Logo Uni Bremen

Zentrum für Industriemathematik

ZeTeM > Über das ZeTeM > Mitarbeiter*innen > Dr. Lena Hauberg-Lotte

Kontakt Sitemap Impressum [ English | Deutsch ]
Bild Dr. Lena Hauberg-Lotte

Dr. Lena Hauberg-Lotte

Ehemalige Mitarbeiterin der AG Technomathematik


Projekte

  1. SPAplus: Small Data Probleme in der digitalen Pathologie und programmbegleitende Maßnahmen (01.04.2020 - 31.03.2023)
  2. DIAMANT - Digitale Bildanalyse und bildgebende Massenspektrometrie zur Differenzierung von nichtkleinzelligem Lungenkrebs (01.01.2020 - 31.12.2022)
  3. Studie zur Qualitätsbewertung, Standardisierung und Reproduzierbarkeit von Daten der bildgebenden MALDI-Massenspektrometrie – MALDISTAR (01.07.2019 - 30.06.2022)
  4. BMBF-MaDiPath: Massenspektrometrisches Profiling/Grading für onkologische Routineanwendungen der digitalen Pathologie (01.10.2015 - 30.09.2018)
  5. 3D-MALDI-Imaging einer Rückenmarksverletzung bei der Ratte (seit 01.02.2015)
  6. Entwicklung eines Digital-Staining-Verfahrens als pathologisch-histologisches Diagnosewerkzeug auf Basis der MALDI-Imaging-Technologie (01.07.2014 - 30.06.2016)

Patente

  1. P. Maaß, J. Oetjen, L. Hauberg-Lotte, F. Alexandrov, D. Trede.
    Verfahren zur rechnergestützten Analyse eines oder mehrerer Gewebeschnitte des menschlichen oder tierischen Körpers.
    Deutsches Patent- und Markenamt DE102014224916A1,
    Anmeldenummer: 1020142249, Anmeldedatum: 04.12.2014.
    Veröffentlicht in Patenblatt Nr.: am 06.09.2016.
    US Patent & Trademark Office, US 20160163523 A1,
    Anmeldenummer: 14/959967 , Anmeldedatum: 04.12.2014.
    Veröffentlicht am 09.06.2016
    Intellectual Property Office, GB 2535586,
    Anmeldenummer: GB1521058.6, Anmeldedatum: 30.11.2015.
    Veröffentlicht am 24.08.2016
    Institut national de la propriété industrielle, FR 3029671 A1,
    Anmeldenummer: FR1561774, Anmeldedatum: 03.12.2015.
    Veröffentlicht am 10.06.2016

Publikationen (Auswahl)vollständige Liste

  1. C. Janßen, T. Boskamp, L. Hauberg-Lotte, J. Behrmann, S. Deininger, M. Kriegsmann, K. Kriegsmann, G. Steinbuß, H. Winter, T. Muley, R. Casadonte, J. Kriegsmann, P. Maaß.
    Robust subtyping of non-small cell lung cancer whole sections through MALDI mass spectrometry imaging.
    Proteomics - Clinical Applications, PRCA2208 , 2022.

    DOI: 10.1002/prca.202100068

  2. P. Maaß, L. Hauberg-Lotte, T. Boskamp.
    MALDI Imaging: Exploring the Molecular Landscape.
    German Success Stories in Industrial Mathematics, H. Bock, K. Küfer, P. Maaß, A. Milde, V. Schulz (Hrsg.), Mathematics in Industry, S. 97-103, Springer Verlag, 2022.

    DOI: 10.1007/978-3-030-81455-7_17

  3. J. Le Clerc Arrastia, N. Heilenkötter, D. Otero Baguer, L. Hauberg-Lotte, T. Boskamp, S. Hetzer, N. Duschner , J. Schaller , P. Maaß.
    Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma.
    MDPI Journal of Imaging, 71 7(4), Meisenbach Verlag, Bamberg, 2021.

    DOI: 10.3390/jimaging7040071

  4. T. Boskamp, R. Casadonte, L. Hauberg-Lotte, S. Deininger, J. Kriegsmann, B. Maass.
    Cross-Normalization of MALDI Mass Spectrometry Imaging Data Improves Site-to-Site Reproducibility.
    Analytical Chemistry, 93(30):10584-10592, 2021.

    online unter: https://doi.org/10.1021/acs.analchem.1c01792

  5. T. Boskamp, D. Lachmund, R. Casadonte, L. Hauberg-Lotte, J. H. Kobarg, J. Kriegsmann, P. Maaß.
    Using the chemical noise background in MALDI mass spectrometry imaging for mass alignment and calibration.
    Analytical Chemistry, 92(1):1301-1308, 2020.

    DOI: 10.1021/acs.analchem.9b04473
    online unter: https://doi.org/10.1021/acs.analchem.9b04473