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Abstract— We consider networks of input-to-state dynami-
cally stable (ISDS) systems and provide a small gain condition
under which the entire network is again ISDS. A Lyapunov
formulation of the nonlinear small gain theorem for two
interconnected ISDS systems is proved. It provides a construc-
tive method to find an ISDS Lyapunov function for such an
interconnection.

I. INTRODUCTION

In this paper we consider nonlinear systems of the form

ẋ(t) = f(x(t), u(t)), (1)

where t ∈ R is the time, ẋ(t) denotes the derivative of the
state x(t) ∈ RN with initial value x0, input u(t) ∈ Rm is an
essentially bounded measureable function and f : RN+m →
RN , N,m ∈ N. To have existence and uniqueness of a
solution of (1), let the function f be continuous and locally
Lipschitz in x uniformly in u. The solution is denoted by
x(t;x0, u) or x(t) in short.

Stability analysis of such systems can be performed in
different frameworks such as passivity, dissipativity [7],
input-to-state (ISS) stability in [8] and others. We will use
the notion of input-to-state dynamical (ISDS) stablility intro-
duced in [4] and [3] respectively. This property is equivalent
to ISS, however the advantage of ISDS over ISS is that the
bound for the trajectories takes essentially only the recent
values of the input u into account and in many cases it
gives a better bound due to the memory fading effect of the
disturbing input. Moreover the gains in the trajectory based
definition of ISDS are the same as in the definition of the
ISDS-Lyapunov function, which is in general not true for the
ISS systems.

We are interested in interconnections of such systems

ẋi(t) = fi(x1(t), . . . , xn(t), u(t)), i = 1, . . . , n, (2)

where n ∈ N, xi(t) ∈ RNi , fi : R
∑n

j=1Nj+m → RNi , and
each subsystem is ISDS. The question arises under which
conditions the whole system of the form (1) with x =(
xT1 , . . . , x

T
n

)T
, f(x, u) =

(
f1(x, u)T , . . . , fn(x, u)T

)T
is

ISDS with respect to the state x and input u.
The stability condition for an interconnection of two ISS

systems was developed in [5] and [6]. In [2] a small gain
theorem for n ∈ N interconnected systems was proved.
Since ISS Lyapunov functions are an important tool to
verify the ISS property, a Lyapunov formulation of the small
gain theorem was given for two interconnected systems in
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[6]. There, an explicit construction of the ISS Lyapunov
function of the whole system was shown. In [1] an explicit
construction of an ISS Lyapunov function for the overall
system of n interconnected systems was derived under a
sufficient small gain condition.

The equivalence of ISDS of system (1) and the existence
of an ISDS Lyapunov function for system (1) was proved in
[4]. Also an ISDS small gain theorem for two interconnected
systems with no input u can be found in [4].

The purpose of this paper is to extend the mentioned
results for ISS systems for the case of ISDS systems. In
particular we present a small gain theorem for n ∈ N
interconnected ISDS systems of the form (2) and provide
a construction of an ISDS Lyapunov function for the entire
system consisting of two interconnected ISDS systems under
a small gain condition.

The organisation of this paper is the following: The next
section introduces necessary notions. Section III contains
the main results of the paper. The conclusions and future
directions of research are in Section IV.

II. NOTATION AND DEFINITIONS

By xT we denote the transposition of a vector x ∈
Rn, n ∈ N, furthermore R+ := [0,∞) and Rn+ denotes the
positive orthant {x ∈ Rn : x ≥ 0} where we use the standard
partial order for x, y ∈ Rn given by

x ≥ y ⇔ xi ≥ yi, i = 1, . . . , n and x 6≥ y ⇔ ∃i : xi < yi.

We denote the standard euclidian norm in Rn by |·| and
the essential supremum norm of a function f by ‖f‖. ∇V
denotes the gradient of a function V . For a function v :
R+ → Rm we define its restriction to the interval [s1, s2] by

v[s1,s2](t) :=
{
v(t) if t ∈ [s1, s2],
0 otherwise, t, s1, s2 ∈ R+.

Definition 2.1: We define following classes of functions:

P := {f : Rn → R+ | f(0) = 0, f(x) > 0, x 6= 0}
K := {γ : R+ → R+ | γ is continuous, γ(0) = 0

and strictly increasing}
K∞ := {γ ∈ K | γ is unbounded}
L := {γ : R+ → R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0}

KL := {β : R+ × R+ → R+ | β is continuous,
β(·, t) ∈ K, β(r, ·) ∈ L, ∀t, r ≥ 0}

KLD := {µ ∈ KL | µ(r, t+ s) = µ(µ(r, t), s),∀r, t, s ≥ 0}

We will call functions of class P positive definite.



