Nick Heilenkötter
Wissenschaftlicher Mitarbeiter der AG TechnomathematikPublikationen (Auswahl)
- C. Arndt, S. Dittmer, N. Heilenkötter, M. Iske, T. Kluth, J. Nickel.
Bayesian view on the training of invertible residual networks for solving linear inverse problems.
Zur Veröffentlichung eingereicht.online unter: https://www.x-mol.net/paper/article/1682514725633245184
- C. Arndt, A. Denker, S. Dittmer, N. Heilenkötter, M. Iske, T. Kluth, P. Maaß, J. Nickel.
Invertible residual networks in the context of regularization theory for linear inverse problems.
Inverse Problems, 39(12), IOPscience, 2023.DOI: 10.1088/1361-6420/ad0660
online unter: https://iopscience.iop.org/article/10.1088/1361-6420/ad0660 - D. Nganyu Tanyu, J. Ning, T. Freudenberg, N. Heilenkötter, A. Rademacher, U. Iben, P. Maaß.
Deep learning methods for partial differential equations and related parameter identification problems.
Inverse Problems, 39(10), 2023. - M. Beckmann, N. Heilenkötter.
Equivariant Neural Networks for Indirect Measurements.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/2306.16506
- J. Le Clerc Arrastia, N. Heilenkötter, D. Otero Baguer, L. Hauberg-Lotte, T. Boskamp, S. Hetzer, N. Duschner , J. Schaller , P. Maaß.
Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma.
MDPI Journal of Imaging, 71 7(4), Meisenbach Verlag, Bamberg, 2021.