ZeTeM > Über das ZeTeM > Mitarbeiter > Prof. Dr. Emily King

InfoOPEN POSITIONS @ research training group π³

Prof. Dr. Emily King

Leiterin der AAG Computational Data Analysis

Raum: MZH 2320
E-Mail: king@math.uni-bremen.de
Telefon: (0421) 218-59894

Veranstaltungen (Auswahl)vollständige Liste

  1. Inverse Methods and Data Analysis in Environmental Physics (Wintersemester 2018/2019)
  2. Harmonic Analysis: Theory and Applications (Wintersemester 2018/2019)
  3. Reading Course in Randomisation approaches in data analysis (Wintersemester 2017/2018)
  4. Reading Course in Sparse and redundant representation systems (Wintersemester 2017/2018)
  5. Data analysis and image processing (T3) (Wintersemester 2016/2017)

Abschlussarbeiten (Auswahl)vollständige Liste

  1. Tangent and Curvature Estimation of 2D Point Clouds (Laura Breitkopf)
  2. Distributed Kalman Filtering for Large-Scale Dynamic Systems with Sparsely Coupled States (Lukas Zumvorde)
  3. Mathematical Analysis of Information Loss and Errors in Neural Networks (Sören Dittmer)
  4. Spectogram-based Musical Instrument Separation via Pitch-invariant Dictionaries (Sören Schulze)
  5. Shearlet-based image inpainting (Alina Stürck)

Publikationen (Auswahl)vollständige Liste

  1. S. Schulze, E. King.
    Musical Instrument Separation on Shift-Invariant Spectrograms via Stochastic Dictionary Learning.
    Zur Veröffentlichung eingereicht.

    online unter: https://arxiv.org/abs/1806.00273

  2. B. Bodmann, E. King.
    Optimal arrangements of classical and quantum states with limited purity.
    Zur Veröffentlichung eingereicht.

    online unter: https://arxiv.org/abs/1811.11513

  3. S. Dittmer, E. King, P. Maaß.
    Singular values for ReLU layers.
    Zur Veröffentlichung eingereicht.

    online unter: https://arxiv.org/abs/1812.02566

  4. E. King, J. M. Murphy.
    A theoretical guarantee for data completion via geometric separation.
    88th GAMM Annual Meeting of the international Association of Applied Mathematics and Mechanics (GAMM).
    Proc. Appl. Math. Mech., 17:833-834, 2018.

    DOI: 10.1002/pamm.201710384
    online unter: https://arxiv.org/abs/1705.10745

  5. M. Fickus, J. Jasper, E. King, D. Mixon.
    Equiangular tight frames that contain regular simplices.
    Linear Algebra and its Applications, 555, 98–138 S., Elsevier, 2018.

    DOI: 10.1016/j.laa.2018.06.004