Logo Uni Bremen

Center for Industrial Mathematics

ZeTeM > About ZeTeM > Staff > Prof. Dr. Michael Böhm

Contact Sitemap Impressum [ English | Deutsch ]

Prof. Dr. Michael Böhm


Former head of ZeTeM-WG Modelling and PDE (till 2020)


Research Areas

Leader of Projects

  1. Multi-Mechanism Models: Theory and its Application to some Phenomena in the Material Behavior of Steel (01.01.2010 - 31.12.2012)
  2. Modelling and Analyis of Periodic Media with Lower-Dimensional Structures (since 01.11.2009)
  3. Boundary Conditions at a Curved Contact Interface between a Free Fluid and a Porous Medium (since 01.08.2008)
  4. Initial-Boundary-Value-Problems for Description of the Material Behaviour of Steel (since 01.06.2007)
  5. Modelling and simulation of thermo-chemical heat treatment processes (01.01.2005 - 30.06.2008)
  6. Micro–macro modelling of reaction–diffusion processes in multi-phase materials (since 01.03.2004)
  7. Multiple Scale Modelling of Phase Transitions, Distortion and Distortion Potential (01.05.2003 - 30.06.2008)
  8. Zu den theoretischen Grundlagen der Thermoplastizität mit Phasenumwandlungen (01.07.2002 - 30.06.2003)
  9. Effektive Gleichungen und Stoffgrößen in thermomechanischen Theorien mit Phasenumwandlung (01.01.2002 - 31.07.2002)
  10. Moving-boundary-modelling of concrete carbonation (01.07.2001 - 30.06.2006)

Courses (Selection)complete list

  1. Mathematische Modellierung (Wintersemester 2019/2020)
  2. Oberseminar Mathematische Materialwissenschaften (Wintersemester 2019/2020)
  3. Oberseminar Mathematische Materialwissenschaften (Sommersemester 2019)
  4. Mathematische Modellierung (Wintersemester 2018/2019)
  5. Oberseminar Mathematische Materialwissenschaften (Wintersemester 2018/2019)

betreute/begutachtete Dissertationen (Selection)complete list

  1. Identification of Processes Governing Damage Evolution in Linear-Elastic Continua (Simon Grützner)
  2. Homogenization of Thermoelasticity Systems Describing Phase Transformations (Michael Eden)
  3. Extension Operators for Sobolev Spaces on Periodic Domains, Their Applications, and Homogenization of a Phase Field Model for Phase Transitions in Porous Media (Martin Höpker)
  4. Modelling and simulation of inelastic phenomena in the material behaviour of steel during heat treatment processes (Simone Bökenheide)
  5. Multi-Mechanism Models Theory and Applications (Nils Hendrik Kröger)

Theses (Selection)complete list

  1. Basen in Funktionenräumen und ihre Verwendung in der Fourierreihenmethode (Samuel Kublenz)
  2. Differenzialrechnung in normierten Räumen mit Anwendung in der Variationsrechnung (Maik Schünemann)
  3. Mathematical Modelling and Analysis of Perfect Plasticity with Time-Dependent Yield Function (Jannis Ehrlich)
  4. An approach to parameter identification in continuum damage mechanics (Simon Grützner)
  5. Derivation, analysis, and homogenization of a chemo-poroelasticity model for a highly heterogeneous two-component medium (Michael Eden)

Publications (Selection)complete list

  1. M. Wolff, M. Böhm, H. Altenbach.
    Application of the Müller-Liu entropy principle to gradient-damage models in the thermo-elastic case.
    International Journal of Damage Mechanics, 27(3):387-408, 2018.

    DOI: 10.1177/1056789516679495

  2. M. Wolff, M. Böhm.
    On parameter identification for general linear elliptic problems of second order.
    Berichte aus der Technomathematik 18-01, Universität Bremen, 2018.
  3. H. van Asperen, T. Warneke, S. Sabbatini, M. Höpker, T. Chiti, G. Nicolini, D. Papale, M. Böhm, J. Notholt.
    Diurnal variation in respiratory CO2 flux in an arid ecosystem.
    Agricultural and Forest Meteorology, 234:95-105, Elsevier, 2017.
  4. H. S. Mahato, M. Böhm, S. Kräutle, P. Knabner.
    Upscaling of a system of semilinear parabolic partial differential equations coupled with a system of nonlinear ordinary differential equations originating in the context of crystal dissolution and precipitation inside a porous medium: existence theory ..
    Advances in Mathematical Sciences and Applications, 26:39-80, 2017.
  5. M. Wolff, M. Böhm.
    Continuous bodies with thermodynamically active singular sharp interfaces .
    Mathematics and Mechanics of Solids, 22:434-476, 2017.