ZeTeM > About ZeTeM > Staff > Prof. Dr. Emily King

InfoOPEN POSITIONS @ research training group π³

Prof. Dr. Emily King

Leader of AWG Computational Data Analysis

Room: MZH 2320
Email: king@math.uni-bremen.de
Phone: (0421) 218-59894

Courses (Selection)complete list

  1. Inverse Methods and Data Analysis in Environmental Physics (Wintersemester 2018/2019)
  2. Harmonic Analysis: Theory and Applications (Wintersemester 2018/2019)
  3. Reading Course in Randomisation approaches in data analysis (Wintersemester 2017/2018)
  4. Reading Course in Sparse and redundant representation systems (Wintersemester 2017/2018)
  5. Data analysis and image processing (T3) (Wintersemester 2016/2017)

Theses (Selection)complete list

  1. Tangent and Curvature Estimation of 2D Point Clouds (Laura Breitkopf)
  2. Distributed Kalman Filtering for Large-Scale Dynamic Systems with Sparsely Coupled States (Lukas Zumvorde)
  3. Mathematical Analysis of Information Loss and Errors in Neural Networks (Sören Dittmer)
  4. Spectogram-based Musical Instrument Separation via Pitch-invariant Dictionaries (Sören Schulze)
  5. Shearlet-based image inpainting (Alina Stürck)

Publications (Selection)complete list

  1. E. King, J. M. Murphy.
    A theoretical guarantee for data completion via geometric separation.
    88th GAMM Annual Meeting of the international Association of Applied Mathematics and Mechanics (GAMM), 06.03.2017-10.03.2017, Weimar, Germany.

    DOI: 10.1002/pamm.201710384
    online at: https://arxiv.org/abs/1705.10745

  2. M. Fickus, J. Jasper, E. King, D. Mixon.
    Equiangular tight frames that contain regular simplices.
    Linear Algebra and its Applications, 555, 98–138 pp., Elsevier, 2018.

    DOI: 10.1016/j.laa.2018.06.004

  3. E. King.
    New Constructions and Characterizations of Grassmannian Fusion Frames and Packings.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/1612.05784

  4. E. King, M. Skopina.
    On biorthogonal p-adic wavelet bases.
    Notes of Scientific Seminars of the St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences, 455:67-83, 2017.

    English version in Journal of Mathematical Sciences, 234:158-169 (2018)

    DOI: 10.1007/s10958-018-3992-9
    online at: ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v455/p067.pdf

  5. E. King, X. Tang.
    New Upper Bounds for Equiangular Lines by Pillar Decomposition.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/1606.03259