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Abstract In this paper we analyze a given production network in dégtabil-
ity, which means boundedness of the state of the nletaeer time. From a
mathematical point of view we model the network by défdial equations. With
help of local input-to-state stability (LISS) Lyapunfunctions and a small gain
condition we check, if the network is stable. This rissinl the derivation of con-
ditions for the production rates for which stability tb production network is
guaranteed.

1 Introduction

Production and supply networks or other modern logistic strestare typical ex-
amples of complex systems with a nonlinear and sometéhastic behavior.
Their dynamics subject to many different perturbatidne to changes on market,
changes in customer behavior, information and transpogestions, unreliable
elements of the network etc.

One approach to handle such complex systems is tofsiift centralized to
decentralized or autonomous control, i.e., to alloe ¢ntities of a network to
make their own decisions based on some given rules aildbdedocal informa-
tion. However a system emerging in this way may becomealiesand hence be
not effective in performance. Typical examples of unstdi@haviour are un-
bounded growth of unsatisfied orders or unbounded growth ofirinud work-
load to be processed by a machine and causes high inveastsyor loss of cus-
tomers. To avoid instability it is worth to investigats behavior in advance.

Mathematical methods can help to handle complex systemgarticular
mathematical modelling and analysis provide helpful tdotsinvestigation of
such objects and can be used for design, optimization aritbicof such net-
works and for deeper understanding of their dynamical preperti

This paper focuses on the stability analysis of a praoluctetwork, in order to
identify stable parameter constellation. In particukses stability means that the



number of unsatisfied orders or/and amount of worklodmktprocessed by a ma-
chine remain bounded over time in spite of disturbancesafplication of the
stability analysis to a logistical network we canvdi@nclusions of its behaviour
and derive conditions to guarantee stability, which dinagative outcomes men-
tioned above. The results of this analysis can be usaelsign logistical networks
in order to have good properties to achieve economic goaldously stability is
decisive for the performance and vitality of a network.

In this paper we propose a model for a production logistmario comprising
several autonomous production plants connected through transyts. This net-
work is modelled by ordinary differential equations. We show its stability can
be analyzed with help of small gain theorems recetdlyeloped for general type
of dynamic networks. Explicit conditions of the prodantirates will be derived
by application of mathematical systems theory of stienected systems.

In Section 2 we describe the given production networh W&t conditions and
model it mathematically by differential equations. A neatfatical background is
given in Section 3, which is used in Section 4 to destability conditions of the
production network. In Section 5 some simulation resuitstheir interpretations
are given. Conclusions and outlines can be found in Section 6.

2 Model description

In this section we describe the given production netwatiich we model and
analyze the system in view of stability with helpddferential equations.

The production network in Figure 1 consists of six geogralhhidestributed
production locations, which are connected. In logisticettege many flows, e.g.
material, information or worth flows. In Figure 1 timaterial flow is described by
arrows and the information flow by dashed arrows. 3tage of each production
location is denoted by; (t) e R for i = 1,...,6, wheret € R, can be interpreted as

time andR. denotes all positive real values. In the rest ofphjser we writesub-
system ffor thei-th production location. All six subsystems form the proidac
network, which we name simply (whole) system.

We describe the production network by the informatiom famd interpret the
state of tha-th subsystem as the number of unsatisfied orders withirproduc-
tion location. Subsystem 6 gets some orders of its prdicatthe customers, de-
noted byd(t) € R.. While processing the orders, subsystem 6 orders component

which it needs for production from subsystem 4 and 5. Tiwessubsystems send
orders for components, which they need to subsysterd 3.arheir orders will be
sent to subsystem 1, which gets instantly its raw nadfeom an external source.

The orders from subsystem 1 to subsystem 6 are intedpmsta kind of pay-
ment or the demand for its production of subsystem 1 ofinla¢ froduct of the
given production network from subsystem 6.



