Logo Uni Bremen

Zentrum für Technomathematik

ZeTeM > Forschung und Anwendungen > Projekte > DiSCO2-Bremen: Datenbasierte und intelligente Simulation des Verkehrs zur CO2-Reduktion in Bremen

Kontakt Sitemap Impressum [ English | Deutsch ]

DiSCO2-Bremen: Datenbasierte und intelligente Simulation des Verkehrs zur CO2-Reduktion in Bremen

Arbeitsgruppe:AG Optimierung und Optimale Steuerung
Leitung: Prof. Dr. Christof Büskens ((0421) 218-63861, E-Mail: bueskens@math.uni-bremen.de )
Bearbeitung: Daniel Klosa (E-Mail: dklosa@uni-bremen.de)
Dr. Amin Mallek (E-Mail: amallek@uni-bremen.de)
Nicole Schröder
Projektförderung: AUF-Programm zur Förderung der angewandten Umweltforschung aus Mitteln des
Europäischer Fonds für regionale Entwicklung (EFRE) und des Landes Bremen
Projektpartner: Verkehrsmanagementzentrale (VMZ)
Die Senatorin für Klimaschutz, Umwelt, Mobilität, Stadtentwicklung und Wohnungsbau
Laufzeit: 01.07.2020 - 31.12.2022
Bild des Projekts DiSCO<sub>2</sub>-Bremen: Datenbasierte und intelligente Simulation des Verkehrs zur CO<sub>2</sub>-Reduktion in Bremen Der vom Menschen verursachte Klimawandel hat in den letzten Jahren immer mehr Aufmerksamkeit erregt. Möglichkeiten zur Reduzierung der CO2-Emissionen sind daher von großem Interesse. In Deutschland sind die Autoabgase für fast 20% aller CO2-Emissionen verantwortlich. Besonders in den Städten ist der CO2-Ausstoß hoch, da ständiges Bremsen und Beschleunigen einerseits und niedrige Geschwindigkeiten unter 50 km/h andererseits den Kraftstoffverbrauch und damit den CO2-Ausstoß in die Höhe treiben. Aufgrund seiner Geografie ist Bremen davon stark betroffen, da die umliegenden Flüsse nur wenige Verbindungsstraßen in das Umland zulassen, so dass diese Straßen eine hohe Verkehrsdichte aufweisen. Die Verkehrsmanagementzentrale in Bremen hat die Möglichkeit, einen großen Teil der Ampeln zu steuern und damit den Verkehrsfluss zu verbessern.
Im Projekt DiSCO2 soll ein sogenannter digitaler Zwilling - eine Simulation des Bremer Stadtverkehrs - entwickelt werden. Dieser erlaubt zuverlässige Vorhersagen über den Verkehrsfluss und die damit verbundenen CO2-Emissionen in Abhängigkeit z.B. vom Wochentag, der Jahreszeit, der Wetterlage und von Veranstaltungen. Darüber hinaus können Anomalien erkannt und die Auswirkungen von Baustellen und Großereignissen auf den Verkehrsfluss erfasst und reduziert werden.
Seit etwa 10 Jahren wird die Verkehrsdichte im gesamten Stadtgebiet an ca. 600 Messstellen mit Induktionsschleifendetektoren erfasst. Diese Aufzeichnungen eignen sich für die Entwicklung eines datenbasierten Hybrid-Modells, d.h. einem Modell, dessen Parameter mittels Methoden aus den Bereichen Big Data und Maschinellem Lernen optimiert werden. Zunächst beschränkt auf einen Messpunkt, werden die Vorhersagen im Laufe des Projektes auf den gesamten Stadtverkehr ausgeweitet. Da die Messungen in Echtzeit genutzt werden können, ist ein weiteres Ziel die intelligente Steuerung von Lichtsignalanlagen, um den Verkehrsfluss zu verbessern und damit den CO2-Ausstoß zu reduzieren.




EFRE Bremen Senatorin Klimaschutz