Prof. Dr. Andreas Rademacher
Leader of
WG Modelling and Scientific ComputingMember of the high-profile-area
MAPEX.
CV
University Education
10.02.2016 |
Habilitation in mathematics, Technische Universität Dortmund |
11.09.2009 |
Conferral of the Doctor of Science degree (Dr. rer. nat.), Technische Universität Dortmund |
30.03.2005 |
Degree (Diplom) in mathematics, University of Dortmund |
09.08.2002 |
Pre-degree (Vordiplom) in mathematics, University of Dortmund |
16.06.2000 |
General qualification for university entrance (Abitur), Franz-Stock-Gymnasium, Neheim-Hüsten |
Professional Career
Since01.04.2020 |
Professor for Mathematical Modelling at Zentrum für Technomathematik, University of Bremen |
06.2016-03.2020 |
Research associate with civil servant status (Akademischer Oberrat), Faculty of Mathematics, Technische Universität Dortmund |
04.-09.2013 |
Replacement of a professorship, Mathematical Institute, University of Cologne |
12.2009-05.2016 |
Research associate with civil servant status (Akademischer Rat), Faculty of Mathematics, Technische Universität Dortmund |
04.2005-11.2009 |
Research associate (Wissenschaftlicher Angestellter) in research and teaching, Chair X for Scientific Computing, Technische Universität Dortmund |
Research Areas
- Mathematical Modeling
- Adaptive finite elements
- Scientific Computing
Leader of Projects
-
Parameter Identification for Signorini problems with friction
(01.04.2023 - 30.09.2025)
-
Parameter Identification on Time-Dependent Domains using Adaptive Finite Cell Methods
(01.11.2022 - 31.10.2025)
-
Adaptive mixed finite cell methods for elliptic problems
(01.04.2022 - 31.03.2025)
-
Inverse methods for ice sheet surface elevation changes with an application to West Antarctica
(01.06.2021 - 31.05.2024)
-
Simulation-based NC-shape grinding as a finishing operation of coated deep drawing tools
(01.01.2015 - 15.06.2018)
-
Space-time-FEM for thermomechanical coupled contact problems
(01.07.2014 - 30.06.2015)
-
Adaptive Optimal Control of Variational Inequalities in Computational Mechanics
(15.07.2012 - 30.06.2015)
-
Development of model adaptive simulation techniques for forming processes of complex functional components with complicated design details
(01.01.2012 - 31.12.2016)
-
Numerical analysis and efficient implementation of complex FE models of production processes based on the example of the deep hole drilling process
(01.05.2010 - 30.04.2017)
- Mathematische Modellierung (Wintersemester 2024/2025)
- Finite Elements Selected Chapters (Wintersemester 2024/2025)
- Mathematische Modellierung (Wintersemester 2023/2024)
- Modelling Project (Part 2) (Wintersemester 2023/2024)
- Finite Elements for Contact Problems (Wintersemester 2023/2024)
betreute/begutachtete Dissertationen (Selection)complete list
- Adaptive Finite-Elemente-Methoden für thermoplastische Kontaktprobleme (Ullrich Ralf Friedrich-Wilhelm Heupel)
- Ein allgemeines Konzept für Adaptive Finite Elemente Methoden bei modifizierten diskreten Formulierungen (Dustin Kumor)
- Adaptive unstetige Finite Elemente Methoden für elastoplastische Kontaktprobleme (Korosh Taebi)
- Adaptive Finite Element Methods for contact problems embedded in a Fictitious Domain - Simulation and Optimal Control (Korinna Rosin)
- Finite Elemente Methoden höherer Ordnung für reibungsbehaftete elasto-plastische Mehrkörperkontaktprobleme - Fehlerkontrolle, adaptive Methoden und effiziente Lösungsverfahren (Hannah Frohne)
- Lösung von Kontaktproblemen mit WORHP (Marco Nittscher)
- Entwicklung und mathematische Analyse eines einheitlichen Verschleißmodells für Vollhartmetallwerkzeuge (Morten Weber)
- Unsupervised Learning für kontaminierte Kunststoffgranulate (Marieke Hoehne)
- Optimale Steuerung der Wärmeleitungsgleichung auf zeitabhängigen Gebieten (Annika Osmers)
- Mehrdimensionale numerische Integration mit Delaunay-Triangulierung (Bennet Greve)
- D. Nganyu Tanyu, J. Ning, T. Freudenberg, N. Heilenkötter, A. Rademacher, U. Iben, P. Maaß.
Deep learning methods for partial differential equations and related parameter identification problems.
Inverse Problems, 39(10), 2023. DOI: 10.1088/1361-6420/ace9d4
- D. Hinse, M. Thode, A. Rademacher, K. Pantke, C. Spura.
Numerical identification of position-dependent friction coefficients from measured displacement data in a bolt-nut connection.
, Volume 19, September 2023, 101214 , Elsevier, 2023. DOI: https://doi.org/10.1016/j.rineng.2023.101214
- A. Rademacher.
Mesh and model adaptivity for frictional contact problems.
Numerische Mathematik, 142(3):465-523, 2019.
- P. di Stolfo, A. Rademacher, A. Schröder.
Dual weighted residual error estimation for the finite cell method.
Journal of Numerical Mathematics, 27(2):101-122, 2019.
- D. Kumor, A. Rademacher.
Goal-oriented a posteriori error estimates in nearly incompressible linear elasticity.
Numerical Mathematics and Advanced Applications, ENUMATH 2017, F. Radu, K. Kumar, I. Berre, J. Nordbotten, I. Pop (Eds.), pp. 399-406, Springer Verlag, 2019.