ZeTeM > Über das ZeTeM > Mitarbeiter > Prof. Dr. Emily King

InfoOPEN POSITIONS @ research training group π³

Prof. Dr. Emily King

Leiterin der AAG Computational Data Analysis

Raum: MZH 2320
E-Mail: king@math.uni-bremen.de
Telefon: (0421) 218-59894

*Meine aktualisierte persönliche Webseite ist unter http://www.math.uni-bremen.de/cda/king/ zu finden.

Veranstaltungen (Auswahl)vollständige Liste

  1. Inverse Methods and Data Analysis in Environmental Physics (Wintersemester 2018/2019)
  2. Harmonic Analysis: Theory and Applications (Wintersemester 2018/2019)
  3. Reading Course in Randomisation approaches in data analysis (Wintersemester 2017/2018)
  4. Reading Course in Sparse and redundant representation systems (Wintersemester 2017/2018)
  5. Data analysis and image processing (T3) (Wintersemester 2016/2017)

Abschlussarbeiten (Auswahl)vollständige Liste

  1. Tangent and Curvature Estimation of 2D Point Clouds (Laura Breitkopf)
  2. Distributed Kalman Filtering for Large-Scale Dynamic Systems with Sparsely Coupled States (Lukas Zumvorde)
  3. Mathematical Analysis of Information Loss and Errors in Neural Networks (Sören Dittmer)
  4. Spectogram-based Musical Instrument Separation via Pitch-invariant Dictionaries (Sören Schulze)
  5. Shearlet-based image inpainting (Alina Stürck)

Publikationen (Auswahl)vollständige Liste

  1. E. King.
    2- and 3-Covariant Equiangular Tight Frames.
    Zur Veröffentlichung eingereicht.

    online unter: https://arxiv.org/abs/1901.10612

  2. R. Reisenhofer, E. King.
    Edge, Ridge, and Blob Detection with Symmetric Molecules.
    Zur Veröffentlichung eingereicht.
  3. E. King.
    Constructing Subspace Packings from Other Packings.
    Zur Veröffentlichung eingereicht.

    online unter: https://arxiv.org/abs/1902.07145

  4. E. King, J. M. Murphy.
    A theoretical guarantee for data completion via geometric separation.
    88th GAMM Annual Meeting of the international Association of Applied Mathematics and Mechanics (GAMM).
    Proc. Appl. Math. Mech., 17:833-834, 2018.

    DOI: 10.1002/pamm.201710384
    online unter: https://arxiv.org/abs/1705.10745

  5. M. Fickus, J. Jasper, E. King, D. Mixon.
    Equiangular tight frames that contain regular simplices.
    Linear Algebra and its Applications, 555, 98–138 S., Elsevier, 2018.

    DOI: 10.1016/j.laa.2018.06.004