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Abstract

We consider networks of input-to-state dynamically st S) systems and use a
small-gain condition to assure the ISDS property for thatieiconnection. Under this
small-gain condition we provide a construction of an ISD&jynov function includ-
ing explicit derivation of corresponding rates and gaindlie whole interconnection.

Key words: Nonlinear systems, input-to-state dynamical stabilitygiconnected
systems, ISDS Lyapunov function, small-gain condition

1. Introduction

Consider a large scale nonlinear system of the form

X(®) = F(x(®), u(t)), (1)

wheret € R is the time,x{t) denotes the derivative of the statg) € RN with initial
value xo, the inputu(t) € R™ is an essentially bounded measurable function find
RY*M — RN N, m e N. To have existence and uniqueness of a solution of (1) let the
function f be continuous and locally Lipschitz xuniformly in u. The solution is
denoted by(t; xo, U) or X(t) in short.

Stability of such systems is a crucial property for applmad and it is not always
an easy task to check stability of a given nonlinear systans adesign it in a way that
it becomes stable and robust. To solve such problems condlitif the small-gain type
turn out to be helpful in many situations. An important tamirivestigate stability is a
Lyapunov function. However there is no general method to dingapunov function
for arbitrary nonlinear system.

Stability analysis of such systems can be performedftedint frameworks such as
passivity, dissipativity [1], input-to-state stabilith§S) [2] and its variations [3, 4, 5, 6].
We will use the notion of input-to-state dynamical stai(tSDS) introduced in [7].
This property is equivalent to ISS, however the advantad8bDs over ISS is that the
bound for the trajectories takes essentially only the reealues of the inputi into
account and in many cases it gives a better bound for trajestdue to thenemory
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fading dfect of the disturbance input. Moreover the gains in the trajectory based
definition of ISDS are the same as in the definition of the 13)&punov function,
which is in general not true for the ISS systems.

In many applications a large scale system of the form (1) essobsidered as an in-
terconnection of several subsystems of lower dimensiocis that stability properties,
for example Lyapunov functions, are known for each of thesgatems. A small-gain
condition can help to check stability and to construct a lyegy function for the whole
system.

In this paper we use a small-gain condition for interconioect of an arbitrary
number of ISDS subsystems and show how an ISDS Lyapunovifuncan be con-
structed for the whole system if this small-gain conditisnsatisfied. To this end
considem > 2 interconnected subsystems

%) = fi(xa(®), ..., %@, u(®), i =1,....n, )

wheren € N, x(t) € RN, N, € N, u(t) € R™, f, : RZ-=N*™ _, RN and assume that
each subsystem is ISDS. We consider this interconnectione@karge scale system (1)
with x = (XIX,T])T fxu) = (fx W), fax u)T)T and look for a condition
that assures that the whole system is ISDS with respect tstalex and the input.

Recall that stability conditions for an interconnectiontebd ISS systems were
developed in [8] and [9]. In [10] a small-gain theorem foe N interconnected ISS
systems was proved. Since ISS Lyapunov functions are anrtargaool to verify
the ISS property, a Lyapunov formulation of the small-gaiedrem was given for two
interconnected systems in [9]. There, an explicit consiwacof the ISS Lyapunov
function of the whole system was shown. In [11, 5, 12] an @xptionstruction of
an ISS Lyapunov function for the overall systemmahterconnected subsystems was
derived under a dficient small-gain condition.

Similar to ISS systems the ISDS property of system (1) is\edennt to the exis-
tence of an ISDS Lyapunov function for system (1), see [4504 0-GAS small-gain
theorem for two interconnected systems with the inpsitO can be found in [4].

The purpose of this paper is to extend the mentioned resultSS systems to
the case of ISDS systems. In particular we present a smiallthaorem fom € N
interconnected ISDS systems of the form (2) and provide atcoction of an ISDS
Lyapunov function as well as the rates and gains of the ISEiSiaton for the entire
system consisting afi € N interconnected ISDS systems under a small-gain condi-
tion. Moreover we derive decay rates of the trajectories ofN interconnected ISDS
systems and the trajectory of the entire system with theeatéputu = 0.

