Logo Uni Bremen

Zentrum für Industriemathematik

ZeTeM > Über das ZeTeM > Mitarbeiter*innen > Malin Lachmann

Kontakt Sitemap Impressum [ English | Deutsch ]
Bild  Malin Lachmann

Malin Lachmann

Wissenschaftliche Mitarbeiterin der AG Optimierung und Optimale Steuerung

Raum: NEOS 3310
E-Mail: mlachman@uni-bremen.de
Telefon: (0421) 218-64355
ORCID iD:  0000-0002-6313-4415

Konferenzbeiträge

Malin Lachmann, Francesca Jung, Markus Weber, Christof Büskens: Computationally efficient identification of databased models applied to a milk cooling system, CCIS Conference of Computational Interdisciplinary Science, Atlanta, 19. März 2019
Malin Lachmann, Francesca Jung, Christof Büskens: Identification of Databased Models to Forecast Renewable Energy Generation , 3rd IMA Conference on the Mathematical Challenges of Big Data, London, 11. Dezember 2018

Öffentlichkeitsarbeit

04/2021 Vortrag "Mathematikstudium und dann?", Studien- und Berufsinformationstag für Oberstufenschüler*innen der Stader Schulen, Vincent-Lübeck-Gymnasium Stade, 24. April 2021
03/2021 Jury-Mitglied Jugend forscht, Fachgebiet Mathematik/Informatik, Regionalwettbewerb Bremen-Mitte, Bremen, März 2021
10/2020 Mitwirkung bei der Veranstaltung "Nachgefragt! Math-IT – GIRLS, go!" für Schüler*innen, Universität Bremen, 08.Oktober 2020
10/2020 Gutachterin in Jury für Fachpreis Mathematik der Dr. Hans Riegel-Stiftung 2020 (Prämierung von Projektarbeiten von Schülern der 11./12. Klasse)
02/2020 Jury-Mitglied Jugend forscht, Fachgebiet Mathematik/Informatik, Regionalwettbewerb Bremen-Mitte, Bremen, Februar 2020
10/2019 Gutachterin in Jury für Fachpreis Mathematik der Dr. Hans Riegel-Stiftung 2019 (Prämierung von Projektarbeiten von Schülern der 11./12. Klasse)
2016-2019 Mitwirkung bei Konzeptionierung und Durchführung der "Forschertage Optimierung" für Schüler*innen der Oberstufe
03/2019 Jury-Mitglied Jugend forscht, Fachgebiet Mathematik/Informatik, Regionalwettbewerb Bremen-Mitte, Bremen, März 2019
10/2018 Gutachterin in Jury für Fachpreis Mathematik der Dr. Hans Riegel-Stiftung 2018 (Prämierung von Projektarbeiten von Schülern der 11./12. Klasse)
02/2018 Jury-Mitglied Jugend forscht, Fachgebiet Mathematik/Informatik, Regionalwettbewerb Bremen-Mitte, Bremen, Februar 2018
11/2017 Vortrag "Mathematikstudium und dann?", Studien- und Berufsinformationstag für Oberstufenschüler*innen der Stader Schulen, Vincent-Lübeck-Gymnasium Stade, 11. November 2017
11/2017 Gutachterin in Jury für Fachpreis Mathematik der Dr. Hans Riegel-Stiftung 2017 (Prämierung von Projektarbeiten von Schülern der 11./12. Klasse)

Forschungsgebiete

Projekte

  1. hyBit: Hydrogen for Bremen's industrial transformation (01.09.2022 - 28.02.2026)
  2. SmartFarm (01.01.2016 - 31.03.2019)

Veranstaltungen (Auswahl)vollständige Liste

  1. Anwendungen von Optimierung in Energie und Umwelt (Sommersemester 2021)
  1. Übungen Mathematik 2b für Produktionstechniker (Sommersemester 2020)
  2. Übungen Mathematik 2a für Produktionstechniker (Wintersemester 2019/2020)
  3. Übungen Mathematik 1b für Produktionstechniker und Wirtschaftsingenieure (Sommersemester 2019)

Abschlussarbeiten (Auswahl)vollständige Liste

  1. Physikalische und datenbasierte Modellierung einer Wärmepumpe im Vergleich (Miriam Wilks)
  2. Modellreduktion in der Datenbasierten Modellierung mittels k-facher Kreuzvalidierung (Matthias Otten)

Publikationen (Auswahl)vollständige Liste

  1. M. Lachmann, C. Büskens.
    A Hybrid Approach for Data-Based Models Using a Least-Squares Regression.
    OLA 2021 Int. Conf on Optimization and Learning.

    DOI: 10.1007/978-3-030-85672-4_5

  2. M. Lachmann, J. Maldonado, W. Bergmann, F. Jung, M. Weber, C. Büskens.
    Self-Learning Data-Based Models as Basis of a Universally Applicable Energy Management System.
    Energies, 13(8), 2084, 2020.

    DOI: 10.3390/en13082084

  3. M. Lachmann, F. Jung, C. Büskens.
    Computationally efficient identification of databased models applied to a milk cooling system.
    Conference of Computational Interdisciplinary Science, CCIS, 19.03.-22.03.2019, Atlanta, USA.
    Campinas: Galoa, 2020.

    online unter: https://proceedings.science/ccis-2019/papers/computationally-efficient-identification-of-databased-models-applied-to-a-milk-cooling-system

  4. F. Jung, M. Lachmann, C. Büskens.
    SmartFarm - Data based optimization for optimal energy management.
    88th GAMM Annual Meeting of the international Association of Applied Mathematics and Mechanics (GAMM).
    Proc. Appl. Math. Mech., 17(1):741-742, 2017.

    DOI: 10.1002/pamm.201710338