Fig. 1 The production network

We suppose all subsystems are autonomously controlleéaits the ability to
adjust the production rate of the production location. This be achieved by
varying work times of the workers, transportation tinoeghe products or the
number of used machines for productiar.< R, denotes the (constant) maxi-

mum production rate of subsystdmThe actual production rate of subsystiem
( ;) converges tay; , if the state of subsystem(t i3 large andf; tends to zero,
if the state of subsystemq (t tgnds to zero. This means, if there are many orders,

the actual production rate is near to the maximum prastuctite and if there are
no orders nothing will be produced. Therefor the agiwadluction rate of each
subsystem at timeis given by

i (% (1) = & - exp(x; (1)),i=1....6.
With these considerations we can model the systenemtezs in Figure 1 by

differential equations for each subsystem, which arkimgptbut a description of
changes of the state(t of subsystennalong timet € R;:

% (1) =1 F2 (%2 (1)) + €13 F3 (X3 (1)) = F1 (X4 (1)),
X (1) =Caa F4 (X4 (1)) +Cos f5 (X5 (1)) — F2 (X, (1)),
X3(t) = Ca4 F4 (X4 (1)) + C35 f5 (X5 (1)) = f3 (X3 (1)), O
X4 (t) =Cap f6 (X6 (1)) — F4 (X4 (1)),
X5 (1) =Cs6 fo (X6 (1) — f5 (X5 (1)),
Xg () =d(t)+Cq 1 (%, (1)) — F6 (X6 (1)),
where the constants; € R. can be interpreted as the number of orders of com-
ponents to subsystenfrom subsysten.
By definition of fi(x,d)=%(t),i=L...6 x::(><1,...,x6)T and f(xu):=
(fl(x,d),...,fﬁ(x,d))T we can write the whole system as
X (t) = f(x().d(t)) .t eR.. )]
Now the question arises, under which conditions the stdmagsare stable,
which means that the states of all subsystems willnooease to infinity. In other

words, under which conditions all states of the subsystad therefore of the
whole system are bounded, which means stability of th&uption network?



3 Mathematical background

For investigation of the stability of system (1) and (8spectively, we need some
mathematical results. We present a stability propanty @ tool how to check,
weather the system has the stability property.

We consider nonlinear dynamical system of the form

X(t) = £ (x(t),u(t)), ©)
wheret € R, is the time, x(t) the derivate of the statg(t) € R" with the initial
value X, jnput u(t) e R", which is an essentially bounded measurable function
and f :R™™— R nonlinear. To have existence and uniqueness of a solotio

(3), functionf has to be continuous and locally Lipschitxioniformly inu. The
solution is denoted b(t; x5,u 9r x(t) in short.

To describe the given production network we general®eafd consider
ne N interconnected systems. These are in general nonligeamical systems
of the form

X() = f; (% (1), X, ©, U, ©), 1 =L...0 @
whereteR,, x(f) eR N, u,(t) e RM, which are essentially bounded measur-

. 2 Nj+M, N .
able functions,f; R~ — R™, i=1..,n, where f; are continuous and

locally Lipschitz inx=(x{ ,....x})" uniformly in u; . We considerx; as internal
input andu; as external input of thieth subsystemi, j =1....,n, i # j. The solu-
tion is denoted by<(t;xi°,xj Dj=i,up) or x(t) in short.

If we define N = z:ilNi, mi= Zin:lMi, X=(% Xt U= (U, 00T

n
and f=(f,...f7)", then (4) becomes
X(t) = f(x(t),u(t)),teR.. ®)
We denote the standard euclidian nornRiby ||- || and the essential supre-

mum norm for essentially bounded functiang R. by ||Ju]|, . We need some

classes of functions to define the stability propertyictv we will use. A function
f :R"> R, is said to bepositive definiteif f(0)=0 and f(x)>0,vxeR"

holds. A clasK function y:R, — R. is continuous,y(0)= Oand strictly in-
creasing. If it is additionally unbounded then it is efsslK , .We call a function
B R.xR.—> R, of classKL if g is continuous,S(-,t) e K and g(r ;) strictly
decreasing witlim g(r,t) = 0, vt,r > 0.
t—w
Now we define local input-to-state stability (LISS) angdut-to-state stability

(ISS), respectively, for each subsystem of (4). Foteayy(3) the definition of
LISS and ISS, respectively, can be found for example iarfd][8], respectively.