The organisation of this paper is the following: The nextieecintroduces neces-
sary notions. Section 3 contains the main result of the papesmples are given in
Section 4 and the conclusions are collected in Section 5.

2. Preliminaries

By x" we denote the transposition of a vectoe R", n € N, furthermoreR, :=
[0, «0) andR" denotes the positive orthafit € R" : x > 0} where we use the standard



partial order forx,y € R" given by
Xzye x>y, i=1...,nandx 2 ye Ji:x <y.

|-| denotes the Euclidean normiRY and the essential supremum norm of a function
f is denoted by f||. Furthermoréx|,, denotes the maximum norm &fe R" andVV
the gradient of a functiol : R" — R,. For a functionv : R, — R™ we define its
restriction to the intervalg, ;] by
_ vt ifte[s, s,
Visus (1) = { 0 otherwise U b 2E€R.

Definition 2.1. We define following classes of functions:

{(f :R">R,|f(0)=0, f(x) >0, x# 0}
{y : Ry — R, |vyis continuousy(0) = 0 and strictly increasing
{y € K|y is unbounded

P
) .
Koo -
LZ:{)/:R+—>R+

KL :={8:R, xR, - R, |Bis continuousp(-,t) € K, B(r,-) € L, ¥t,r > 0}
KLD :={ueKL|u(r, t+s) = u(u(r,t),s),Vvr,t,s> 0}

v is continuous and strictly decreasing witthm y(t) = 0}

We will call functions of clas® positive definite

Remark 2.2. The conditionu(r,t + s) = u(u(r,t), s) impliesu(r,0) = r,¥r > 0. To
show this suppose that there exists 0 such thaju(r,0) # r. Then

u(r,0) = u(r, 0+ 0) = u(u(r,0),0) # u(r,0),

which is a contradiction. The last inequality follows frohetstrict monotonicity oft
with respect to the first argument. This shows the assertion.

Note that, ify € %K., then there exist the inverse functign' : R, — R, with
y~1 € K.,. The proof can be found in [5].

Definition 2.3. System (1) is calleéhput-to-state stable (ISSf there exisi3 € KL
andy's® € K, such that

IX(t; X0, U)l < max{B(Ixol , t), ' *ull)} )

V X € RN, t € R, and essentially bounded and measurable inputs R™. 'S is
calledgain

This concept has been first introduced in [2], where an etpiivéormulation with
sum of the both terms instead of max in (3) has been used. hiowik for ISS systems
that if lim sup u(t) = 0 then also lim,. X(t) = 0 holds. However witht — oo (3)

t—oo
provides only a constant positive bound e 0. Another stability property equivalent
to ISS is the following:



Definition 2.4. System (1) is callethput-to-state dynamically stable (ISQ%)there
exist functiong € KLD, n, y** € K, such that

IX(t; %o, U)l < max{u(n(]%ol), ), GS?O%UW(V'SDS(IU(T)IM— 7} 4)

VteR,, % e RN and essentially bounded and measurable inputsRi". y is called
decay raten overshoot gaimndy's®s robustness gain

Note that for largé the bound (4) takes essentially only the recent values dfithe
put u into account, in particular it follows immediately from (4}hat
limsupu(t) =0 = lim, X(t) = 0 as stated in the following

t—ooo

Lemma 2.5. If system (1) is ISDS and lim swgt) = 0, then it holds

t—oo

tIim [X(t; X, U)| = 0.
Proof. Since (1) is ISDS we have

IX(t; Xo, U)l < max{u(n(lXol), t), es?oflum(y'SDs(IU(r)l), t-1)}

maxu((|xol), 1), €ss supu(y***(u(7)I), t — 7), ess supu(y**(u(z))), t - 7)}

re[03] re[24]