Remark 2.2: Condition µ(r, t+s) = µ(µ(r, t), s) includes
µ(r, 0) = r, ∀ r ≥ 0, which can be easily checked.

Note that, if γ ∈ K∞, then there exist the inverse function
γ−1 : R+ → R+ with γ−1 ∈ K∞.

Definition 2.3: System (1) is called input-to-state stable
(ISS), if there exist β ∈ KL and γ ∈ K∞ such that

|x(t;x0, u)| ≤ max {β(|x0| , t), γ ISS(‖u‖)} (3)

∀ x0 ∈ RN , t ∈ R+ and any input u. γ ISS is called gain.
This concept has been first introduced in [8], where an

equivalent formulation with sum of the both terms instead
of max in (3) has been used. It is known for ISS systems
that if lim sup

t→∞
u(t) = 0 then also limt→∞ x(t) = 0 holds.

However (3) provides only a finite positive bound for u 6≡ 0.
The following stability concept was introduced in [4] and [3]
respectively:

Definition 2.4: System (1) is called input-to-state dynam-
ically stable (ISDS), if there exist functions µ ∈ KLD,
η, γ ISDS ∈ K∞ such that

|x(t;x0, u)| ≤ max {µ(η(|x0|), t), ν(u, t)} (4)

∀ t ∈ R+, x0 ∈ RN and any input u ∈ Rm, where

ν(u, t) :=ess sup
τ∈[0,t]

µ(γ ISDS(|u(τ)|), t− τ),

µ is called decay rate, η overshoot gain and γ ISDS robustness
gain.
Note that for large t the bound (4) takes essentially only the
recent values of the input u into account. And in particular
it follows immediately from (4) that lim sup

t→∞
u(t) = 0 ⇒

limt→∞ x(t) = 0.
Remark 2.5: Since µ(η(r), t) is a KL-function from ISDS

follows ISS with

β(r, t) := µ(η(r), t), r, t ≥ 0 and γ ISDS = γ ISS.
Theorem 2.6: Assume system (1) is ISS with a KL-

function β and γ ISS ∈ K∞. Then for each K∞-function γ ISDS

with γ ISDS(r) > γ ISS(r), ∀r > 0 there exists a KLD-function
µ such that system (1) is ISDS.

The proof can be found in [3]. Combining Remark 2.5
and Theorem 2.6, ISDS is equivalent to ISS.

In the rest of the paper we assume:
Assumption 2.7: Functions µ, η and γ ISDS in Definition 2.4

are C∞ in R+ × R or R+ respectively.
Remark 2.8: For given nonsmooth rates and gains from

Definition 2.4 one can find rates and gains arbitrarily close
to the original ones, such that Assumption 2.7 and Definition
2.4 remains valid. Hence Assumption 2.7 is rather mild. (See
[3] Appendix B for details.)

An important tool for the stability analysis of system (1)
are Lyapunov functions. It is known that ISS implies the
existence of an ISS Lyapunov function for system (1) (see
[9]). A similar result for ISDS systems was proved in [4]:

Theorem 2.9: System (1) is ISDS with µ ∈ KLD and
η, γ ISDS ∈ K∞, which satisfy Assumption 2.7, if and only if
for each ε > 0 there exists an ISDS Lyapunov function V ,

i.e., V : RN → R+ is smooth on RN\ {0} and satisfies for
each ε > 0

(1− ε) |x| ≤ V (x) ≤ (1 + ε)η (|x|) (5)

V (x) ≥ γ ISDS ((1 + ε) |u|)
⇒∇V (x) · f(x, u) ≤ − (1− ε) g (V (x))

(6)

∀ x ∈ RN\ {0} and all u ∈ Rm, where function µ solves
the ordinary differential equation

d
dt
µ(r, t) = −g (µ (r, t)) , r, t > 0 (7)

for a locally Lipschitz continuous function g : R+ → R+.
Remark 2.10: An advantage of Theorem 2.9 to a corre-

sponding theorem in the case of ISS is that the decay rate µ
and gains η, γ ISDS in Definition 2.4 are exactly the same as
in (5), (6) and (7) respectively, whereas in the case of ISS
the gain defined in terms of trajectories (Definition 2.3) and
the ISS Lyapunov gain are different in general.

For the main results we use locally Lipschitz continuous
ISDS Lyapunov functions, which are differentiable almost
everywhere (a.e.).

