Logo Uni Bremen

Center for Industrial Mathematics

ZeTeM > About ZeTeM > Staff > Prof. Dr. Dirk Lorenz

Contact Sitemap Impressum [ English | Deutsch ]
Bild Prof. Dr. Dirk Lorenz

Prof. Dr. Dirk Lorenz

Leader of AG Inverse Problems and Imaging

Room: MZH 5490
Email: d.lorenz@uni-bremen.de
Phone: (0421) 218-63982
ORCID iD:   0000-0002-7419-769X

(Photo Lukas Klose/Universität Bremen)

Office hours: During lecture time I hold weekly office hours (hybrid and in-person). You can find the dates on my profile page in Stud.IP - just navigate to my profile page, click on "Appointments", choose some date and show up either online (link in Stud.IP as well) or in my office.

CV

30.08.1978born in Bremen.
1997 - 2002study of Mathematics, Physics and Philosophy at the University of Bremen
08.2002Diploma in Mathematics (minor subject Physics), title "Methoden der Multiskalenglättung"
2002 - 2004researcher in the group "Technomathematik" at the ZeTeM
2004 - 2006postdoc in the graduate program SCiE
02.2005 PhD in Mathematics, supervisor: Prof. Peter Maass, 2nd referee: Prof. Otmar Scherzer, title "Wavelet Shrinkage in Signal & Image Processing - An Investigation of Relations and Equivalences"
03.2006 - 08.2006postdoc at the Electrical Engineering department at Technion, Haifa funded by the research training network HASSIP. Host: Prof. Y.Y. Zeevi
2006 - 03.2009postdoc in the group "Technomathematik" at the ZeTeM
04.2009 - 09.2023Professor at the Institute for Analysis and Algebra, TU Braunschweig
10.2023 - heuteProfessor at the Center for Industrial Mathematics, Uni Bremen

Research Areas

Projects

  1. Sparsity and Compressed Sensing in Inverse Probleme (01.06.2008 - 31.05.2011)
  2. BMBF-INVERS: Dekonvolution vs. Shrinkage: Mathematische Methoden für eine verbesserte Peakdetektion (01.10.2007 - 30.06.2010)
  3. BMBF-INVERS: Regularisierung inverser Faltungsgleichungen in Besov-Skalen (01.10.2007 - 30.06.2010)
  4. Parameteroptimierung für die High-Content-Analyse (01.12.2005 - 30.09.2007)
  5. DFG-SPP 1114: Wavelet-shrinkage in der Bildverarbeitung – Eine Untersuchung von Zusammenhängen und Äquivalenzen (01.10.2002 - 30.09.2004)

Leader of Projects

  1. Automated data-driven damage detection (01.10.2023 - 30.09.2026)
  2. Training Data Driven Experts in Optimization (01.06.2020 - 01.12.2024)
  3. Mathematics for Machine Learning for Graph-Based Data with Integrated Domain Knowledge (01.04.2020 - 31.12.2023)
  4. Sparsity and Compressed Sensing in Inverse Probleme (01.06.2008 - 31.05.2011)

Courses (Selection)complete list

  1. Mathematical Methods for Data Analysis and Image Processing (Wintersemester 2023/2024)
  2. Convex Analysis (Wintersemester 2023/2024)
  3. Seminar zur Regularisierung inverser Probleme (Wintersemester 2008/2009)

Theses (Selection)complete list

  1. Die theoretische Analyse und Anwendung differentieller Methoden zur Flussberechnung (Kanglin Chen)
  2. Image Inpainting (Inna Korabova)

Publications (Selection)complete list

  1. D. Lorenz, M. Winkler, A. Leitão, J. C. Rabelo.
    On inertial levenberg-marquardt type methods for solving nonlinear ill-posed operator equations.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/2406.07044

  2. D. Lorenz, J. Marquardt, E. Naldi.
    The degenerate variable metric proximal point algorithm and adaptive stepsizes for primal-dual Douglas-Rachford.
    Erscheint in Optimization

    DOI: 10.1080/02331934.2024.2325552
    online at: https://arxiv.org/abs/2302.13128

  3. R. Gower, D. Lorenz, M. Winkler.
    A Bregman-Kaczmarz method for nonlinear systems of equations.
    Computational Optimization and Applications, 87:1059-1098, 2024.

    DOI: 10.1007/s10589-023-00541-9
    online at: https://arxiv.org/abs/2303.08549

  4. C. Brauer, N. Breustedt, T. de Wolff, D. Lorenz.
    Learning variational models with unrolling and bilevel optimization.
    Analysis and Applications, 22(3):569-617, World Scientific, 2024.

    DOI: 10.1142/S0219530524400037
    online at: https://arxiv.org/abs/2209.12651

  5. D. Lorenz, F. Schneppe, L. Tondji.
    Linearly convergent adjoint free solution of least squares problems by random descent.
    Inverse Problems, 39(12), 125019, 2023.

    DOI: 10.1088/1361-6420/ad08ed
    online at: https://arxiv.org/abs/2306.01946