IA

maxtu(n(el). ), 1O*(1ulfo ). 3). eS8 SUB( (). O
TE %,t

It holds lim supu(t) = 0 andu is essentially bounded, i.e1K € R, such thatfjullp g <

t—oo

K, ¥t > 0. Furthermore/ & > 03T > O such thav 7 € | T, T| : ess sup/*>*(|u(7)]) <
T€[%,T]

&. With these considerations, théLD-property ofu and Remark 2.2 we get

: : t
lim IX(t; o, )l < lim max{u(r(|xol). 1), u(y***(ull[o.5])- 5)- eSF S]UD/'SDS(IU(T)I)}
TE l,t

2

< maxlim u(y*>X(K), %), lim ess sup/**(lu(7)})} = O.
—00 —00 ‘re[%t

O

Remark 2.6. The notion of ISDS was introduced in [4] and [7]. One obtainms a
equivalent definition of ISDS if one replaces the euclideammin (4) by any other
norm. Moreover it can be checked that all results in [4] andl fibld true, if one uses
a different norm instead of the Euclidean one.

In the rest of the paper we assume the functigngandy's®s to beC*® in R, xR or
R, respectively. This regularity assumption is not reswistibecause for nonsmooth
rates and gains one can find smooth functions arbitrarilgecko the original ones,
which was shown in [7], Appendix B.

An important tool for the stability analysis of system (1¢ &yapunov functions.



Definition 2.7. Givene > 0, a function V: RN — R,, which is locally Lipschitz
continuous orRN\ {0} is calledISDS Lyapunov function of system (1ij there exist
N € Koo, Y5, u € KLD such that

<V < 4), vxe RN (0), 5)
&

V(x) >y (ul) = VWV - f(x u) < - (1-£)g(V(X) (6)

for almost all xe RN\ {0} and all ue R™, whereu solves the equation

d
a#(r’ t) = _g (,Ll (r’ t)) > r’t > O (7)
for a locally Lipschitz continuous function:R; — R,.

It is known that ISS implies the existence of a smooth ISS Lyayw function for
the system (1) (see [13]). A similar result for ISDS systenas ywroved in [4]. We
use locally Lipschitz continuous Lyapunov functions, whare diferentiable almost
everywhere (a.e.) by the Theorem of Rademacher.

Proposition 2.8. System (1) is ISDS withh € KLD andn, > € K., if and only
if for eache > 0 there exists an ISDS Lyapunov function V, which is localpsthitz
continuous oRN\ {0}.

This follows by Theorem 4, Lemma 16 in [4] and Proposition@i8 [7].

Remark 2.9. Note that for an ISDS system it holds that the decay patend gains
n, ¥"*°°in Definition 2.4 are exactly the same as in Definition 2.7. &ldbat in case
of ISS systems the trajectory gains are in genergiédint from the Lyapunov ones.

In order to have ISDS Lyapunov functions with more regwandhe can use
Lemma 17 in [4], which shows that for a locally Lipschitz faion V there exists a
smooth functiorV arbitrary close tov.

Now we consider interconnected systems of the form (2).

Definition 2.10. We call the ith subsystem of (2) ISQ¥ there exists & LD-function
wi and functionsy;, ;> andyﬁDS € Ko U{0}, i, j = 1,...,n withy;** = O such that
the solution yt, x? u) = x(t) with any initial value x0) = ><I0 and any inputs x u
satisfies

X ()l < max{ui(mux?»,t), e 0,9, t)} ®)
forallt € R,, where
() =255 SUL (U £ 0. 5. = SUR P ). )

i,j=1,...,n. yﬁf’s, ¥;**° are called (nonlinear) robustness gains. The ISDS gain
matrixI"s®sis defined by"ss ;= (yﬁ[’s), i,j =1,...,nand the map*>: R? — R? by

[*2(9) 1= (Maxy s .. mjaxy'r?f’s(sj))T, seRI. (9)



Note that byyﬁDS € K. U {0} and forv, w € R? we get
V>w = I'%(V) > I'(w).

Definition 2.11. For vector valued functions % (x,...,x))T : R, — RZ4N with
X : R, = RN and time < t; < tp, t € R, we define

X1 = (%1, ... @)D" € RY.

