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Abstract

We consider networks of input-to-state dynamically stable(ISDS) systems and use a
small-gain condition to assure the ISDS property for their interconnection. Under this
small-gain condition we provide a construction of an ISDS Lyapunov function includ-
ing explicit derivation of corresponding rates and gains for the whole interconnection.
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1. Introduction

Consider a large scale nonlinear system of the form

ẋ(t) = f (x(t), u(t)), (1)

wheret ∈ R is the time, ˙x(t) denotes the derivative of the statex(t) ∈ RN with initial
valuex0, the inputu(t) ∈ Rm is an essentially bounded measurable function andf :
RN+m → RN, N,m ∈ N. To have existence and uniqueness of a solution of (1) let the
function f be continuous and locally Lipschitz inx uniformly in u. The solution is
denoted byx(t; x0, u) or x(t) in short.

Stability of such systems is a crucial property for applications and it is not always
an easy task to check stability of a given nonlinear systems or to design it in a way that
it becomes stable and robust. To solve such problems conditions of the small-gain type
turn out to be helpful in many situations. An important tool to investigate stability is a
Lyapunov function. However there is no general method to finda Lyapunov function
for arbitrary nonlinear system.

Stability analysis of such systems can be performed in different frameworks such as
passivity, dissipativity [1], input-to-state stability (ISS) [2] and its variations [3, 4, 5, 6].
We will use the notion of input-to-state dynamical stability (ISDS) introduced in [7].
This property is equivalent to ISS, however the advantage ofISDS over ISS is that the
bound for the trajectories takes essentially only the recent values of the inputu into
account and in many cases it gives a better bound for trajectories due to thememory
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fading effect of the disturbance inputu. Moreover the gains in the trajectory based
definition of ISDS are the same as in the definition of the ISDS-Lyapunov function,
which is in general not true for the ISS systems.

In many applications a large scale system of the form (1) can be considered as an in-
terconnection of several subsystems of lower dimensions such that stability properties,
for example Lyapunov functions, are known for each of the subsystems. A small-gain
condition can help to check stability and to construct a Lyapunov function for the whole
system.

In this paper we use a small-gain condition for interconnections of an arbitrary
number of ISDS subsystems and show how an ISDS Lyapunov function can be con-
structed for the whole system if this small-gain condition is satisfied. To this end
considern ≥ 2 interconnected subsystems

ẋi(t) = fi(x1(t), . . . , xn(t), u(t)), i = 1, . . . , n, (2)

wheren ∈ N, xi(t) ∈ RNi , Ni ∈ N, u(t) ∈ Rm, fi : R
∑n

j=1 N j+m → RNi and assume that
each subsystem is ISDS. We consider this interconnection asone large scale system (1)

with x =
(

xT
1 , . . . , x

T
n

)T
, f (x, u) =

(

f1(x, u)T , . . . , fn(x, u)T
)T

and look for a condition
that assures that the whole system is ISDS with respect to thestatex and the inputu.

Recall that stability conditions for an interconnection oftwo ISS systems were
developed in [8] and [9]. In [10] a small-gain theorem forn ∈ N interconnected ISS
systems was proved. Since ISS Lyapunov functions are an important tool to verify
the ISS property, a Lyapunov formulation of the small-gain theorem was given for two
interconnected systems in [9]. There, an explicit construction of the ISS Lyapunov
function of the whole system was shown. In [11, 5, 12] an explicit construction of
an ISS Lyapunov function for the overall system ofn interconnected subsystems was
derived under a sufficient small-gain condition.

Similar to ISS systems the ISDS property of system (1) is equivalent to the exis-
tence of an ISDS Lyapunov function for system (1), see [4]. Also a 0-GAS small-gain
theorem for two interconnected systems with the inputu = 0 can be found in [4].

The purpose of this paper is to extend the mentioned results for ISS systems to
the case of ISDS systems. In particular we present a small-gain theorem forn ∈ N
interconnected ISDS systems of the form (2) and provide a construction of an ISDS
Lyapunov function as well as the rates and gains of the ISDS estimation for the entire
system consisting ofn ∈ N interconnected ISDS systems under a small-gain condi-
tion. Moreover we derive decay rates of the trajectories ofn ∈ N interconnected ISDS
systems and the trajectory of the entire system with the external inputu = 0.