Definition 2.11: A function V : RN → R+, which is
locally Lipschitz continuous on RN\ {0} is called ISDS
Lyapunov function of system (1), if there exist γ ISDS, η ∈
K∞, µ ∈ KLD and V satisfies for each ε > 0

|x|
1 + ε

≤ V (x) ≤ η (|x|) , ∀x ∈ RN\ {0} , (8)

V (x) >γ ISDS (|u|)⇒ ∇V (x) · f(x, u) ≤ − (1− ε) g (V (x))
(9)

for almost all x ∈ RN\ {0} and all u ∈ Rm, where function
g is locally Lipschitz continuous and µ solves (7).

The following theorem is a counterpart of Theorem 2.9
for the case of nonsmooth ISDS Lyapunov functions

Theorem 2.12: System (1) is ISDS with µ ∈ KLD and
η, γ ISDS ∈ K∞, which satisfy Assumption 2.7, if and only if
there exists a locally Lipschitz continuous ISDS Lyapunov
function V as in Definition 2.11 with µ ∈ KLD and
η, γ ISDS ∈ K∞.

Proof: "⇒": This is Lemma 16 in [4].
"⇐": Fix x ∈ RN and t > 0. Integrating (9), we obtain

V (x(t, x, u)) ≤ µ(V (x), t), for all u ∈ Rm with
γ ISDS(|u(τ)|) ≤ µ(V (x), t), for almost all τ ∈ [0, t],

(10)

where µ solves µ̇ = −g(µ), µ(r, 0) = r. Now (10) implies
V (x(t, x, u)) ≤ maxµ(V (x), t, ν(u, t)), which follows sim-
ilarly to the proof of Lemma 15 and with Lemma 13 in [4].
By application of Theorem 4 in [4] the assertion follows.

In order to have ISDS Lyapunov functions with more
regularity one can use Lemma 17 in [4], which shows that for
a locally Lipschitz function V there exists a smooth function
Ṽ arbitrary close to V .

Now we consider interconnected systems of the form (2).
Definition 2.13: We call the i-th subsystem of (2) ISS, if

there exists a KL-function βi and functions γ ISS
i , γ ISS

ij ∈ K∞∪
{0} , i, j = 1, . . . , n with γ ISS

ii = 0 such that the solution



xi(t;x0
i , u) = xi(t) of the i-th subsystem with any initial

value xi(0) = x0
i and any inputs xj , u satisfies

|xi(t)| ≤ max[βi
(∣∣x0

i

∣∣ , t) ,max
j
γ ISS
ij (||xj [0,t]||), γ

ISS
i (‖u‖)]

(11)

for all t ∈ R+. Functions γ ISS
ij and γ ISS

i are called (nonlin-
ear) gains. Furthermore we define the gain matrix ΓISS :=
(γ ISS
ij ), i, j = 1, . . . , n and the map ΓISS : Rn+ → Rn+ by

ΓISS (s) := (max
j
γ1j(sj), . . . ,max

j
γnj(sj))T , s ∈ Rn+.

(12)
Definition 2.14: For vector valued functions x =

(xT1 , . . . , x
T
n )T : R+ → R

∑n
i=1Ni with xi : R+ → RNi

and times 0 ≤ t1 ≤ t2, t ∈ R+ we define

x[t1,t2] :=
(∥∥x1,[t1,t2]

∥∥ , . . . ,∥∥xn,[t1,t2]

∥∥)T ∈ Rn+,
x(t) := (|x1(t)| , . . . , |xn(t)|)T ∈ Rn+.

For u ∈ Rm, t ∈ R+ and s ∈ Rn+ we define

γ ISS(‖u‖) := (γ ISS
1 (‖u‖), . . . , γ ISS

n (‖u‖))T ∈ Rn+
β(s, t) := (β1(s1, t), . . . , βn(sn, t))

T ∈ Rn+,

where γ ISS
i , βi, i = 1, . . . , n are from (11).

Now we can rewrite (11) for t ∈ R+ and any initial value
x0 = x(0) = ((x0

1)T , . . . , (x0
n)T )T and any input u as

x(t) ≤ max[β
(
x0 , t

)
,ΓISS

(
x[0,t]

)
, γ ISS (‖u‖)]. (13)

Note that the maximum used in (13) for vectors is taken
componentwise.