Forue R™ t € R, and se R} we define

FELUOD = (YEUOD. ... ¥E(U))) € R,
s 1) = (s, (s, )T € RY, (9 1= (7a(Su)s -, mn(s))" € R,

Now we can rewrite condition (8) in the form

Ix®] <max

,J(ﬁ(lxol),t), sup ,J(F'SDS(IX(T)I),t - ‘r),

7€[0,t]

sup p(y***(u(@))), t - T)]

7€[0,t]

(10)

for all t € R,. Note that the maximum, supremum and essential supremudinise
(10) for vectors are taken componentwise.

If we defineN := Ny + ...+ Ny, x:= (xI,..., x))T andf := (f],..., f1)T, then
(2) becomes the system of the form (1). Now the questionsauisder which condition
the whole system (1) is ISDS with respect to the inpanhd statex?

Recall that the small-gain theorem for two interconnec&#l $ystems was proved
in [8]. This result was extended for the casenot 2 interconnected ISS systems in
[10], Theorem 4.4, where the small-gain condition is of thief

I(s) #s ¥YseR\{0}. (11)

From (10), using thé( LD-property ofu and withT'ss ;= ['SPS) 35S := 4150 B(r 1) :=
wuln(r), t) we get

Ix@)1 < max{g (15, t), 0= (1111, y<q1uip} .

This implies that each subsystem of (2) is ISS and by the sgaati condition (11)
their interconnection is ISS and hence ISDS, since by Pibpoes.4.4 (i) in [7] the
ISDS property is equivalent to ISS. Unfortunately by usehif equivalence we loose
the quantitative information about the rate and gains ofl8i@S estimation for the
whole system.

In order to conserve the quantitative information of the $fate and gains of the
overall system we prove an ISDS small-gain theorem usindgsI&fapunov functions
in the following section.



3. Main results

In this section we provide a Lyapunov version of the ISDS $main theorem for
n € N interconnected systems, where we give an explicit construenethod of an
ISDS Lyapunov function and the rate and gains of the ISD$negion for the whole
system.

For the main result in this section we consider system (2) dafthe the ISDS
Lyapunov functions of the subsystems by

Definition 3.1. Givene; € (0, 1), a function V: RN — R,, which is locally Lipschitz
continuous onRiN\ {0} is calledISDS Lyapunov function of theth subsystem in (2)
fori=1,...,n,ifit satisfies:

(i) There exists a function € K., such that

il
1+s

< Vi(x) < mi (1%) 12)

for all x; € RN\ {0).

(i) There exist functiong; € KLD, v € K. U {0}, yﬁDs € Ko U{0}, | =
1,...,n, i # jsuch that for almost all xe RN and all essentially bounded and
measurable inputs @ R™

Vi(x) > max{y;>*(Jul) me?’ﬁDs(Vj(Xj))}}
=VVi(x)fi(X, ..., %o, U) < = (1 - &) gi(Vi(x)),

holds, wherg; € K LD solves the equatioﬁyi(r, t) = —gi (ui (r,1)), r,t > 0for some
locally Lipschitz continuous function gR, —» R, i=1,...,n.

(13)

For the proof of the main result in this section we will need thllowing:

Definition 3.2. A continuous patlr € KT, is called anQ-path with respect td' if

(i) foreachi,the functiorari‘1 is locally Lipschitz continuous of), «);
(ii)y for every compact set K (0, o) there are constant8 < ¢ < C such that for all
points of diferentiability ofo-i‘l andi=1,...,nwe have

0<c< (o7l (r)<C, VreKk;
(iii) it holdsT(c-(r)) < o(r), Vr > O.

Remark 3.3. LetT € (K. U {0})™" be a gain matrix. Ifl" satisfies the small-gain
condition (11), then there exists &zpatho with respect td".