The organisation of this paper is the following: The next section introduces neces-
sary notions. Section 3 contains the main result of the paper. Examples are given in
Section 4 and the conclusions are collected in Section 5.

2. Preliminaries

By xT we denote the transposition of a vectorx ∈ Rn, n ∈ N, furthermoreR+ :=
[0,∞) andRn

+ denotes the positive orthant{x ∈ Rn : x ≥ 0} where we use the standard
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partial order forx, y ∈ Rn given by

x ≥ y⇔ xi ≥ yi , i = 1, . . . , n andx � y⇔ ∃i : xi < yi .

|·| denotes the Euclidean norm inRn and the essential supremum norm of a function
f is denoted by‖ f ‖. Furthermore|x|∞ denotes the maximum norm ofx ∈ Rn and∇V
the gradient of a functionV : Rn → R+. For a functionv : R+ → Rm we define its
restriction to the interval [s1, s2] by

v[s1,s2](t) :=

{

v(t) if t ∈ [s1, s2],
0 otherwise,

t, s1, s2 ∈ R+.

Definition 2.1. We define following classes of functions:

P := { f : Rn → R+ | f (0) = 0, f (x) > 0, x , 0}
K := {γ : R+ → R+ | γ is continuous,γ(0) = 0 and strictly increasing}
K∞ := {γ ∈ K | γ is unbounded}

L :=
{

γ : R+ → R+

∣

∣

∣

∣

∣

γ is continuous and strictly decreasing withlim
t→∞

γ(t) = 0
}

KL := {β : R+ × R+ → R+ | β is continuous,β(·, t) ∈ K , β(r, ·) ∈ L, ∀t, r ≥ 0}
KLD := {µ ∈ KL | µ(r, t + s) = µ(µ(r, t), s),∀r, t, s≥ 0}

We will call functions of classP positive definite.

Remark 2.2. The conditionµ(r, t + s) = µ(µ(r, t), s) impliesµ(r, 0) = r,∀ r ≥ 0. To
show this suppose that there exists r≥ 0 such thatµ(r, 0) , r. Then

µ(r, 0) = µ(r, 0+ 0) = µ(µ(r, 0), 0) , µ(r, 0),

which is a contradiction. The last inequality follows from the strict monotonicity ofµ
with respect to the first argument. This shows the assertion.

Note that, ifγ ∈ K∞, then there exist the inverse functionγ−1 : R+ → R+ with
γ−1 ∈ K∞. The proof can be found in [5].

Definition 2.3. System (1) is calledinput-to-state stable (ISS), if there existβ ∈ KL
andγISS ∈ K∞ such that

|x(t; x0, u)| ≤ max
{

β(|x0| , t), γISS(‖u‖)} (3)

∀ x0 ∈ RN, t ∈ R+ and essentially bounded and measurable inputs u∈ Rm. γISS is
calledgain.

This concept has been first introduced in [2], where an equivalent formulation with
sum of the both terms instead of max in (3) has been used. It is known for ISS systems
that if lim sup

t→∞
u(t) = 0 then also limt→∞ x(t) = 0 holds. However witht → ∞ (3)

provides only a constant positive bound foru . 0. Another stability property equivalent
to ISS is the following:
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Definition 2.4. System (1) is calledinput-to-state dynamically stable (ISDS), if there
exist functionsµ ∈ KLD, η, γISDS ∈ K∞ such that

|x(t; x0, u)| ≤ max{µ(η(|x0|), t), ess sup
τ∈[0,t]

µ(γISDS(|u(τ)|), t − τ)} (4)

∀ t ∈ R+, x0 ∈ RN and essentially bounded and measurable inputs u∈ Rm. µ is called
decay rate, η overshoot gainandγISDS robustness gain.

Note that for larget the bound (4) takes essentially only the recent values of thein-
put u into account, in particular it follows immediately from (4)that
lim sup

t→∞
u(t) = 0 ⇒ limt→∞ x(t) = 0 as stated in the following

Lemma 2.5. If system (1) is ISDS and lim sup
t→∞

u(t) = 0, then it holds

lim
t→∞
|x(t; x0, u)| = 0.