Definition 2.15: We call the i-th subsystem of (2) ISDS, if
there exists a KLD-function µi and functions ηi, γ ISDS

i and
γ ISDS
ij ∈ K∞ ∪ {0} , i, j = 1, . . . , n with γ ISDS

ii = 0 such
that the solution xi(t, x0

i , u) = xi(t) with any initial value
xi(0) = x0

i and any inputs xj , u satisfies

|xi(t)| ≤ max[µi
(
ηi
(∣∣x0

i

∣∣) , t) ,max
j
{νij(xj , t)} , νi(u, t)]

(14)

for all t ∈ R+, where

νi(u, t) :=ess sup
τ∈[0,t]

µi(γ ISDS
i (|u(τ)|), t− τ)

νij(xj , t) :=ess sup
τ∈[0,t]

µi(γ ISDS
ij (|xj(τ)|), t− τ)

i, j = 1, . . . , n. γ ISDS
ij , γ

ISDS
i are called (nonlinear) robustness

gains. The ISDS gain matrix ΓISDS is defined by ΓISDS :=(
γ ISDS
ij

)
, i, j = 1, . . . , n and the map ΓISDS : Rn+ → Rn+ by

ΓISDS (s) := (max
j
γ ISDS

1j (sj), . . . ,max
j
γ ISDS
nj (sj))T , s ∈ Rn+. (15)

Note that by γ ISDS
ij ∈ K∞ ∪ {0} and for v, w ∈ Rn+ we get

v ≥ w ⇒ ΓISDS(v) ≥ ΓISDS(w). (16)

Definition 2.16: For u ∈ Rm, t ∈ R+ and s ∈ Rn+ denote

γ ISDS(|u(t)|) := (γ ISDS
1 (|u(t)|), . . . , γ ISDS

n (|u(t)|))T ∈ Rn+,
µ(s, t) := (µ1(s1, t), . . . , µn(sn, t))

T ∈ Rn+,
η(s) := (η1(s1), . . . , ηn(sn))T ∈ Rn+.

Now we can rewrite condition (14) in the form

x(t)

≤max[µ
(
η
(
x0
)
, t
)
, ess sup
τ∈[0,t]

µ(ΓISDS( x(τ) ), t− τ),

ess sup
τ∈[0,t]

µ(γ ISDS(|u(τ)|), t− τ)]

for all t ∈ R+.
If we define N := N1 + . . . + Nn, x := (xT1 , . . . , x

T
n )T

and f := (fT1 , . . . , f
T
n )T , then (2) becomes

ẋ(t) = f(x(t), u(t)), t ∈ R+. (17)

Now we are interested in conditions guaranteeing that
the whole system (17) is ISDS with respect to the input
u and state x. The next section provides an ISDS small
gain theorem for general networks and as the second result
a Lyapunov formulation of the small gain theorem for two
interconnected systems with an explicit construction of the
ISDS Lyapunov function and corresponding gains and decay
rate of the whole system.

III. MAIN RESULTS

A. ISDS small gain theorem

Recall that the small gain theorem for two interconnected
ISS systems was proved in [5]. In [2] this result was extended
for the case of n ≥ 2 interconnected ISS systems:

Theorem 3.1: Consider system (2) and suppose each sub-
system is ISS, i.e. condition (11) is satisfied for all i =
1, . . . , n, n ∈ N. Let ΓISS be given by (12). If

ΓISS(s) 6≥ s, ∀ s ∈ Rn+\ {0} (18)

then the whole system (17) is ISS from u to x.
The first main result of this paper is the small gain theorem
for n ≥ 2 interconnected ISDS systems:

Theorem 3.2: Consider system (2) and suppose each sub-
system is ISDS, i.e., condition (14) holds for all i = 1, . . . , n.
Let ΓISDS be given by (15). If

ΓISDS(s) 6≥ s, ∀ s ∈ Rn+\ {0}

holds then system (17) is ISDS from u to x.
Proof: Each subsystem of (2) is ISDS. Since µ ∈ KLD,

γ ISDS ∈ K∞, and by application of Remark 2.2 and (16) we
get

x(t)

≤max[µ
(
η
(
x0
)
, t
)
, ess sup
τ∈[0,t]

µ(ΓISDS( x(τ) ), t− τ),

ess sup
τ∈[0,t]

µ(γ ISDS(|u(τ)|), t− τ)]

≤max[µ
(
η
(
x0
)
, t
)
, ess sup
τ∈[0,t]

µ(ΓISDS( x(τ) ), 0),

ess sup
τ∈[0,t]

µ(γ ISDS(|u(τ)|), 0)]

≤max[β
(
x0 , t

)
,ΓISDS( x ), γ ISDS(‖u‖)],



where β
(
x0 , t

)
:= µ

(
η
(
x0
)
, t
)
. Now set ΓISS := ΓISDS

and γ ISS := γ ISDS and we obtain

x(t) ≤ max[β
(
x0 , t

)
,ΓISS( x ), γ ISS(‖u‖)].

