    2nd International Conference on Dynamics in Logistics, 17.08.-21.08.2009, Bremen, Germany.
    Proceedings of the 2nd International Conference on Dynamics in Logistics, pp. 79-89, Springer Verlag, 2011.

    online at: https://www.math.uni-bremen.de/zetem/cms/media.php/256/LDIC_Article_LISS_DashGoerNauj_FinalVersion.pdf

  7. S. Dashkovskiy, M. Görges, M. Kosmykov, A. Mironchenko, L. Naujok.
    Modeling and stability analysis of autonomously controlled production networks.
    Logistics Research, 3(2):145-157, Springer Verlag, 2011.

    DOI: 10.1007/s12159-011-0049-6
    online at: http://www.springerlink.com/content/12nm645q18k27673/

  8. S. Dashkovskiy, S. Pavlichkov.
    Further Remarks on Global Stabilization of Generalized Triangular Systems.
    19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010), 05.07.-09.07.2010, Budapest, Hungary.
    Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, pp. 1483-1487, 2010.
  9. S. Dashkovskiy, S. Pavlichkov.
    Adding an integrator and uniform ISS stabilization for switched MIMO triangular systems with unknown switched signal and right invertible input-output maps.
    Kharkov University Vestnik , 931:99-112, 2010.

    online at: http://vestnik-math.univer.kharkov.ua/Vestnik-KhNU-931-2010-pavlichkov.pdf

  10. S. Dashkovskiy, S. Pavlichkov.
    Backstepping for nonsmooth MIMO nonlinear Volterra systems with noninvertible input-output maps.
    8th IFAC Symposium on Nonlinear Control Systems, 01.09.-03.09.2010, Bologna, Italy.
    Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems, pp. 1158-1162, 2010.
  11. S. Dashkovskiy, N. A. Duffie.
    Delay-Dependent Stability Analysis for Large Scale Production Networks of Autonomous Work Systems.
    International Journal of Nonlinear Dynamics and Systems Theory, 10(1):55-63, 2010.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/2010-NDST-KaDaDu.pdf

  12. S. Dashkovskiy, M. Kosmykov, L. Naujok.
    ISS of interconnected impulsive systems with and without time-delays.
    8th IFAC Symposium on Nonlinear Control Systems, 01.09.-03.09.2010, Bologna, Italy.
    Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems, pp. 831-836, 2010.
  13. S. Dashkovskiy, L. Naujok.
    ISDS small-gain theorem and construction of ISDS Lyapunov functions for interconnected systems.
    Systems & Control Letters, 59(5):299-304, Elsevier, 2010.

    online at: http://www.math.uni-bremen.de/zetem/cms/media.php/256/ISDSPaperCorrectedSubmittedtoJournal.pdf

  14. S. Dashkovskiy, L. Naujok.
    Lyapunov-Razumikhin and Lyapunov-Krasovskii theorems for interconnected ISS time-delay systems.
    19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010), 05.07.-09.07.2010, Budapest, Hungary.
    Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, pp. 1179-1184, 2010.
  15. S. Dashkovskiy, H. Kreowski, S. Kuske, A. Mironchenko, L. Naujok, C. von Totth.
    Production Networks as Communities of Autonomous Units and Their Stability.
    International Electronic Journal of Pure and Applied Mathematics, 2(1):17-42, 2010.
  16. B. Scholz-Reiter, M. Görges, T. Jagalski, L. Naujok.
    Modelling and analysis of an autonomous control method based on bacterial chemotaxis.
    43rd CIRP International Conference on Manufacturing Systems, 26.05.-28.05.2010, Vienna, Austria.
    Proceedings of the 43rd CIRP International Conference on Manufacturing Systems, pp. 699-706, Neuer Wissenschaftlicher Verlag, Wien, 2010.
  17. S. Dashkovskiy, A. Mironchenko.
    On the uniform input-to-state stability of reaction-diffusion systems.
    49th IEEE Conference on Decision and Control, 15.12.-17.12.2010, Atlanta, USA.
    Proceedings of the 49th IEEE Conference on Decision and Control, pp. 6547-6552, 2010.
  18. S. Dashkovskiy, H. Kreowski, S. Kuske, A. Mironchenko, L. Naujok, C. von Totth.
    Production Networks as Communities of Autonomous Units and Their Stability.
    3rd International Workshop on Graph Computation Models, 02.10.2010, Enschede, Netherlands.
    Proceedings of the 3rd International Workshop on Graph Computation Models, pp. 17-32, 2010.
  19. S. Dashkovskiy, M. Kosmykov, A. Mironchenko, L. Naujok.
    Application of the LISS Lyapunov-Krasovskii small-gain theorem to autonomously controlled production networks with time-delays.
    Conference on Control and Fault-Tolerant Systems, 06.10.-08.10.2010, Nice, France.
    Proceedings of the Conference on Control and Fault-Tolerant Systems, pp. 765-770, 2010.
  20. S. Dashkovskiy, L. Naujok.
    Quasi-ISS and Quasi-ISDS Reduced-Order Observers for interconnected Systems.
    49th IEEE Conference on Decision and Control, 15.12.-17.12.2010, Atlanta, USA.
    Proceedings of the 49th IEEE Conference on Decision and Control, pp. 5732-5737, 2010.
  21. S. Dashkovskiy.
    Exponential Synchronization of Master-Slave Neural Networks with Time-Delays.
    European Control Conference 2009, 23.08.-26.08.2009, Budapest, Hungary.
    Proceedings of the European Control Conference 2009, pp. 342-347, 2009.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/2009-ECC-KD-synchronization