Proof. Since (1) is ISDS we have

|x(t; x0, u)| ≤ max{µ(η(|x0|), t), ess sup
τ∈[0,t]

µ(γISDS(|u(τ)|), t − τ)}

= max{µ(η(|x0|), t), ess sup
τ∈[0, t

2 ]
µ(γISDS(|u(τ)|), t − τ), ess sup

τ∈[ t
2 ,t]

µ(γISDS(|u(τ)|), t − τ)}

≤ max{µ(η(|x0|), t), µ(γISDS(‖u‖[0, t
2] ),

t
2

), ess sup
τ∈[ t

2 ,t]
µ(γISDS(|u(τ)|), 0)}.

It holds lim sup
t→∞

u(t) = 0 andu is essentially bounded, i.e.,∃ K ∈ R+ such that‖u‖[0,t] ≤

K, ∀ t > 0. Furthermore∀ ε > 0 ∃ T > 0 such that∀ τ ∈
[

T
2 ,T

]

: ess sup
τ∈[ T

2 ,T]
γISDS(|u(τ)|) <

ε. With these considerations, theKLD-property ofµ and Remark 2.2 we get

lim
t→∞
|x(t; x0, u)| ≤ lim

t→∞
max{µ(η(|x0|), t), µ(γISDS(‖u‖[0, t

2 ] ),
t
2

), ess sup
τ∈[ t

2 ,t]
γISDS(|u(τ)|)}

≤ max{ lim
t→∞

µ(γISDS(K),
t
2

), lim
t→∞

ess sup
τ∈[ t

2 ,t]
γISDS(|u(τ)|)} = 0.

Remark 2.6. The notion of ISDS was introduced in [4] and [7]. One obtains an
equivalent definition of ISDS if one replaces the euclidean norm in (4) by any other
norm. Moreover it can be checked that all results in [4] and [7] hold true, if one uses
a different norm instead of the Euclidean one.

In the rest of the paper we assume the functionsµ, η andγISDS to beC∞ in R+×R or
R+ respectively. This regularity assumption is not restrictive, because for nonsmooth
rates and gains one can find smooth functions arbitrarily close to the original ones,
which was shown in [7], Appendix B.

An important tool for the stability analysis of system (1) are Lyapunov functions.

4



Definition 2.7. Givenε > 0, a function V : RN → R+, which is locally Lipschitz
continuous onRN\ {0} is calledISDS Lyapunov function of system (1), if there exist
η ∈ K∞, γISDS, µ ∈ KLD such that

|x|
1+ ε

≤ V(x) ≤ η (|x|) , ∀x ∈ RN\ {0} , (5)

V(x) >γISDS(|u|)⇒ ∇V(x) · f (x, u) ≤ − (1− ε) g (V(x)) (6)

for almost all x∈ RN\ {0} and all u∈ Rm, whereµ solves the equation

d
dt
µ(r, t) = −g (µ (r, t)) , r, t > 0 (7)

for a locally Lipschitz continuous function g: R+ → R+.

It is known that ISS implies the existence of a smooth ISS Lyapunov function for
the system (1) (see [13]). A similar result for ISDS systems was proved in [4]. We
use locally Lipschitz continuous Lyapunov functions, which are differentiable almost
everywhere (a.e.) by the Theorem of Rademacher.

Proposition 2.8. System (1) is ISDS withµ ∈ KLD andη, γISDS ∈ K∞, if and only
if for eachε > 0 there exists an ISDS Lyapunov function V, which is locally Lipschitz
continuous onRN\ {0}.

This follows by Theorem 4, Lemma 16 in [4] and Proposition 3.5.6 in [7].

Remark 2.9. Note that for an ISDS system it holds that the decay rateµ and gains
η, γISDS in Definition 2.4 are exactly the same as in Definition 2.7. Recall that in case
of ISS systems the trajectory gains are in general different from the Lyapunov ones.

In order to have ISDS Lyapunov functions with more regularity one can use
Lemma 17 in [4], which shows that for a locally Lipschitz function V there exists a
smooth functioñV arbitrary close toV.

Now we consider interconnected systems of the form (2).