This is an ISS condition in the sense of (13) and in addition

ΓISDS(s) = ΓISS(s) 6≥ s, ∀ s ∈ Rn+\ {0} .

With application of Theorem 3.1, the whole system (17) is
ISS with some β̄(r, t) ∈ KL and γ̄ ISS(r) ∈ K∞. By Theorem
2.6 for each K∞-function γ̄ ISDS(r) > γ̄ ISS(r) for all r > 0
there exists a KLD-function µ̄ such system (17) is ISDS.

Unfortunately we loose quantitative information of the
ISDS gains of the whole system in the proof of Theorem 3.1.
In order to conserve the quantitative information of the ISDS
gains of the overall system we prove as the second main
result an ISDS small gain theorem using ISDS Lyapunov
functions in the following section.

B. ISDS Lyapunov formulation of the small gain theorem

In this section we provide a Lyapunov version of the ISDS
small gain theorem for two interconnected systems.

For the main result in this section we consider system (2)
with n = 2 and define the ISDS Lyapunov functions of the
subsystems:

Definition 3.3: A function Vi : RNi → R+, which is
locally Lipschitz continuous on RNi \ {0} is called ISDS
Lyapunov function of the i-th subsystem of system (2) for
i = 1, 2, if it satisfies:

(i) There exist functions ηi ∈ K∞ and constants εi such
that

|xi|
1 + εi

≤ Vi(xi) ≤ ηi (|xi|) (19)

for all xi ∈ RNi\ {0}.
(ii) There exist functions µi ∈ KLD, γ ISDS

i ∈ K∞ and
γ ISDS
ij ∈ K∞, i, j = 1, 2, i 6= j such that

Vi(xi) > max[γ ISDS
i (|u|) , γ ISDS

ij (Vj(xj))]

⇒ ∇Vi(xi)fi(xi, xj , u) ≤ − (1− εi) gi(Vi(xi)), (20)

1 > εi > 0, for almost all xi ∈ RNi\ {0} and all u ∈ Rm,
where function µi ∈ KLD solves the ordinary differential
equation

d
dt
µi(r, t) = −gi (µi (r, t)) , r, t > 0

for locally Lipschitz functions gi : R+ → R+, i = 1, 2.
For the proof of the main result in this section we will

need the following lemma.
Lemma 3.4: Let γ1 ∈ K and γ2 ∈ K∞ such that γ1(r) <

γ2(r), ∀r > 0. Then there exists a K∞-function σ such that
(i) γ1(r) < σ(r) < γ2(r) for all r > 0,

(ii) σ(r) is continuous differentiable in (0,∞) and σ′(r) >
0 for all r > 0.

The proof can be found in [6].

The second main result gives an explicit construction
of an locally Lipschitz ISDS Lyapunov function of two
interconnected ISDS systems under a small gain condition.

Theorem 3.5: We consider system (2) for n = 2. Assume
that for i = 1, 2 each subsystem of (2) is ISDS, functions
µi, ηi, γ

ISDS
i and γ ISDS

ij satisfy Assumption 2.7 and for each
subsystem there exists an ISDS Lyapunov function Vi, i =
1, 2, which satisfies (19) and (20). If

γ ISDS
12 ◦ γ ISDS

21 (r) < r, ∀ r > 0, (21)

then there exists an locally Lipschitz ISDS Lyapunov func-
tion for the whole system (17) of the form

V (x) = ψ−1 (max {σ (V1(x1)) , V2(x2)}) ,

i.e., conditions (8) and (9) hold true with ε = max {ε1, ε2},
ψ (t) = mini σi (t) , t ∈ R+, σ1(r) = σ(r), σ2(r) =
Id(r) = r, r ∈ R+, where σ is as in Lemma 3.4 for γ1(r) =
γ ISDS

21 (r) and γ2(r) = (γ ISDS
12 )−1 (r), r > 0. Furthermore the

whole system (17) is ISDS with

g(r) = (ψ−1)′ (ψ(r)) min {ĝ1(ψ(r)), g2(ψ(r))} , r > 0,

η(r) = ψ−1 (max {σ (η1(r)) , η2(r)}) , r > 0, (22)

γ ISDS(r) = ψ−1 (max {σ (γ ISDS
1 (r)) , γ ISDS

2 (r)}) , r > 0.

where ĝ1(r) = σ′
(
σ−1(r)

)
g1

(
σ−1(r)

)
and µ solves the

ordinary differential equation d
dtµ(r, t) = −g (µ(r, t)).