The proof can be found in [12], Theorem 5.2, see also [14], évaw only the
existence is proved in these works. It was noted there thatéffinds a poins € R?
with I'(s) < sthen there is a possibility to construct a (finite) path cating the origin
to this point and satisfying the Definition 3.1 locally, j.&n each point of the path
betweers and the origin. In general it is a nontrivial problem to findlss, especially
in case of largen. However ifT" is defined in terms of maximization of gains as it is
donein (9) the solution is very simple and one can constrfinita but arbitrary "long"
Q-path:



Proposition 3.4. If I satisfies the small-gain condition (11), théiR > 0, and Pe R}
with P, > R there exist monotone and strictly increasing functiend = 1,...,n such
thato := (o1,...,00)" : [0, 1] — R" with o-(0) = 0 ando(1) = P.

Proof. Let Q be the set of the points € R satisfyingI'(s) < s. By Remark 2.8. in
[15] it follows that for anyx € R we havel'(Q(X)) < Q(X), where

Q(x) := max{x, ['(x), [3(X),...,I" )},

i.e., Q(x) is in Q or it belongs to the boundary 61. SinceQ is an open domain it is
easy to find a vectoP € R? (searching an arbitrary small vicinity @(x)) such that
I'(P) < P. Takingx > (R,...,R)" in Q(x) sufficiently large we will find &P sufficiently
large. In [12] and [14] it was shown that the sequeRt®), k = 0,1,... convergesto
the origin and the linear interpolation of these pointsgsehe desired path. O

Now we present our main result:

Theorem 3.5. Assume that each subsystem of (2) is ISDS. This means thedadbr
subsystem and for eaeh € (0, 1) there exists an ISDS Lyapunov function Which
satisfies (12) and (13). L&t**be given by (9), satisfying the small-gain condition (11)
and leto € K2 be anQ-path from Remark 3.3 with = I'*®S, Then the whole system
(1) is ISDS and its ISDS Lyapunov function is given by

V9 = 7 (maxfor® (Vi) (14)
with rates and gains
o) = @7 W) min{o) @)@ @) T >0,
n(r) =y~ max{or ()}, r > 0 (15)
o) = v Hmax|{oT o)), 1> 0,

wherey (]x]) = min; o-i‘l (‘\/Llﬁ) teR,.

Remark 3.6. Note that the small-gain condition (11) is equivalent to tlyele con-
dition (see [5], Lemma 2.3.14 for details). A k-cycle in amal’ = (yj)];_; is a
sequence 0. functions(yigi,, Yiji,s - - - » Yiesi) OF length k with ¢ = ix. The cycle
condition for a matrix is that all k-cycles of" are contractions, i.e.,

Yioiz © Yisiz © - -+ © Vikepix < Id,

forallip,...,ik € {1,...,n} with ip = iy and k< n. See for example [5] and [6] for
further details.

The proof of Theorem 3.5 follows the idea of the proof of Theni5.3 in [12] and
corresponding results in [11] with changes to constructtiias and rate of the whole
system as in (15).



Proof. Let0# x = (XI ) ..,XI)T. We define
V(9 = max{o* (Vi) 7(x) = max{or (n(x))} v (%) := miino-rl('—}'n),

whereV; satisfies (12) foi = 1,..., n. Note thato-i‘1 € K. Letj be such that
Xl = IXjl for somej € {1,...,n}, then by

-1 |X|| -1 |Xi|oo -1 |Xj|oo . 1 |X|
maxo; (1+8i)zmiaxa-i (1+8 >0 T+e > mino; 7\/ﬁ(1+s) (16)

whereg := max ;. We have

X

v (ﬁ) < V() < n(x). 17)

Note thatV is locally Lipschitz continuous and hence it isfdrentiable almost every-
where. For any € {1, ..., n} consider open domaird; € RN\ {0} defined by

M = {(XI ) x,T])T e RM {0} : o7 (Vi(x)) > rr;gx{o-}l(vj(xj))}}.

Now for anyx = ()”(I ..... f(I)T € M,; it follows that there is a neighborhoatlof X such
thatV(x) = o7(Vi(x)) holds for allx € U. Lety™3(ul) := max; {7 (*(lul))}, | =
1,...,n. AssumeV(x) > ¥**5(|ul). Then

Vi(x) = ai(V(%) > oi(o7 1 (2°%(ul))) = »°(lu).

