Logo ZeTeM

Zentrum für Technomathematik

ZeTeM > About ZeTeM > Staff > Prof. Dr. Emily King

Contact Sitemap Impressum [ English | Deutsch ]

Prof. Dr. Emily King


Former head of AWG Computational Data Analysis (2014-2019)


Courses (Selection)complete list

  1. Algebraic, Geometric and Combinatorial Methods in Frame Theory (Sommersemester 2019)
  2. Inverse Methods and Data Analysis in Environmental Physics (Wintersemester 2018/2019)
  3. Harmonic Analysis: Theory and Applications (Wintersemester 2018/2019)
  4. Reading Course in Randomisation approaches in data analysis (Wintersemester 2017/2018)
  5. Data analysis and image processing (T3) (Wintersemester 2016/2017)

Theses (Selection)complete list

  1. Tangent and Curvature Estimation of 2D Point Clouds (Laura Breitkopf)
  2. Distributed Kalman Filtering for Large-Scale Dynamic Systems with Sparsely Coupled States (Lukas Zumvorde)
  3. Mathematical Analysis of Information Loss and Errors in Neural Networks (Sören Dittmer)
  4. Spectogram-based Musical Instrument Separation via Pitch-invariant Dictionaries (Sören Schulze)
  5. Shearlet-based image inpainting (Alina Stürck)

Publications (Selection)complete list

  1. E. King.
    Constructing Subspace Packings from Other Packings.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/1902.07145

  2. E. King.
    2- and 3-Covariant Equiangular Tight Frames.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/1901.10612

  3. R. Reisenhofer, E. King.
    Edge, Ridge, and Blob Detection with Symmetric Molecules.
    Zur Veröffentlichung eingereicht.
  4. E. King, J. M. Murphy.
    A theoretical guarantee for data completion via geometric separation.
    88th GAMM Annual Meeting of the international Association of Applied Mathematics and Mechanics (GAMM).
    Proc. Appl. Math. Mech., 17:833-834, 2018.

    DOI: 10.1002/pamm.201710384
    online at: https://arxiv.org/abs/1705.10745

  5. M. Fickus, J. Jasper, E. King, D. Mixon.
    Equiangular tight frames that contain regular simplices.
    Linear Algebra and its Applications, 555, 98–138 pp., Elsevier, 2018.

    DOI: 10.1016/j.laa.2018.06.004