Logo Uni Bremen

Zentrum für Technomathematik

ZeTeM > Über das ZeTeM > Mitarbeiter*innen > Johannes Leuschner

Kontakt Sitemap Impressum [ English | Deutsch ]
Bild  Johannes Leuschner

Johannes Leuschner

Wissenschaftlicher Mitarbeiter der AG Technomathematik, Research Training Group π3

Raum: MZH 2050
E-Mail: jleuschn@uni-bremen.de
Telefon: (0421) 218-63811
ORCID iD:  0000-0001-7361-9523

Forschungsgebiete

Veranstaltungen (Auswahl)vollständige Liste

  1. Computerpraktikum (Wintersemester 2020/2021)
  2. Computerpraktikum (Wintersemester 2019/2020)

Abschlussarbeiten (Auswahl)vollständige Liste

  1. Modellierung von Geometrieabweichungen bei der Nano-Computertomographie (Tom Lütjen)
  2. Using Neural Networks to Denoise CT Images (Rudolf Herdt)

Publikationen (Auswahl)vollständige Liste

  1. J. Leuschner, M. Schmidt, D. Otero Baguer, P. Maaß.
    LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction.
    Scientific Data, 8(109), 2021.

    DOI: 10.1038/s41597-021-00893-z

  2. J. Leuschner, M. Schmidt, P. Ganguly, V. Andriiashen, S. Coban, A. Denker, D. Bauer, A. Hadjifaradji, K. Batenburg, B. Maass, M. von Eijnatten.
    Quantitative Comparison of Deep Learning-Based Image Reconstruction Methods for Low-Dose and Sparse-Angle CT Applications.
    MDPI Journal of Imaging, 7(3), 44 S., 2021.

    DOI: 10.3390/jimaging7030044
    online unter: https://www.mdpi.com/2313-433X/7/3/44

  3. S. Schulze, J. Leuschner, E. King.
    Blind Source Separation in Polyphonic Music Recordings Using Deep Neural Networks Trained via Policy Gradients.
    MDPI Open Access Journals Signals, 2(4):637-661, 2021.

    DOI: 10.3390/signals2040039
    online unter: https://www.mdpi.com/2624-6120/2/4/39

  4. D. Otero Baguer, J. Leuschner, M. Schmidt.
    Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods.
    Inverse Problems, 36(9), IOPscience, 2020.

    DOI: 10.1088/1361-6420/aba415

  5. A. Denker, M. Schmidt, J. Leuschner, P. Maaß, J. Behrmann.
    Conditional Normalizing Flows for Low-Dose Computed Tomography Image Reconstruction.
    ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 18.07-18.07.2020, Wien, Österreich.

    online unter: https://invertibleworkshop.github.io/accepted_papers/index.html