>From Definition 3.2 (iii) andk € M; we have

Vi(x) = (V) > maxy (o (V(9)) = masay=(v; ().

Thus (13) implies for almost ak € M;
W F(x W) < ~(L- &) (07) (VOD)GVi(x)) = ~(1 - e)E(V(¥).

wheredi(r) := (o-i‘l)' (oi(r)ai(oi(r)) is positive definite and locally Lipschitz. As
indexi was arbitrary in these considerations, witf<{Jul) = max; {071 (y°(|u}))} and
g(r) := min; §i(r), € = max & the condition (6) for the functioN is satisfied. From
(17) we get

IX|

—— <y (V(0) < v (1K)

l+e

and we defineV(x) := y~1(V(x)) as the ISDS Lyapunov function candidate with

n(X) := ¢~ (7(x))). Note thaty™ € K., andV(X) is locally Lipschitz continuous. By
the previous calculations f&f(X) it holds

V0O 2 75 () = v () = GO0 < -(L-)g(V(9), ae.

9



whereg(r) := (1) (w(r)) g (¥(r)) is locally Lipschitz continuous. Altogeth&f(x)
satisfies (5) and (6). Hend&(x) is the ISDS Lyapunov function of the whole system
and by application of Proposition 2.8 the whole system is3SD O

In the following we present a Corollary, which is similar tbdorem 10 in [4] for
two coupled systems and coverss N coupled systems, where the rates and gains
defined in Theorem 3.5 are used. We get decay rates for tleetwaes of the whole
system and each subsystermafoupled systems with external input 0.

Corollary 3.7. Consider system (2) and assume that all subsystems are 18BDS w
decay rateg; and gainsyi, y*™andy™ i.j = 1,....n, i # j. If the small-gain
condition (11) is satisfied, then the coupled system

5(1 f]_(X]_, ey Xn)
Xn fa(Xe, ..., Xn)

is globally asymptotically stable at 0 (0-GAS) with

X ()] < [X(0)] < (w-l (miax{o-i‘l (m (|x°|))}) : t) (19)
fori,j=1,...,n,allte R,, with functiong, o, y andn; from Theorem 3.5.

Remark 3.8. Note that for large n functiog in (15) becomes "small" and hence the
rates and gains defined lpy* become "large" which is not desired in applications. To
avoid this kind of conservativeness one can use the maxirotmm|R, for the states
in the above definitions and in Theorem 3.5 and Corollary 3is is possible as we
have noted in Remark 2.6. In this case the devisior/hyin (16) can be avoided and
we get(15) with ¢ (|X|,) = min; ai‘l (IXls)- This is used in our examples below.

Unfortunately we cannot compare directly the estimatiofleorem 10 in [4] with
our estimation (19), since another approach for estimatarihe trajectories for two
coupled systems was used in [4]. The extension of this apprman > 2 seems to be
hardly possible. Our approach allows to consid@rterconnected systems.

4. Examples

To compare Theorem 10 in [4] with Corollary 3.7 for the casévwad subsystems
we consider the Example 12 given in [4].

Example 4.1. Consider two interconnected systems

2
() = (0 + 22 500 = 30 + 30

As in [4] we choose V= |x| andy1(r) = 3r3, y2(r) = J2r, num2 = 1d, gu(r) =
ar, ga(r) = 313 ltis easy to check that the small-gain condition is satistied an

10



—eg. (19
---14]
X))

-
-
~ -l
= o

1 1 1 J t
0 5 10 15 20

Figure 1:|x,, and estimations with help of Corollary 3.7 (solid curve) &@mple 12 in [4] (dashed curve)

Q-path can be chosen hy;(r) = Id, o(r) = ,3/4-—3‘}9r. For x) = x§ = 2 the solution
X was calculated by Matlab. The plot pd., as well as its estimations KiL9) and
from [4] are shown on Figure 1. To compare our estimation vi@hwe plot the ISDS
estimation in Example 12 in [4] with respect to the maximunmmdor states using
Remark 11 in [4]. The solid (dashed) curve is the estimatibix|@ by Corollary 3.7
([4]).