Remark 3.6: The small gain condition (21) we used here
is without an operator D, which is necessary if the ISS
property is defined in terms of sum over gains instead of
the maximum (see [2], Section 4.3). Furthermore (21) is
equivalent to

γ ISDS
21 ◦ γ ISDS

12 (r) < r, ∀ r > 0,

which can be easily checked.
The proof of Theorem 3.5 follows the idea of the proof of

Theorem 3.1 in [6] with corresponding changes to construct
the gains and rate of the whole system as in (22).

Proof: First we define a function Ṽ for the whole
system, which consists of ISDS Lyapunov functions of the
subsystems. With this definition we construct a function V ,
which satisfies the conditions from Theorem 2.9 such that
the whole system is ISDS.

From (21) and application of Lemma 3.4 to γ ISDS
21 and

(γ ISDS
12 )−1 we know that there exists a continuous differen-

tiable in (0,∞) function σ ∈ K∞ with σ′(r) > 0 for all
r > 0 such that

γ ISDS
21 (r) < σ(r) < (γ ISDS

12 )−1 (r), ∀ r > 0. (23)

We define

Ṽ (x1, x2) := max {σ (V1(x1)) , V2(x2)} .

At first we check condition (6) for Ṽ . V1 and V2 are
locally Lipschitz in RNi\ {0} , i = 1, 2 and σ ∈ K∞.
σ (V1(x1)) is differentiable almost everywhere in RN1\ {0}
and Ṽ is locally Lipschitz in RN\ {0} , N := N1 + N2.



By Rademacher’s Theorem Ṽ is differentiable almost every-
where in RN\ {0}. Now we define the following sets with
x =

(
xT1 , x

T
2

)T ∈ RN :

A = {x : V2(x2) < σ (V1(x1))} ,
B = {x : V2(x2) > σ (V1(x1))} ,
Λ = {x : V2(x2) = σ (V1(x1))} .

We fix a point p = (p1, p2) 6= (0, 0), p ∈ RN , an input
v ∈ Rm and consider three cases.

Case 1: p ∈ A. It holds V2(x2) < σ (V1(x1)) hence
Ṽ (x1, x2) = σ (V1(x1)) in a neighborhood of p. Because
Ṽ is differentiable almost everywhere in A we get

∇Ṽ (p)f(p, v) = σ′ (V1(p1))∇V1(p1)f1(p1, p2, v), a.e. (24)

From (23) follows

V2(p2) < σ (V1(p1)) < (γ ISDS
12 )−1 (V1(p1))

and then V1(p1) > γ ISDS
12 (V2(p2)). Whenever V1(p1) >

γ ISDS
1 (|v|) we get from (20)

∇V1(p1)f1(p1, p2, v) ≤ − (1− ε1) g1 (V1(p1)) , a.e,

1 > ε1 > 0. With (24) we have

∇Ṽ (p)f(p, v)
≤− (1− ε1)σ′ (V1(p1)) g1 (V1(p1))

=− (1− ε1)σ′
(
σ−1 (σ (V1(p1)))

)
g1

(
σ−1 (σ (V1(p1)))

)
=− (1− ε1)σ′(σ−1(Ṽ (p)))g1(σ−1(Ṽ (p)))

=:− (1− ε1) ĝ1(Ṽ (p)), a.e,

whenever Ṽ (p) > σ (γ ISDS
1 (|v|)) =: γ̂ ISDS

1 (|v|), where ĝ1 is a
positive definite and locally Lipschitz function, since g1 is
∈ P and locally Lipschitz, σ′ > 0 (see Lemma 3.4), σ−1 is
again a K∞ function for σ ∈ K∞ and Ṽ maps RN into R+.

Case 2 : p ∈ B. It holds V2(x2) > σ (V1(x1)) so it is
Ṽ (x1, x2) = V2(x2) in a neighborhood of p. As in case 1
we get

∇Ṽ (p)f(p, v) = ∇V2(p2)f2(p1, p2, v), a.e

and from (23) it follows V2(p2) > σ (V1(p1)) >
γ ISDS

21 (V1(p1)). We have

∇V2(p2)f2(p1, p2, v) ≤ − (1− ε2) g2 (V2(p2)) , a.e,

1 > ε2 > 0, whenever V2(p2) > γ ISDS
2 (|v|). Hence we get

∇Ṽ (p)f(p, v)
=∇V2(p2)f2(p1, p2, v) ≤ − (1− ε2) g2 (V2(p2))

=− (1− ε2) g2(Ṽ (p)), a.e

whenever Ṽ (p) > γ ISDS
2 (|v|), where g2 is locally Lipschitz

and positive definite.
Case 3 : p ∈ Λ. For the locally Lipschitz function Ṽ

∇Ṽ (p)f(p, v) =
d
dt
Ṽ (ϕ(t)) , a.e.,

holds, where ϕ(t) = (ϕ1(t), ϕ2(t)) is the solution of the
initial value problem

ϕ̇(t) = f (ϕ(t), v) , ϕ(0) = p.