Definition 1. The i-th subsystem of (4) is called LISS, if there exist tamis
pi Py >0 75,7 €K,, and g eKL, such that for all initial values

X 1€ 2. 1% IL.< o} and all inputs|u, || < p!" the inequality
16 €67 = 1l max{g (1 10, mav (1 1)l 1)} ©)
is satisfiedvt e R.. y; andy; are called (nonlinear) gains.

Note that, if p; p'] ,pi = then the-th subsystem is ISS (see [1]). LISS and

ISS, respectively, mean that the norm of the trajezs of each subsystem is
bounded.

Furthermore we define thgain matrix I':=(y;),i,j=1...,n, 7; =0, which

defines amag : R} —» R by

T
I(s):= (mjaxhj (s; ),...,mjaXynj (s; )j ,seR". @)

Previous investigations of two interconnected systertabkshed a small gain
condition to guarantee stability (see [5] and [6]). Indf]ISS small gain theorem
for general networks was proved, where the small gaidition is of the form

r'(s) Z s, Vs e R"\{0} ®)

Notation # means that there is at least one componertl,...n such that

I'(s); <s. Here we recall a local version of the small gaindition:

Definition 2. T satisfies thdocal small gain conditio(LSGC) on [0, w *], pro-
vided that
[(W) <w* andT(s) Z s, Vse [0,w], s= 0. )

Further details of (9) can be found in [3]. The small gaindition is equivalent
to the compliance of the cycle condition (see [7], Lenr8.14 for details). We
quote the local version of the small gain theorem:

Theorem 1. Let all subsystems of (4) satisfy (6). Suppdssatisfies LSGC. Then
there exist constantp, p >0, KL and y € K_ ,such that the whole system
(5) is LISS.

The proof can be found in [3], Theorem 4.2. An importaot to verify LISS
and ISS, respectively, are Lyapunov functions. For systef the form (3) one
can find the definition of Lyapunov functions for example@hdnd [3].

Definition 3. A smooth functionV, RY > R, is called LISS Lyapunov function
of thei-th subsystem of system (4), if it satisfies theoleihg two conditions:
1) There exist functiong; .y, € K_, such that

v (% ID<Vi06) <wa(llx I, % e R™ 10
2) There existy; , 7 € K., a positive functiory; and constantg}, p >0 such



Vi(x%) 2 max{mjaxlij VN2 (i IDF= VVi6) - fi(xu) < =z (Vi (%)) LD

forall x e R™, ||x |L,< b, ui e RM |lu |L.< p”, 7; =0, whereV denotes
the gradient o¥;. Functionsy; and y; are called LISS Lyapunov gains.

Note that, if oy, pi' =0 then the LISS Lyapunov function of theh subsys-
tem becomes an ISS Lyapunov function ofitktte subsystem (see [4]).

To check if the whole system of the form (5) has tH@S_br ISS property one
can use LISS or ISS Lyapunov functions, respectivelthdfe exists a LISS or
ISS Lyapunov function for a subsystem of (4) then theysti&s has the LISS or
ISS property, respectively. Furthermore, if all subsystdhave a LISS of ISS
Lyapunov function and the LISS or ISS Lyapunov gains fyatiee small gain
condition, then the whole system of the form (5) iS&lor ISS, respectively (see
(2], [3] or [4]).

With this mathematical theory we can derive condgjdor which the subsys-
tems and the whole system are stable. This will beepted in the next section.

4  Stability of the model

In this section we investigate all six subsystems of ¢1lhteck if they have the
LISS or ISS property, respectively. Therefor we ch@&gapunov function can-
didate for each subsystem and check, weather conditlsa(d (11) are satis-
fied.