Both estimations tend to zero as well as the trajectory amabige nearly the same
estimate for the norm of the trajectory as it should be exgukct

The advantage of our approach is that it can be applied fgetanterconnections.
The following example illustrates the application of Thexor3.5 for a construction of
an ISDS-Lyapunov function for the case> 2.

Example 4.2. Consider ne N interconnected systems of the form

n

o) = -2 + 3. b0 + Tu().
- (20)

n

Xi(t) = —ax(t) + %bm/xl(t) + Z | %bijx,-(t) + %u(t), i=2...,n,

>1j#i

for bjj € [0,1), & = (1 + &), & € (1, 00) and any input te R™.
We choose %) = |Xil. as an ISDS Lyapunov function candidate for the i-th subsys-
tem,i=1,...,n and define

ylijS(r) = bler’ J — 2’.“’n yIjS]_DS(r) = le \/F’ ] = 2,...,n
YA =y i =202 ) M) =ri=1.,n,

11



1.5¢

~e - - -ISDS estimation
. ——Trajectory

. Time t

Figure 2:|X, and ISDS estimation of the whole system consisting of3 subsystems of the form (20).

I'sts = (yﬁf’s), i,j=1....n ¥ =0,7(r) :=randy(rt) = e'r as solution of
%yi(r, t) = —gi(w (r, t)) with gi(r) := &r we obtain that Yis an ISDS Lyapunov function
of the i-th subsystem. To check wheather the small-gainittonds satisfied, we use
the cycle condition, which is satisfied (this can be easitified).

We chooser(s) = (o1(9), ..., on(9)" with o1(9) := & andoj(s) :==s j=2...,n
for se R,, which is one possibility of choosifag Theno is anQ-path, which can be
easily checked, especiablysatisfied™ (o (9)) < o(s), ¥Ys> 0.

Now by application of Theorem 3.5 the whole system is ISDShent6DS Lyapunov
function is given by

V9 = 7t (maxar(x.) )

>
with y(r) = min; o-X(r) = { r?/F, by
and ISDS Lyapunov function, respectively, are given by. (B&jthermore, if {t) = 0
then by Corollary 3.7 the whole system is 0-GAS and the dextays given by (19).
In the following we illustrate the trajectory and the ISDSirestion for a system con-
sisting of subsystems of the form (20) foe=r8. We chooseia= 35, bj = 3, i.j =
1,2,3, i # |, u(t) = exp(t) as input and the initial values?x= 0.5, xJ = 0.8 and
xg = 1.2. Then we calculate the ISDS estimation of the whole systedessibed
above and get

. The gains and rates of the ISDS estimation

IX()]o < Maxu((x3)% 1), ess supu(yu(z), t — 7).
7€[0,t]

This estimation is displayed in Figure 2 (dashed line). Tofyevheather the norm of
the trajectory of the whole system is below the ISDS estimate solve the system of
the form (20) for n= 3 by Matlab. The norm of the resulting trajectory of the whole

12



system is also displayed in Figure 2. We see, if the ingjttends to zero the ISDS
estimation tends to zero as well, whereas in the case of [S$thot true. Also the
norm of the trajectory tends to zero and is below the ISD $nedidn.

5. Conclusions

We have shown that a network of interconnected ISDS sulragsteagain ISDS if
the small-gain condition (11) is satisfied. In this case wavjgled explicit expressions
for an ISDS Lyapunov function and the corresponding ratabs gains of the entire
interconnection. As an application of these results wedtigated a system of inter-
connections with zero external input and derived decag meftthe subsystems and the
entire system. An example with two systems taken from [4] jgaras the resulting
estimates of the norm of a trajectory obtained by [4] and [8).(JAnother example
with n interconnected ISDS systems illustrates the applicatidéheoour main result.
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