Definition 2.10. We call the i-th subsystem of (2) ISDS, if there exists aKLD-function
µi and functionsηi , γ

ISDS
i andγISDS

i j ∈ K∞ ∪ {0} , i, j = 1, . . . , n with γISDS
ii = 0 such that

the solution xi(t, x0
i , u) = xi(t) with any initial value xi(0) = x0

i and any inputs xj , u
satisfies

|xi(t)| ≤ max

{

µi(ηi(|x0
i |), t),max

j
νi j (x j , t), νi(u, t)

}

(8)

for all t ∈ R+, where

νi(u, t) :=ess sup
τ∈[0,t]

µi(γISDS
i (|u(τ)|), t − τ), νi j (x j, t) := sup

τ∈[0,t]
µi(γISDS

i j (|x j(τ)|), t − τ)

i, j = 1, . . . , n. γISDS
i j , γISDS

i are called (nonlinear) robustness gains. The ISDS gain

matrixΓISDS is defined byΓISDS :=
(

γISDS
i j

)

, i, j = 1, . . . , n and the mapΓISDS : Rn
+ → Rn

+ by

ΓISDS(s) := (max
j
γISDS

1 j (sj), . . . ,max
j
γISDS

n j (sj))T , s ∈ Rn
+. (9)
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Note that byγISDS
i j ∈ K∞ ∪ {0} and forv, w ∈ Rn

+ we get

v ≥ w ⇒ ΓISDS(v) ≥ ΓISDS(w).

Definition 2.11. For vector valued functions x= (xT
1 , . . . , x

T
n )T : R+ → R

∑n
i=1 Ni with

xi : R+ → RNi and times0 ≤ t1 ≤ t2, t ∈ R+ we define

x(t) := (|x1(t)| , . . . , |xn(t)|)T ∈ Rn
+.

For u ∈ Rm, t ∈ R+ and s∈ Rn
+ we define

γ̄ISDS(|u(t)|) :=
(

γISDS

1 (|u(t)|), . . . , γISDS
n (|u(t)|)

)T
∈ Rn

+,

µ̄(s, t) := (µ1(s1, t), . . . , µn(sn, t))T ∈ Rn
+, η̄(s) := (η1(s1), . . . , ηn(sn))T ∈ Rn

+.

Now we can rewrite condition (8) in the form

x(t) ≤max

[

µ̄
(

η̄
(

x0
)

, t
)

, sup
τ∈[0,t]

µ̄
(

ΓISDS
(

x(τ)
)

, t − τ
)

,

sup
τ∈[0,t]

µ̄(γ̄ISDS(|u(τ)|), t − τ)
]

(10)

for all t ∈ R+. Note that the maximum, supremum and essential supremum used in
(10) for vectors are taken componentwise.

If we defineN := N1 + . . . + Nn, x := (xT
1 , . . . , xT

n )T and f := ( f T
1 , . . . , f T

n )T , then
(2) becomes the system of the form (1). Now the question arises under which condition
the whole system (1) is ISDS with respect to the inputu and statex?

Recall that the small-gain theorem for two interconnected ISS systems was proved
in [8]. This result was extended for the case ofn ≥ 2 interconnected ISS systems in
[10], Theorem 4.4, where the small-gain condition is of the form

Γ(s) � s, ∀ s ∈ Rn
+\ {0} . (11)

From (10), using theKLD-property ofµ and withΓISS := ΓISDS, γ̄ISS := γ̄ISDS, β̄(r, t) :=
µ̄(η̄(r), t) we get

x(t) ≤ max
{

β̄
(

x0 , t
)

, ΓISS
(

x
)

, γ̄ISS(‖u‖)
}

.

This implies that each subsystem of (2) is ISS and by the small-gain condition (11)
their interconnection is ISS and hence ISDS, since by Proposition 3.4.4 (ii) in [7] the
ISDS property is equivalent to ISS. Unfortunately by use of this equivalence we loose
the quantitative information about the rate and gains of theISDS estimation for the
whole system.

In order to conserve the quantitative information of the ISDS rate and gains of the
overall system we prove an ISDS small-gain theorem using ISDS Lyapunov functions
in the following section.
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3. Main results

In this section we provide a Lyapunov version of the ISDS small-gain theorem for
n ∈ N interconnected systems, where we give an explicit construction method of an
ISDS Lyapunov function and the rate and gains of the ISDS estimation for the whole
system.

