Dr. Jens Behrmann
Ehemaliger Mitarbeiter der AG TechnomathematikForschungsgebiete
- Deep Learning
- Inverse Probleme
- Imaging mass spectrometry
Projekte
- AGENS - Analytisch-generative Netzwerke zur Systemidentifikation (01.04.2020 - 31.03.2023)
- Studie zur Qualitätsbewertung, Standardisierung und Reproduzierbarkeit von Daten der bildgebenden MALDI-Massenspektrometrie – MALDISTAR (01.07.2019 - 30.06.2022)
- Neuronale Netze im MALDI Imaging (seit 01.10.2016)
- BMBF-MaDiPath: Massenspektrometrisches Profiling/Grading für onkologische Routineanwendungen der digitalen Pathologie (01.10.2015 - 30.09.2018)
- Entwicklung eines Digital-Staining-Verfahrens als pathologisch-histologisches Diagnosewerkzeug auf Basis der MALDI-Imaging-Technologie (01.07.2014 - 30.06.2016)
Veranstaltungen (Auswahl)
- Oberseminar: Deep Learning, Inverse Probleme und Datenanalyse (Wintersemester 2020/2021)
- Oberseminar: Deep Learning, Inverse Probleme und Datenanalyse (Sommersemester 2020)
- Mathematical Foundations of Machine Learning (Sommersemester 2019)
- Seminar zu Neuronalen Netzen (Wintersemester 2018/2019)
- Seminar zu Neuronalen Netzen (Wintersemester 2016/2017)
- Übungen Computerpraktikum (Wintersemester 2016/2017)
- Übungen Computerpraktikum (Wintersemester 2015/2016)
Abschlussarbeiten (Auswahl)
- Statistical Inversion of the Radon Transform with Normalizing Flows (Jakob Lehmann)
- Residuale Transformationen und Divergenzen in Bayes’schen Neuronalen Netzen (Niklas Koenen)
- Long-Term Time Series Forecasting and Uncertainty Estimation with Bayesian Neural Networks (David Erzmann)
- Application of Neural Networks For Solving Inverse Problems (Alexander Denker)
- Ein universelles Approximationstheorem für einschichtige neuronale Netze (Meira Iske)
Publikationen (Auswahl)
- C. Janßen, T. Boskamp, L. Hauberg-Lotte, J. Behrmann, S. Deininger, M. Kriegsmann, K. Kriegsmann, G. Steinbuß, H. Winter, T. Muley, R. Casadonte, J. Kriegsmann, P. Maaß.
Robust subtyping of non-small cell lung cancer whole sections through MALDI mass spectrometry imaging.
Proteomics - Clinical Applications, PRCA2208 , 2022. - J. Behrmann, M. Schmidt, J. Wildner, P. Maaß, S. Schmale.
Purity Assessment of Pellets Using Deep Learning.
German Success Stories in Industrial Mathematics, H. Bock, K. Küfer, P. Maaß, A. Milde, V. Schulz (Hrsg.), Mathematics in Industry, S. 29-34, Springer Verlag, 2022. - J. Behrmann, P. Vicol, K. Wang, R. Grosse, J. Jacobsen.
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/2006.09347
- A. Denker, M. Schmidt, J. Leuschner, P. Maaß, J. Behrmann.
Conditional Normalizing Flows for Low-Dose Computed Tomography Image Reconstruction.
ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 18.07-18.07.2020, Wien, Österreich.
online unter: https://invertibleworkshop.github.io/accepted_papers/index.html
- F. Tramer, J. Behrmann, N. Carlini, N. Papernot, J. Jacobsen.
Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial Perturbations.
International Conference on Machine Learning (ICML), 12.07 - 18.07.2020, Wien, Österreich.
online unter: https://arxiv.org/abs/2002.04599