  22. S. Dashkovskiy, L. Naujok.
    Input-to-state dynamical stability of interconnected systems.
    48th IEEE Conference on Decision and Control, 16.12.-18.12.2009, Shanghai, China.
    Proceedings of the 48th IEEE Conference on Decision and Control, pp. 1411-1416, 2009.

    online at: https://www.math.uni-bremen.de/zetem/cms/media.php/210/ISDSsmallgainFinalSubmission.pdf

  23. N. A. Duffie, S. Dashkovskiy.
    Local Capacity H∞ Control for Production Networks of Autonomous Work Systems with Time-Varying Delays.
    European Control Conference 2009, 23.08.-26.08.2009, Budapest, Hungary.
    Proceedings of the European Control Conference 2009, pp. 2378-2383, 2009.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/2009-ECC-KDD-delays

  24. S. Dashkovskiy, B. Rüffer, F. Wirth.
    Applications of the general Lyapunov ISS small-gain theorem for networks.
    47th IEEE Conference on Decision and Control, 12.12.-14.12.2008, Cancun, Mexico.
    Proceedings of the 47th IEEE Conference on Decision and Control, pp. 25-30, 2008.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/2008-CDC-DRW-applications.pdf

  25. S. Dashkovskiy, B. Rüffer, F. Wirth.
    Stability of autonomous vehicle formations using an ISS small-gain theorem for networks.
    79th Annual Meeting of the International Association of Applied Mathematics and Mechanics, 31.03-04.04.2008, Bremen, Germany.
    Proceedings in Applied Mathematics and Mechanics, 8(1):10911-10912, 2008.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/2008-PAMM-DRW-Formations.pdf

  26. S. Dashkovskiy, B. Rüffer, F. Wirth.
    Stability of interconnections of ISS systems.
    SICE 8th Annual Conference on Control Systems, 05.03.-07.03.2008, Kyoto, Japan.
    Proceedings of the 8th Annual Conference on Control Systems, pp. 52431-52434, 2008.
  27. S. Dashkovskiy, B. Rüffer, F. Wirth.
    A Lyapunov small-gain theorem for stronlgy connected networks.
    7th IFAC Symposium on Nonlinear Control Systems, 22.08.-24.08.2007, Pretoria, South Africa.
    Proceedings of the 7th IFAC Symposium on Nonlinear Control Systems, pp. 283-288, 2007.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/final-nolcos-iss-lyapunovfunctions.pdf

  28. S. Dashkovskiy, B. Rüffer, F. Wirth.
    An ISS Small Gain Theorem for General Networks.
    Mathematics of Control, Signals and Systems, 19(2):93-122, 2007.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/MCSS.pdf

  29. S. Dashkovskiy, B. Rüffer, F. Wirth.
    Numerical Verification of local input-to-state stability for large networks.
    46th IEEE Conference on Decision and Control, 12.12.-14.12.2007, New Orleans, USA.
    Proceedings of the 46th IEEE Conference on Decision and Control, pp. 4471-4476, 2007.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/2007-cdc-drw-numerical-liss-final.pdf

  30. S. Dashkovskiy, B. Rüffer, F. Wirth.
    An ISS Lyapunov Function for Networks of ISS Systems.
    17th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2006), 24.07.-28.07.2006, Kyoto, Japan.
    Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, pp. 77-82, 2006.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/MTNS-Lyapunov.pdf

  31. S. Dashkovskiy, F. Wirth, T. Jagalski.
    Autonomous control in Shop Floor Logistics: Analytic models.
    IFAC Conference on Manufacturing, Modelling, Management and Control, 21.10.-22.10.2004, Athens, Greece.
    Manufacturing, Modelling, Management and Control 2004, G. Chryssolouris , D. Mourtzis (Eds.), Elsevier, 2006.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/ifac_Athen3.pdf

  32. S. Dashkovskiy, B. Rüffer, F. Wirth.
    Discrete time monotone systems: Criteria for global asymptotic stability and applications.
    17th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2006), 24.07.-28.07.2006, Kyoto, Japan.
    Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, pp. 89-97, 2006.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/MTNS-Monotone.pdf

  33. B. Scholz-Reiter, F. Wirth, M. Freitag, S. Dashkovskiy, T. Jagalski, C. de Beer, B. Rüffer.
    Some remarks on the stability of production networks. Stability margins.
    Operations Research 2005, 07.09.-09.09.2005, Bremen, Germany.
    Operations Research Proceedings 2005, pp. 91-96, Springer Verlag, 2006.

    online at: https://www.math.uni-bremen.de/zetem/cms/media.php/256/SFB637-A5-05-005-IC-1.pdf

  34. S. Dashkovskiy, B. Rüffer, F. Wirth.
    A Small-Gain type stability criterion for large scale networks of ISS systems.
    44th IEEE Conference on Decision and Control and European Control Conference ECC 2005, 12.12.-15.12.2005, Seville, Spain.
    Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005, pp. 5633-5638, 2005.

    online at: http://www.math.uni-bremen.de/~dsn/Publications/CDCECC05.pdf

  35. S. Dashkovskiy, M. Kosmykov.
    Stability analysis of logistics networks with time-delays.
    Erscheint in Production Planning & Control

    DOI: 10.1080/09537287.2012.659867
    online at: http://www.tandfonline.com/doi/abs/10.1080/09537287.2012.659867