For the main result in this section we consider system (2) anddefine the ISDS
Lyapunov functions of the subsystems by

Definition 3.1. Givenεi ∈ (0, 1), a function Vi : RNi → R+, which is locally Lipschitz
continuous onRN

i \ {0} is calledISDS Lyapunov function of thei-th subsystem in (2)
for i = 1, . . . , n, if it satisfies:

(i) There exists a functionηi ∈ K∞ such that

|xi |
1+ εi

≤ Vi(xi) ≤ ηi (|xi |) (12)

for all xi ∈ RNi\ {0}.
(ii) There exist functionsµi ∈ KLD, γISDS

i ∈ K∞ ∪ {0}, γISDS
i j ∈ K∞ ∪ {0} , j =

1, . . . , n, i , j such that for almost all xi ∈ RNi and all essentially bounded and
measurable inputs u∈ Rm

Vi(xi) > max{γISDS
i (|u|) ,max

j
{γISDS

i j (V j(x j))}}

⇒∇Vi(xi) fi(x1, . . . , xn, u) ≤ − (1− εi) gi(Vi(xi)),
(13)

holds, whereµi ∈ KLD solves the equationddtµi(r, t) = −gi (µi (r, t)) , r, t > 0 for some
locally Lipschitz continuous function gi : R+ → R+, i = 1, . . . , n.

For the proof of the main result in this section we will need the following:

Definition 3.2. A continuous pathσ ∈ Kn
∞ is called anΩ-path with respect toΓ if

(i) for each i, the functionσ−1
i is locally Lipschitz continuous on(0,∞);

(ii) for every compact set K⊂ (0,∞) there are constants0 < c < C such that for all
points of differentiability ofσ−1

i and i= 1, . . . , n we have

0 < c ≤ (σ−1
i )′(r) ≤ C, ∀r ∈ K;

(iii) it holdsΓ(σ(r)) < σ(r), ∀r > 0.

Remark 3.3. Let Γ ∈ (K∞ ∪ {0})n×n be a gain matrix. IfΓ satisfies the small-gain
condition (11), then there exists anΩ-pathσ with respect toΓ.

The proof can be found in [12], Theorem 5.2, see also [14], however only the
existence is proved in these works. It was noted there that ifone finds a points ∈ Rn

+

with Γ(s) < s then there is a possibility to construct a (finite) path connecting the origin
to this point and satisfying the Definition 3.1 locally, i.e., in each point of the path
betweensand the origin. In general it is a nontrivial problem to find such s, especially
in case of largen. However ifΓ is defined in terms of maximization of gains as it is
done in (9) the solution is very simple and one can construct afinite but arbitrary "long"
Ω-path:
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Proposition 3.4. If Γ satisfies the small-gain condition (11), then∀ R> 0, and P∈ Rn
+

with Pi ≥ R there exist monotone and strictly increasing functionsσi , i = 1, . . . , n such
thatσ := (σ1, . . . , σn)T : [0, 1]→ Rn

+ withσ(0) = 0 andσ(1) = P.

Proof. Let Ω be the set of the pointss ∈ Rn
+ satisfyingΓ(s) < s. By Remark 2.8. in

[15] it follows that for anyx ∈ Rn
+ we haveΓ(Q(x)) ≤ Q(x), where

Q(x) := max{x, Γ(x), Γ2(x), . . . , Γn−1(x)},

i.e., Q(x) is in Ω or it belongs to the boundary ofΩ. SinceΩ is an open domain it is
easy to find a vectorP ∈ Rn

+ (searching an arbitrary small vicinity ofQ(x)) such that
Γ(P) < P. Takingx > (R, . . . ,R)T in Q(x) sufficiently large we will find aP sufficiently
large. In [12] and [14] it was shown that the sequenceΓk(P), k = 0, 1, . . . converges to
the origin and the linear interpolation of these points yields the desired path.