Assume p is such that

V1(p1) > γ ISDS
1 (|v|)

⇒∇σ (V1(p1)) f1(p1, p2, v) ≤ − (1− ε1) ĝ1 (V (p)) , (25)
V2(p2) > γ ISDS

2 (|v|)
⇒∇V2(p2)f2(p1, p2, v) ≤ − (1− ε2) g2 (V (p)) . (26)

Since p1, p2 6= 0, σ is continuous differentiable, V1, V2 are
locally Lipschitz and f is continuous there exist neighbor-
hoods U1 of p1 and U2 of p2 such that

∇σ (V1(x1)) f1(x1, x2, v) ≤ − (1− ε3) (1− ε1) ĝ1(Ṽ (p))

≤ − (1− ε̄1) ĝ1(Ṽ (p)), (27)

∇V2(x2)f2(x1, x2, v) ≤ − (1− ε4) (1− ε2) g2(Ṽ (p))

≤ − (1− ε̄2) g2(Ṽ (p)), (28)

hold almost everywhere, ∀(x1, x2) ∈ U1 × U2 and fixed
ε3, ε4 ∈ (0, 1), 1 > ε̄1 = ε1+ε3 > 0, 1 > ε̄2 = ε2+ε4 > 0.

Furthermore there exists δ > 0 such that ϕ(t) ∈ U1 ×
U2, ∀ 0 ≤ t < δ. Now let ∆t ∈ (0, δ). If ϕ (∆t) ∈ A ∪ Λ,
then with the mean value theorem (MVT)

Ṽ (ϕ (∆t))− Ṽ (p) =σ (V1 (ϕ1 (∆t)))− σ (V1 (p1))

= ∇σ (V1 (ϕ1 (t))) ϕ̇1(t)∆t ≤ − (1− ε̄1) ĝ1(Ṽ (p))∆t

holds true, where the last inequality follows from (27). If
ϕ (∆t) ∈ B ∪ Λ, then again with the MVT we get

Ṽ (ϕ (∆t))− Ṽ (p) =V2 (ϕ2 (∆t))− V2(p2)

= ∇V2 (ϕ2 (t)) ϕ̇2(t)∆t ≤− (1− ε̄2) g2(Ṽ (p))∆t,

where the last inequality follows from (28). Hence, if Ṽ is
differentiable at p, we get

d
dp
Ṽ (p) = ∇Ṽ (p)f(p, v) = lim

∆t→0

Ṽ (ϕ (∆t))− Ṽ (ϕ(0))
∆t

≤ − (1− ε̄) g̃(Ṽ (p)),

where ε̄ := max {ε̄1, ε̄2} , g̃(r) := min {ĝ1(r), g2(r)}.
Assumptions (25) and (26) hold true, if Ṽ (p) > γ̃ ISDS (|v|) ,
with γ̃ ISDS(r) := max {γ̂ ISDS

1 (r), γ ISDS
2 (r)}.

Now we combine all three cases and get, if Ṽ is differen-
tiable at p

∇Ṽ (p)f(p, v) ≤ − (1− ε̄) g̃(Ṽ (p)) (29)

whenever Ṽ (p) > γ̃ ISDS (|v|).
Since Ṽ is differentiable a.e., (29) holds a.e., i.e. function

Ṽ satisfies condition (9). Now we check condition (8). By
definition of σ1(r) := σ(r), σ2(r) := Id(r) = r, ε :=
max {ε1, ε2} and with |xj |∞ = |x|∞ for some j = 1, 2 we
have

Ṽ (x) ≥ max
i
σi

(
|xi|

1 + εi

)
≥ max

i
σi

(
|xi|∞
1 + ε

)
≥ σj

(
|xj |∞
1 + ε

)
≥ min

i
σi

(
|x|√

2(1 + ε)

)
,



By definition of η̃(r) := max {σ (η1 (r)) , η2(r)} we have

Ṽ (x) ≤ max {σ(η1(|x1|)), η2(|x2|)}
≤ max {σ(η1(|x|)), η2(|x|)} = η̃(|x|).

By definition of ψ(r) := mini σi(r), i = 1, 2, r ≥ 0 it
follows

|x|
1+ε ≤ ψ

−1(Ṽ (x)) ≤ ψ−1 (η̃(|x|)) .