Remark 1. It can be shown that for any non-negative init@idition all subsys-
tems of (1) are non-negative, since the tefiifx, is yero forx, = Oandd =0,

i=1...n

We chooseV, (%) = x; as Lyapunov function candidate ferl,...,6. V, satis-
fies condition (10). For the investigation of the fgabsystem we define
_ G0y + G303

A-é&p))a
j=23 1>¢&; >0, whichimplies

ey Q- explx)) S — D (1 5,)) oy (- exp(x,))
Cro@p +Cy303
To guarantee thay,; is well defined the condition
Cioap +Cizaz < oy (1- &) < a1y L2

has to be satisfied. With this consideration it follows

X1 (X)) =-In'1 A—explx;)) | <% =Vi(x),



V1 (% (1)) F (X, (1), X6 (1), d (1))
= Cppt (1—€XP(X3)) + Cras (11— eXp-X3)) — a1 (L— exXpExy))
< ( (d—&1p)01C10a, . A= é&13)nCi1303
Cro0z + G303 Cro0p + G303
< =0y (- expEx)) = = (V1 (% (1))
where g =min{e;5, &5} and g4 (r) = g, L—exp(r )) is a positive definite
function.
The reason of the introduction of the constant valyeis to guarantee that,
is positive definiteV, satisfies condition (11) and is the ISS Lyapunov funaion
the first subsystem from which we know that the finghsystem has the ISS prop-
erty for all x; eR., j = 123, if condition (12) holds.

For subsystem 2 to 5 we do similar calculations and gefaine

- alj (1-expx))

Conlty + Cos _
Z2i(X;)=-In LWG_exp(—Xi»j 1>, >0, =45
—&3j)a3
Cauy + Ca5 _
Z3j (X)) =—In LWG_@@(—X]»J 1> 5 >0,j =45
—é&3j)as3
Cig? _
Zjs(Xg) =—In 1—ﬁ(1—e>(p(—xe))} 1>¢;6>0]=45
T Cje/Y

and conditions
Ay > Coalty + Coslls, A3 > C3404 + 3505, Ay > Chellpr A5 > Coelg a3
for which the subsystems 2 to 5 have the ISS property.
For subsystem 6 from

d®)(ld [, +Ce101)
26(d(t)) = —In[l—
® [[d L, A-éeq)ae
d|], +Cgx
(%) = —In[l—M (1—exp(—x1))j < g =V (%),
(d-¢&61)as
with 0< g4,659 <1 We get
Ve (X (1)) f6 (X1 (1), %6 (1), d (1))
=d(t) — o (1—exp(=xs(t))) + Coras (1— €XPE3 (1))
< —ggag (L—eXpXg (1)) = — 16 (V6 (X5 (1)),
where gg = min{eg;, g } aNd (1) = g5t (L—explr )) is positive definite, if
ag >||d ||, +Cga. 15
holds true to guarantee thagf and y4, are well defined. Functiory, as defined
in (14) ise K, but we can find a continuation ¢gf; such that the composed func-

tion is K, . HenceV, satisfies condition (11) and from Section 3 we know that

j < X =Ve(Xs),
14



subsystem six has the LISS property for allxg eR, and
lld [l < @6 — Corq = p".
With exp-r)<1Lr>0< (1-a)exp(-r)< (@-a),0<a<l
o explr)<l-a+aexplr) © —Inl—a+aexplr)) <r it follows
X12° X24° Xa6° Xea(r)
:—In(l— Crollp +Cigl3 Coglls +Cos%5  Caes 1A |, +Cein - expér))}
A-e)ay Q- (A-ége)as (L-gg)

<r, r>0.
By similar calculations the following holds
X12° X24° Xa6° Xe1(1) <T\ 13° X34° Xag° Xea () <T, L6)

J12° X25° ¥56° X61(T) <V, X13° X35° X¥56° Xe1(r) <T,
for r >0, such that the cycle condition and therefor the sgeith condition is
satisfied. We conclude that all subsystems are LISS®r lespectively, and we

can apply Theorem 1, such that the whole system is fdS8ll x,x, € Rf and
[ld]|,< p" with additional conditions (12), (13) and (15).