Now we present our main result:

Theorem 3.5. Assume that each subsystem of (2) is ISDS. This means that foreach
subsystem and for eachεi ∈ (0, 1) there exists an ISDS Lyapunov function Vi , which
satisfies (12) and (13). LetΓISDS be given by (9), satisfying the small-gain condition (11)
and letσ ∈ Kn

∞ be anΩ-path from Remark 3.3 withΓ = ΓISDS. Then the whole system
(1) is ISDS and its ISDS Lyapunov function is given by

V(x) = ψ−1
(

max
i

{

σ−1
i (Vi(xi))

}

)

(14)

with rates and gains

g(r) = (ψ−1)′ (ψ(r)) min
i

{

(σ−1
i )′(σi(ψ(r)))gi(σi(ψ(r)))

}

, r > 0,

η(r) = ψ−1(max
i

{

σ−1
i (ηi(r))

}

), r > 0 (15)

γISDS(r) = ψ−1(max
i

{

σ−1
i (γISDS

i (r))
}

), r > 0,

whereψ (|x|) = mini σ
−1
i

(

|x|√
n

)

, t ∈ R+.

Remark 3.6. Note that the small-gain condition (11) is equivalent to thecycle con-
dition (see [5], Lemma 2.3.14 for details). A k-cycle in a matrix Γ = (γi j )n

i, j=1 is a
sequence ofK∞ functions(γi0i1, γi1i2, . . . , γik−1ik) of length k with i0 = ik. The cycle
condition for a matrixΓ is that all k-cycles ofΓ are contractions, i.e.,

γi0i1 ◦ γi1,i2 ◦ . . . ◦ γik−1,ik < Id,

for all i0, . . . , ik ∈ {1, . . . , n} with i0 = ik and k≤ n. See for example [5] and [6] for
further details.

The proof of Theorem 3.5 follows the idea of the proof of Theorem 5.3 in [12] and
corresponding results in [11] with changes to construct thegains and rate of the whole
system as in (15).
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Proof. Let 0, x =
(

xT
1 , . . . , x

T
n

)T
. We define

V(x) := max
i

{

σ−1
i (Vi(xi))

}

, η̄(|x|) := max
i

{

σ−1
i (ηi(|x|))

}

, ψ (|x|) := min
i
σ−1

i

(

|x|
√

n

)

,

whereVi satisfies (12) fori = 1, . . . , n. Note thatσ−1
i ∈ K∞. Let j be such that

|x|∞ = |x j |∞ for somej ∈ {1, . . . , n}, then by

max
i
σ−1

i

(

|xi |
1+ εi

)

≥ max
i
σ−1

i

(

|xi |∞
1+ ε

)

≥ σ−1
j

( |x j |∞
1+ ε

)

≥ min
i
σ−1

i

(

|x|
√

n(1+ ε)

)

(16)

whereε := maxi εi . We have

ψ

(

|x|
1+ ε

)

≤ V(x) ≤ η(|x|). (17)

Note thatV is locally Lipschitz continuous and hence it is differentiable almost every-
where. For anyi ∈ {1, . . . , n} consider open domainsMi ∈ RN\ {0} defined by

Mi :=

{

(

xT
1 , . . . , x

T
n

)T
∈ RN\ {0} : σ−1

i (Vi(xi)) > max
j,i

{

σ−1
j (V j(x j))

}

}

.

Now for anyx̂ =
(

x̂T
1 , . . . , x̂

T
n

)T
∈ Mi it follows that there is a neighborhoodU of x̂ such

thatV(x) = σ−1
i (Vi(xi)) holds for allx ∈ U. Let γ̄ISDS(|u|) := maxj

{

σ−1
j (γISDS

j (|u|))
}

, j =

1, . . . , n. AssumeV(x) > γ̄ISDS(|u|). Then

Vi(xi) = σi(V(x)) > σi(σ−1
i (γISDS

i (|u|))) = γISDS
i (|u|).

>From Definition 3.2 (iii) andx ∈ Mi we have

Vi(xi) = σi(V(x)) > max
j,i

γISDS
i j (σ j(V(x))) ≥ max

j,i
γISDS

i j (V j(x j)).