Function V (x) := ψ−1(Ṽ (x)) is the ISDS Lyapunov func-
tion candidate and satisfies condition (8) with η(r) :=
ψ−1 (η̃(r)) as seen before. Note that ψ−1 ∈ K∞ and V (x)
is locally Lipschitz continuous. To check condition (9) for
function V it follows from (29)

V (x) > ψ−1 (γ̃ ISDS (|u|)) =: γ ISDS (|u|)
⇒ d

dtV (x) = (ψ−1)′(Ṽ (x)) · ∇Ṽ (x) · f(x, u)

≤ −(1− ε̄)(ψ−1)′(Ṽ (x))g̃(Ṽ (x))

= −(1− ε̄)g (V (x)) , a.e.,

where g(r) := (ψ−1)′ (ψ(r)) g̃ (ψ(r)) is locally Lipschitz
continuous and positive definite. This means V (x) satis-
fies (9), where µ solves the ordinary differential equation
d
dtµ(r, t) = −g (µ(r, t)). Hence V (x) is the locally Lips-
chitz ISDS Lyapunov function of the whole system and by
application of Theorem 2.12 the whole system is ISDS, i.e.,
it holds

|x(t)| ≤ max{µ(η(|x0|), t), ess sup
τ∈[0,t]

µ(γ ISDS(|u(τ)|), t− τ)}.

The following example illustrates the application of the last
theorem for a construction of an ISDS Lyapunov function.

Example 3.7: Consider two interconnected systems

ẋ1 = −2x1 |x1|+ x2 |x2|+ u

ẋ2 = x1 − 3x2 + u

x1, x2 ∈ R and any input u ∈ R. We choose V1(x1) = |x1|
and V2(x2) = |x2|2 as Lyapunov function candidates for
the subsystems. Whenever γ ISDS

1 (|u|) :=
√

2 |u| ≤ |x1| and

γ ISDS
12 (V2(x2)) :=

√
|x2|2 ≤ |x1| holds, we get

∇V1(x1)f1(x1, x2, u) ≤ −2 |x1|2 + |x2|2 + |u| ≤ − 1
2 |x1|2

and whenever γ ISDS
2 (|u|) := 1

2 |u|
2 ≤ |x2|2 and

γ ISDS
21 (V1(x1)) := 1

2 |x1|2 ≤ |x2|2 holds, we get

∇V2(x2)f2(x1, x2, u) ≤ −(6− 4
√

2) |x2|2 .

g1(r) := 1
2r

2 and g2(r) := (6− 4
√

2)r are positive definite
differentiable functions ∀ r ∈ R+. We conclude that Vi are
the ISDS Lyapunov functions of the subsystems, hence both
subsystems are ISDS with

µ1(r, t) = 1
1
2 t+

1
r

, µ2(r, t) = exp(− t
6−4
√

2
)r,

η1(r) = Id(r), η2(r) = r2, r > 0 and γ ISDS
12 , γ

ISDS
21 , γ

ISDS
1 , γ ISDS

2

as defined before. The small gain condition is satisfied, since

γ ISDS
12 ◦ γ ISDS

21 (r) = 1
2

(√
r
)2 = 1

2r < r, r > 0.

We choose σ(r) =
√

3
2r, which satisfies the conditions

of Lemma 3.4. Then we have ψ(r) = min
{√

3
2r, r

}
and

ψ−1(r) = max
{

2
3r

2, r
}

. Now we apply Theorem 3.5 from
which it follows that the whole system is ISDS with

V (x) = max{|x1| , 2
3 |x2|4 ,

√
3
2 |x1|, |x2|2}

g(r) = max{ 4
3ψ(r), 1}min{ 1

6ψ
3(r), (6− 4

√
2)ψ(r)},

η(r) = max{r, 2
3r

4,
√

3
2r, r

2},

γ ISDS = max{
√

2r, 1
6r

4,

√
3
2

√
2r, 1

2r
2},

where g is locally Lipschitz and positive definite. The decay
rate of the whole system µ can be obtained by solving (7).

IV. CONCLUSIONS AND FUTURE WORKS

We have proved that a system consisting of n intercon-
nected ISDS systems is again ISDS under the small gain
condition (18). For two interconnected ISDS systems we
provide an explicit ISDS Lyapunov construction of the entire
system. The advantage here is, that the decay rate and gains
of the whole system can be immediately used to obtain a
bound for the trajectories of the solutions.

In a future work we are going to extend the given con-
struction of an ISDS Lyapunov function for the case of n > 2
interconnected ISDS systems under a small gain condition,
such that the decay rates and gains will be calculated by the
rates and gains of the n subsystems.
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