Publikationen der AG Technomathematik
Zeitschriftenartikel (12)
- O. Klein, F. Fogt, S. Hollerbach, G. Nebrich, T. Boskamp, A. Wellmann.
Classification of Inflammatory Bowel Disease from Formalin‐Fixed, Paraffin‐Embedded Tissue Biopsies via Imaging Mass Spectrometry.
Proteomics - Clinical Applications, 190131 , Wiley, 2020. - D. Otero Baguer, J. Leuschner, M. Schmidt.
Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods.
Inverse Problems, 36(9), IOPscience, 2020. - M. Beckmann, P. Maaß, J. Nickel.
Error analysis for filtered back projection reconstructions in Besov spaces.
Inverse Problems, 37 014002 37(1), IOPscience, 2020. - T. Kluth, C. Bathke, M. Jiang, P. Maaß.
Joint super-resolution image reconstruction and parameter identification in imaging operator: Analysis of bilinear operator equations, numerical solution, and application to magnetic particle imaging.
Inverse Problems, 36(12), 2020. - T. Kluth, B. Jin.
L1 data fitting for robust reconstruction in magnetic particle imaging: quantitative evaluation on Open MPI dataset.
International Journal on Magnetic Particle Imaging, , 2020.DOI: 10.18416/IJMPI.2020.2012001
online unter: https://journal.iwmpi.org/index.php/iwmpi/article/view/146 - T. H. Nguyen, D. Nho Hào, P. Maaß, L. Colombi Ciacchi.
Mathematical aspects of catalyst positioning in lithium/air batteries.
Inverse Problems, 36(4), 2020. - F. Lieb, T. Boskamp, H. Stark.
Peak detection for MALDI mass spectrometry imaging data using sparse frame multipliers.
Journal of Proteomics, 103852 225, Elsevier, 2020. - T. Kluth.
Recent developments on system function/matrix representation, hybrid simulation techniques, and magnetic actuation.
International Journal on Magnetic Particle Imaging, 6(1), 2020.DOI: https://journal.iwmpi.org/index.php/iwmpi/article/view/327
- G. Rigaud, B. Hahn.
Reconstruction Algorithm For 3D Compton Scattering Imaging With Incomplete Data.
Erscheint in Inverse Problems in Science and Engineering - S. Dittmer, T. Kluth, P. Maaß, D. Otero Baguer.
Regularization by architecture: A deep prior approach for inverse problems.
Journal of Mathematical Imaging and Vision, 62(3):456-470, Springer Verlag, 2020.DOI: 10.1007/s10851-019-00923-x
online unter: http://link.springer.com/article/10.1007/s10851-019-00923-x - T. Kluth, H. Albers.
Simulation of non-linear magnetization effects and parameter identification problems in magnetic particle imaging.
Erscheint in Oberwolfach Reports - T. Boskamp, D. Lachmund, R. Casadonte, L. Hauberg-Lotte, J. H. Kobarg, J. Kriegsmann, P. Maaß.
Using the chemical noise background in MALDI mass spectrometry imaging for mass alignment and calibration.
Analytical Chemistry, 92(1):1301-1308, 2020.DOI: 10.1021/acs.analchem.9b04473
online unter: https://doi.org/10.1021/acs.analchem.9b04473
Tagungsbeiträge (6)
- S. Dittmer, T. Kluth, D. Otero Baguer, B. Maass.
A Deep Prior Approach to Magnetic Particle Imaging.
Machine Learning for Medical Image Reconstruction 2020.
Springer International Publishing, F. Deeba, P. Johnson, T. Würfl, J. C. Ye (Hrsg.), S. 113-122, 2020. - A. Denker, M. Schmidt, J. Leuschner, P. Maaß, J. Behrmann.
Conditional Normalizing Flows for Low-Dose Computed Tomography Image Reconstruction.
ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 18.07-18.07.2020, Wien, Österreich.
online unter: https://invertibleworkshop.github.io/accepted_papers/index.html
- M. Möddel, F. Griese, T. Kluth, T. Knopp.
Estimating orientation using multi-contrast MPI.
10th International Workshop on Magnetic Particle Imaging 2020, Würzburg, 07.09.-09.09.2020.
International Journal on Magnetic Particle Imaging, T. Knopp, T. M. Buzug (Hrsg.), 6(2):3 pages, Infinite Science Publishing, 2020. - F. Tramer, J. Behrmann, N. Carlini, N. Papernot, J. Jacobsen.
Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial Perturbations.
International Conference on Machine Learning (ICML), 12.07 - 18.07.2020, Wien, Österreich.
online unter: https://arxiv.org/abs/2002.04599
- H. Albers, T. Kluth, T. Knopp.
MNPDynamics: A computational toolbox for simulating magnetic moment behavior of ensembles of nanoparticles.
10th International Workshop on Magnetic Particle Imaging 2020, Würzburg, 07.09.-09.09.2020.
International Journal on Magnetic Particle Imaging, T. Knopp, T. M. Buzug (Hrsg.), 6(2):3 pages, Infinite Science Publishing, 2020. - T. Kluth, P. Szwargulski, T. Knopp.
Towards accurate modeling of the multidimensional MPI physics.
10th International Workshop on Magnetic Particle Imaging 2020, Würzburg, 07.09.-09.09.2020.
International Journal on Magnetic Particle Imaging, T. Knopp, T. M. Buzug (Hrsg.), 6(2):2 pages, Infinite Science Publishing, 2020.
Qualifikationsarbeiten (4)
- C. Etmann.
Double Backpropagation with Applications to Robustness and Saliency Map Interpretability.
Dissertationsschrift, Universität Bremen, 2020. - D. Otero Baguer.
Neural Networks for solving Inverse Problems. Applications in Materials Science and Medical Imaging. (submitted).
Dissertationsschrift, Universität Bremen, 2020. - S. Dittmer.
On deep learning applied to inverse problems - A chicken-and-egg problem.
Dissertationsschrift, Universität Bremen, 2020. - C. Brandt.
Recurrence Quantification Compared to Fourier Analysis for Ultrasonic Non-Destructive Testing of Fibre Reinforced Polymers.
Dissertationsschrift, Universität Bremen, 2020.
Preprints (4)
- L. Kuger, G. Rigaud.
Joint fan-beam CT and Compton scattering tomography: analysis and image reconstruction.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/2008.06699
- S. . Mukherjee, S. Dittmer, Z. . Shumaylov, S. Lunz, O. Öktem, C. Schönlieb.
Learned convex regularizers for inverse problems.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/2008.02839
- I. Piotrowska-Kurczewski, G. Sfakianaki.
Tikhonov functionals with a tolerance measure introduced in the regularization.
Zur Veröffentlichung eingereicht.online unter: http://arxiv.org/abs/2007.06431
- J. Behrmann, P. Vicol, K. Wang, R. Grosse, J. Jacobsen.
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/2006.09347