Thus (13) implies for almost allx ∈ Mi

∇V(x) f (x, u) ≤ −(1− εi)
(

σ−1
i

)′
(Vi(xi))gi(Vi(xi)) = −(1− εi)g̃i(V(x)),

where g̃i(r) :=
(

σ−1
i

)′
(σi(r))gi(σi(r)) is positive definite and locally Lipschitz. As

indexi was arbitrary in these considerations, with ¯γISDS(|u|) = maxj

{

σ−1
j (γISDS

j (|u|))
}

and

ḡ(r) := mini g̃i(r), ε = maxi εi the condition (6) for the functionV is satisfied. From
(17) we get

|x|
1+ ε

≤ ψ−1
(

V(x)
)

≤ ψ−1 (η̄ (|x|))

and we defineV(x) := ψ−1
(

V(x)
)

as the ISDS Lyapunov function candidate with

η (|x|) := ψ−1 (η̄ (|x|)). Note thatψ−1 ∈ K∞ andV(x) is locally Lipschitz continuous. By
the previous calculations forV(x) it holds

V(x) ≥ ψ−1 (

γ̄ISDS (|u|)) =: γISDS (|u|) ⇒ d
dt

V(x) ≤ −(1− ε)g (V(x)) , a.e.,
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whereg(r) := (ψ−1)′ (ψ(r)) ḡ (ψ(r)) is locally Lipschitz continuous. AltogetherV(x)
satisfies (5) and (6). HenceV(x) is the ISDS Lyapunov function of the whole system
and by application of Proposition 2.8 the whole system is ISDS.

In the following we present a Corollary, which is similar to Theorem 10 in [4] for
two coupled systems and coversn ∈ N coupled systems, where the rates and gains
defined in Theorem 3.5 are used. We get decay rates for the trajectories of the whole
system and each subsystem ofn coupled systems with external inputu = 0.

Corollary 3.7. Consider system (2) and assume that all subsystems are ISDS with
decay ratesµi and gainsηi , γ

ISDS
i and γISDS

i j , i, j = 1, . . . , n, i , j. If the small-gain
condition (11) is satisfied, then the coupled system

ẋ =

























ẋ1
...

ẋn

























=

























f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

























= f (x) (18)

is globally asymptotically stable at 0 (0-GAS) with

|x j(t)| ≤ |x(t)| ≤ µ
(

ψ−1
(

max
i

{

σ−1
i

(

ηi

(∣

∣

∣x0
∣

∣

∣

))}

)

, t
)

(19)

for i, j = 1, . . . , n, all t ∈ R+, with functionsµ, σ, ψ andηi from Theorem 3.5.

Remark 3.8. Note that for large n functionψ in (15) becomes "small" and hence the
rates and gains defined byψ−1 become "large" which is not desired in applications. To
avoid this kind of conservativeness one can use the maximum norm |x|∞ for the states
in the above definitions and in Theorem 3.5 and Corollary 3.7.This is possible as we
have noted in Remark 2.6. In this case the devision by

√
n in (16)can be avoided and

we get(15)with ψ (|x|∞) = mini σ
−1
i (|x|∞). This is used in our examples below.

Unfortunately we cannot compare directly the estimation ofTheorem 10 in [4] with
our estimation (19), since another approach for estimations of the trajectories for two
coupled systems was used in [4]. The extension of this approach ton > 2 seems to be
hardly possible. Our approach allows to considern interconnected systems.

4. Examples

To compare Theorem 10 in [4] with Corollary 3.7 for the case oftwo subsystems
we consider the Example 12 given in [4].

Example 4.1. Consider two interconnected systems

ẋ1(t) = −x1(t) +
x3

2(t)

2
, ẋ2(t) = −x3

2(t) + x1(t).

As in [4] we choose Vi = |xi | and γ1(r) = 2
3r3, γ2(r) = 3

√

4
3r , η1, η2 = Id, g1(r) =

1
4r, g2(r) = 1

4r3. It is easy to check that the small-gain condition is satisfied and an

10



0 5 10 15 20

1

2

3

4

5

6

t 

 

eq. (19)
[4]
|x|∞

Figure 1:|x|∞ and estimations with help of Corollary 3.7 (solid curve) andExample 12 in [4] (dashed curve)

Ω-path can be chosen byσ1(r) = Id, σ2(r) = 3

√

4.49
3 r. For x0

1 = x0
2 = 2 the solution

x was calculated by Matlab. The plot of|x|∞ as well as its estimations by(19) and
from [4] are shown on Figure 1. To compare our estimation with[4] we plot the ISDS
estimation in Example 12 in [4] with respect to the maximum norm for states using
Remark 11 in [4]. The solid (dashed) curve is the estimation of |x|∞ by Corollary 3.7
([4]).
Both estimations tend to zero as well as the trajectory and provide nearly the same
estimate for the norm of the trajectory as it should be expected.

