Logo Uni Bremen

Zentrum für Industriemathematik

ZeTeM > Über das ZeTeM > Mitarbeiter*innen > Dr. Johannes Leuschner

Kontakt Sitemap Impressum [ English | Deutsch ]
Bild Dr. Johannes Leuschner

Dr. Johannes Leuschner

Ehemaliger Mitarbeiter der AG Technomathematik, Research Training Group π3

Raum: MZH 2050
E-Mail: jleuschn
Telefon: (0421) 218-63811
ORCID iD:  0000-0001-7361-9523

Information: Email endet auf @uni-bremen.de

Forschungsgebiete

Veranstaltungen (Auswahl)vollständige Liste

  1. Computerpraktikum (Wintersemester 2020/2021)
  2. Computerpraktikum (Wintersemester 2019/2020)

Abschlussarbeiten (Auswahl)vollständige Liste

  1. Modellierung von Geometrieabweichungen bei der Nano-Computertomographie (Tom Lütjen)
  2. Using Neural Networks to Denoise CT Images (Rudolf Herdt)

Publikationen (Auswahl)vollständige Liste

  1. J. Antorán, R. Barbano, J. Leuschner, J. M. Hernández-Lobato, B. Jin.
    Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior.
    Transactions on Machine Learning Research, 12, 2023.

    online unter: https://openreview.net/forum?id=FWyabz82fH

  2. T. Lütjen, F. Schönfeld, J. Leuschner, M. Schmidt, A. Wald, T. Kluth.
    Learning-based approaches for reconstructions with inexact operators in nanoCTapplications.
    Zur Veröffentlichung eingereicht.

    online unter: https://aps.arxiv.org/abs/2307.10474

  3. R. Barbano, J. Antorán, J. Leuschner, J. M. Hernández-Lobato, B. Jin, Z. Kereta.
    Image Reconstruction via Deep Image Prior Subspaces.
    Zur Veröffentlichung eingereicht.

    online unter: https://arxiv.org/abs/2302.10279

  4. M. Nittscher, M. F. Lameter, R. Barbano, J. Leuschner, B. Jin, P. Maaß.
    SVD-DIP: Overcoming the Overfitting Problem in DIP-based CT Reconstruction.
    Medical Imaging with Deep Learning (MIDL 2023), 10.07.-12.07.2023.

    online unter: https://2023.midl.io/papers/p014

  5. C. Arndt, A. Denker, S. Dittmer, J. Leuschner, J. Nickel, M. Schmidt.
    Model-based deep learning approaches to the Helsinki Tomography Challenge 2022.
    Applied Mathematics for Modern Challenges, 1(2), 2023.

    DOI: 10.3934/ammc.2023007