5 Simulation results

To verify and demonstrate the results of the previousosewe simulate all sub-
systems with help of Matlab.
At first we choose values for the parameteys cg; = 0.0001c;, =4,¢3=3

Cys =4,C34 = 9,Cy5 = 6,C35 = 2,Cyg = 8,C55 = 4. Consider constant ordets= 20.
Then the stability conditions (SC) (12), (13) and (15) bexom
o, >4a,+3a5,a,>4a,+605,05>9a,+2as,
o, >8ag, as >4 ag, ag > 20+ 0.0001e;.
By solving this system of linear inequalities we getdbedition
a=(ay, a0, 03,04,05,0¢)" >(97315511745,167786,16779,83.9,2099 "

With the choicex = (975011801680169,85, 21)" andx, = @11111)" the

simulation results are presented in Figure 2, whegewumber of ordersNo' ) of
each subsystem for tintes displayed. We see, that all trajectories ofghlesys-
tems are bounded.



Number of unsatisfiedorders
‘Number of unsatisfied oders

0 20 40 60 80 100 10 20 30 40 S50 60 70 80 9 100
t t

Fig.2 NO', if (SC) are satisfied Fig. 3 NO', if (SC) are not satisfied
Now we choose the maximum production rates only snialler:
a =(973011741677167,83 209)"
The simulation results are displayed in Figure 8. 3&k that the trajectories of the
subsystems 1 to 3 are bounded, but the trajectofidse subsystems 4 to 6 are

unbounded, which means that the whole system istable.
By further simulations of the system we discoveat thor other inputs where

[ld]l.< p" is not satisfied, the system can be stable. Wsidenall valuess; as
before, choose the maximum production rates
a =(975011801680169,85,21)" such that conditions (12) and (13) are satis-
fied and replacd by d(t) = 20- (sin¢) + 1). Itis ||d ||, = 40 > p", but by simula-

tion results, which are presented in Figures 4 @nall subsystems and therefor
the whole system are stable.

2 ) IS
=3 S =)

—
=

Number of unsatisfied orders

Number of unsatisfied orders

0 10 20 30 40 50 0 10 20 30 40 50

t t
Fig. 4 Simulation results fox; to xs with Fig. 5 Simulation results foxs with d(t) =
dt) = 20 (sinf) + 1) 20 (simy(+ 1)

This result is caused by the usage of the “worstcaithin the mathematical
theory, namely the supremum noff|,, . In particular for oscillating inputs (e.g.

seasonal changes of demand) the maximum valuedsfasall the time to derive
stability conditions, such that lower inputs wilbtnhbe considered over the time.
Whereas in the Matlab simulation the actual inputtimet is used, which is not
the maximum value for all the time for an osciligtiinput and therefore lower
stability conditions can be obtained. By mathenadtilseory used in this paper it
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is not possible to cover all inputs for which tlystem is stable, in particular oscil-
lating inputs. This is an actual mathematical pobto find the domain of stabil-
ity as large as possible.

6 Conclusions and outline

In this paper we have described a model for netsvofkautonomous produc-
tion plants. This model was investigated on stigbiln particular necessary con-
ditions for its stable behavior were provided. Teper illustrates an approach for
modelling and analysis of autonomous logistic systewhich can be transferred
to other more complex logistical networks equivdierBy application of the sta-
bility analysis as presented here one can derafality conditions to guarantee
stability of the network and they help to desige tietwork to avoid negative out-
comes and to achieve economic goals.

For validation of the provided methods a comparisbthe obtained results
with simulations provided by discrete event siniatats of interest and is planned
for the future research.
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