Logo Uni Bremen

Center for Industrial Mathematics

ZeTeM > About ZeTeM > Staff > Prof. Dr. Andreas Rademacher

Contact Sitemap Impressum [ English | Deutsch ]
Bild Prof. Dr. Andreas Rademacher

Prof. Dr. Andreas Rademacher

Leader of WG Modelling and Scientific Computing
Member of the high-profile-area MAPEX.

Room: MZH 2460
Email: arademac@uni-bremen.de
Phone: (0421) 218 63831
ORCID iD:  0000-0003-0545-0476

CV

University Education

10.02.2016 Habilitation in mathematics, Technische Universität Dortmund
11.09.2009 Conferral of the Doctor of Science degree (Dr. rer. nat.), Technische Universität Dortmund
30.03.2005 Degree (Diplom) in mathematics, University of Dortmund
09.08.2002 Pre-degree (Vordiplom) in mathematics, University of Dortmund
16.06.2000 General qualification for university entrance (Abitur), Franz-Stock-Gymnasium, Neheim-Hüsten

Professional Career

Since01.04.2020 Professor for Mathematical Modelling at Zentrum für Technomathematik, University of Bremen
06.2016-03.2020 Research associate with civil servant status (Akademischer Oberrat), Faculty of Mathematics, Technische Universität Dortmund
04.-09.2013 Replacement of a professorship, Mathematical Institute, University of Cologne
12.2009-05.2016 Research associate with civil servant status (Akademischer Rat), Faculty of Mathematics, Technische Universität Dortmund
04.2005-11.2009 Research associate (Wissenschaftlicher Angestellter) in research and teaching, Chair X for Scientific Computing, Technische Universität Dortmund

Research Areas

Leader of Projects

  1. Parameter Identification for Signorini problems with friction (01.04.2023 - 30.09.2025)
  2. Parameter Identification on Time-Dependent Domains using Adaptive Finite Cell Methods (01.11.2022 - 31.10.2025)
  3. Adaptive mixed finite cell methods for elliptic problems (01.04.2022 - 31.03.2025)
  4. Inverse methods for ice sheet surface elevation changes with an application to West Antarctica (01.06.2021 - 31.05.2024)
  5. Simulation-based NC-shape grinding as a finishing operation of coated deep drawing tools (01.01.2015 - 15.06.2018)
  6. Space-time-FEM for thermomechanical coupled contact problems (01.07.2014 - 30.06.2015)
  7. Adaptive Optimal Control of Variational Inequalities in Computational Mechanics (15.07.2012 - 30.06.2015)
  8. Development of model adaptive simulation techniques for forming processes of complex functional components with complicated design details (01.01.2012 - 31.12.2016)
  9. Numerical analysis and efficient implementation of complex FE models of production processes based on the example of the deep hole drilling process (01.05.2010 - 30.04.2017)

Courses (Selection)complete list

  1. Mathematische Modellierung (Wintersemester 2024/2025)
  2. Finite Elements – Selected Chapters (Wintersemester 2024/2025)
  3. Mathematische Modellierung (Wintersemester 2023/2024)
  4. Modelling Project (Part 2) (Wintersemester 2023/2024)
  5. Finite Elements for Contact Problems (Wintersemester 2023/2024)

betreute/begutachtete Dissertationen (Selection)complete list

  1. Adaptive Finite-Elemente-Methoden für thermoplastische Kontaktprobleme (Ullrich Ralf Friedrich-Wilhelm Heupel)
  2. Ein allgemeines Konzept für Adaptive Finite Elemente Methoden bei modifizierten diskreten Formulierungen (Dustin Kumor)
  3. Adaptive unstetige Finite Elemente Methoden für elastoplastische Kontaktprobleme (Korosh Taebi)
  4. Adaptive Finite Element Methods for contact problems embedded in a Fictitious Domain - Simulation and Optimal Control (Korinna Rosin)
  5. Finite Elemente Methoden höherer Ordnung für reibungsbehaftete elasto-plastische Mehrkörperkontaktprobleme - Fehlerkontrolle, adaptive Methoden und effiziente Lösungsverfahren (Hannah Frohne)

Theses (Selection)complete list

  1. Lösung von Kontaktproblemen mit WORHP (Marco Nittscher)
  2. Entwicklung und mathematische Analyse eines einheitlichen Verschleißmodells für Vollhartmetallwerkzeuge (Morten Weber)
  3. Unsupervised Learning für kontaminierte Kunststoffgranulate (Marieke Hoehne)
  4. Optimale Steuerung der Wärmeleitungsgleichung auf zeitabhängigen Gebieten (Annika Osmers)
  5. Mehrdimensionale numerische Integration mit Delaunay-Triangulierung (Bennet Greve)

Publications (Selection)complete list

  1. D. Nganyu Tanyu, J. Ning, T. Freudenberg, N. Heilenkötter, A. Rademacher, U. Iben, P. Maaß.
    Deep learning methods for partial differential equations and related parameter identification problems.
    Inverse Problems, 39(10), 2023.

    DOI: 10.1088/1361-6420/ace9d4

  2. D. Hinse, M. Thode, A. Rademacher, K. Pantke, C. Spura.
    Numerical identification of position-dependent friction coefficients from measured displacement data in a bolt-nut connection.
    , Volume 19, September 2023, 101214 , Elsevier, 2023.

    DOI: https://doi.org/10.1016/j.rineng.2023.101214

  3. A. Rademacher.
    Mesh and model adaptivity for frictional contact problems.
    Numerische Mathematik, 142(3):465-523, 2019.
  4. P. di Stolfo, A. Rademacher, A. Schröder.
    Dual weighted residual error estimation for the finite cell method.
    Journal of Numerical Mathematics, 27(2):101-122, 2019.
  5. D. Kumor, A. Rademacher.
    Goal-oriented a posteriori error estimates in nearly incompressible linear elasticity.
    Numerical Mathematics and Advanced Applications, ENUMATH 2017, F. Radu, K. Kumar, I. Berre, J. Nordbotten, I. Pop (Eds.), pp. 399-406, Springer Verlag, 2019.