The advantage of our approach is that it can be applied for larger interconnections.
The following example illustrates the application of Theorem 3.5 for a construction of
an ISDS-Lyapunov function for the casen ≥ 2.

Example 4.2. Consider n∈ N interconnected systems of the form

ẋ1(t) = −a1x1(t) +
n

∑

j>1

1
n

b1 j x
2
j (t) +

1
n

u(t),

ẋi(t) = −ai xi(t) +
1
n

bi1

√

x1(t) +
n

∑

j>1, j,i

1
n

bi j x j(t) +
1
n

u(t), i = 2, . . . , n,

(20)

for bi j ∈ [0, 1) , ai = (1+ εi), εi ∈ (1,∞) and any input u∈ Rm.
We choose Vi(xi) = |xi |∞ as an ISDS Lyapunov function candidate for the i-th subsys-
tem, i= 1, . . . , n and define

γISDS

1 j (r) := b1 jr
2, j = 2, . . . , n γISDS

j1 (r) := b j1
√

r , j = 2, . . . , n

γISDS
i j (r) := bi j r, i, j = 2, . . . , n, i , j, γISDS

i (r) := r, i = 1, . . . , n,

11
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Figure 2:|x|∞ and ISDS estimation of the whole system consisting ofn = 3 subsystems of the form (20).

ΓISDS :=
(

γISDS
i j

)

, i, j = 1, . . . , n, γISDS
ii ≡ 0, ηi(r) := r and µi(r, t) = e−εi t r as solution of

d
dtµi(r, t) = −gi(µi(r, t)) with gi(r) := εir we obtain that Vi is an ISDS Lyapunov function
of the i-th subsystem. To check wheather the small-gain condition is satisfied, we use
the cycle condition, which is satisfied (this can be easily verified).
We chooseσ(s) = (σ1(s), . . . , σn(s))T with σ1(s) := s2 andσ j(s) := s, j = 2, . . . , n
for s ∈ R+, which is one possibility of choosingσ. Thenσ is anΩ-path, which can be
easily checked, especiallyσ satisfiesΓISDS(σ(s)) < σ(s), ∀s> 0.
Now by application of Theorem 3.5 the whole system is ISDS andthe ISDS Lyapunov
function is given by

V(x) = ψ−1
(

max
i
σ−1

i (|xi |∞)
)

withψ(r) = mini σ
−1
i (r) =

{ √
r , r ≥ 1,

r, r < 1
. The gains and rates of the ISDS estimation

and ISDS Lyapunov function, respectively, are given by (15). Furthermore, if u(t) ≡ 0
then by Corollary 3.7 the whole system is 0-GAS and the decay rate is given by (19).
In the following we illustrate the trajectory and the ISDS estimation for a system con-
sisting of subsystems of the form (20) for n= 3. We choose ai = 11

10, bi j =
1
2 , i, j =

1, 2, 3, i , j, u(t) = exp(−t) as input and the initial values x0
1 = 0.5, x0

2 = 0.8 and
x0

3 = 1.2. Then we calculate the ISDS estimation of the whole system asdescribed
above and get

|x(t)|∞ ≤ max{µ((x0
3)2, t), ess sup

τ∈[0,t]
µ(

√

u(τ), t − τ)}.

This estimation is displayed in Figure 2 (dashed line). To verify wheather the norm of
the trajectory of the whole system is below the ISDS estimation we solve the system of
the form (20) for n= 3 by Matlab. The norm of the resulting trajectory of the whole

12



system is also displayed in Figure 2. We see, if the input u(t) tends to zero the ISDS
estimation tends to zero as well, whereas in the case of ISS this is not true. Also the
norm of the trajectory tends to zero and is below the ISDS estimation.

5. Conclusions

We have shown that a network of interconnected ISDS subsystems is again ISDS if
the small-gain condition (11) is satisfied. In this case we provided explicit expressions
for an ISDS Lyapunov function and the corresponding rates and gains of the entire
interconnection. As an application of these results we investigated a system of inter-
connections with zero external input and derived decay rates of the subsystems and the
entire system. An example with two systems taken from [4] compares the resulting
estimates of the norm of a trajectory obtained by [4] and by (19). Another example
with n interconnected ISDS systems illustrates the application of the our main result.
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