Publikationen der AG Inverse Probleme und Bildverarbeitung
Monografien (2)
- K. Bredies, D. Lorenz.
Mathematical Image Processing.
Applied and Numerical Harmonic Analysis, Birkhäuser, 2018. - K. Bredies, D. Lorenz.
Mathematische Bildverarbeitung:.
, Vieweg Verlag, 2011.
Zeitschriftenartikel (76)
- R. Gower, D. Lorenz, M. Winkler.
A Bregman-Kaczmarz method for nonlinear systems of equations.
Computational Optimization and Applications, 87:1059-1098, 2024.DOI: 10.1007/s10589-023-00541-9
online unter: https://arxiv.org/abs/2303.08549 - L. Tondji, I. Necoara, D. Lorenz.
Acceleration and restart for the randomized Bregman-Kaczmarz method.
Linear Algebra and its Applications, 699:508-538, 2024.DOI: 10.1016/j.laa.2024.07.009
online unter: https://arxiv.org/abs/2310.17338 - L. Tondji, I. Tondji, D. Lorenz.
Adaptive Bregman-Kaczmarz: An approach to solve linear inverse problems with independent noise exactly.
Inverse Problems, 40(9), 095006, IOPscience, 2024.DOI: 10.1088/1361-6420/ad5fb1
online unter: https://arxiv.org/abs/2309.06186 - M. Upadhyaya, S. Banert, A. B. Taylor, P. Giselsson.
Automated tight Lyapunov analysis for first-order methods.
Erscheint in Mathematical Programmingonline unter: https://arxiv.org/abs/2302.06713
- C. Brauer, N. Breustedt, T. de Wolff, D. Lorenz.
Learning variational models with unrolling and bilevel optimization.
Analysis and Applications, 22(3):569-617, World Scientific, 2024.DOI: 10.1142/S0219530524400037
online unter: https://arxiv.org/abs/2209.12651 - D. Lorenz, J. Marquardt, E. Naldi.
The degenerate variable metric proximal point algorithm and adaptive stepsizes for primal-dual Douglas-Rachford.
Optimization, :1-27, Taylor & Francis, 2024.DOI: 10.1080/02331934.2024.2325552
online unter: https://arxiv.org/abs/2302.13128 - S. Banert, O. Öktem, J. Adler, J. Rudzusika.
Accelerated Forward-Backward Optimization using Deep Learning.
Erscheint in SIAM Journal on Optimizationonline unter: https://arxiv.org/abs/2105.05210
- D. Lorenz, F. Schneppe.
Chambolle-Pock’s primal-dual method with mismatched adjoint.
Applied Mathematics & Optimization, 87(22), 2023.DOI: 10.1007/s00245-022-09933-5
online unter: https://arxiv.org/abs/2201.04928 - N. K. Bellam Muralidhar, C. Gräßle, N. Rauter, A. Mikhaylenko, R. Lammering, D. Lorenz.
Damage identification in fiber metal laminates using bayesian analysis with model order reduction.
Computer Methods in Applied Mechanics and Engineering, Part B 403, 2023.DOI: 10.1016/j.cma.2022.115737
online unter: https://arxiv.org/abs/2206.04329 - D. Nganyu Tanyu, J. Ning, T. Freudenberg, N. Heilenkötter, A. Rademacher, U. Iben, P. Maaß.
Deep learning methods for partial differential equations and related parameter identification problems.
Inverse Problems, 39(10), 2023. - S. Banert, P. Giselsson, H. Sadeghi.
Incorporating history and deviations in forward–backward splitting.
Numerical Algorithms, , 2023. - D. Lorenz, F. Schneppe, L. Tondji.
Linearly convergent adjoint free solution of least squares problems by random descent.
Inverse Problems, 39(12), 125019, 2023.DOI: 10.1088/1361-6420/ad08ed
online unter: https://arxiv.org/abs/2306.01946 - S. Banert, P. Giselsson, M. Morin.
Nonlinear Forward-Backward Splitting with Momentum Correction.
Set-Valued and Variational Analysis, 31(37), 2023. - A. Ebner, J. Frikel, D. Lorenz, J. Schwab, M. Haltmeier.
Regularization of inverse problems by filtered diagonal frame decomposition.
Applied and Computational Harmonic Analysis, 62:66-83, 2023.DOI: 10.1016/j.acha.2022.08.005
online unter: https://arxiv.org/abs/2008.06219 - K. Bredies, E. Chenchene, D. Lorenz, E. Naldi.
Degenerate preconditioned proximal point algorithms.
SIAM Journal on Optimization, 32(3), 2022.DOI: 10.1137/21M1448112
online unter: https://arxiv.org/abs/2109.11481 - F. Schöpfer, D. Lorenz, L. Tondji, M. Winkler.
Extended randomized Kaczmarz method for sparse least squares and impulsive noise problems.
Linear Algebra and its Applications, 652:132-154, 2022.DOI: 10.1016/j.laa.2022.07.003
online unter: https://arxiv.org/abs/2201.08620 - D. Lorenz, L. Tondji.
Faster randomized block sparse Kaczmarz by averaging.
Numerical Algorithms, 91:1417-1451, 2022.DOI: 10.1007/s11075-022-01473-x
online unter: https://arxiv.org/abs/2203.10838 - D. Nganyu Tanyu, D. Schulz, T. Tatietse, T. Lukong.
Long Term Electricity Load Forecast Based on Machine Learning for Cameroon’s Power System.
Energy and Environment Research, 12(1), 2022.DOI: 10.5539/eer.v12n1p45
online unter: https://ccsenet.org/journal/index.php/eer/article/view/0/47276 - D. Ghilli, D. Lorenz, E. Resmerita.
Nonconvex flexible sparsity regularization: theory and monotone numerical schemes.
Optimization, 71(4):1114-1140, 2022.DOI: 10.1080/02331934.2021.2011869
online unter: https://arxiv.org/abs/2111.06281 - A. Mikhaylenko, N. Rauter, N. K. Bellam Muralidhar, T. Barth, D. Lorenz, R. Lammering.
Numerical analysis of the main wave propagation characteristics in a steel-CFRP laminate including model order reduction.
Acoustics, 4(3):517-537, 2022.DOI: 10.3390/acoustics4030032
online unter: https://arxiv.org/abs/2206.04329 - D. Lorenz, H. Mahler.
Orlicz space regularization of continuous optimal transport problems.
Applied Mathematics & Optimization, 85(14), 2022.DOI: 10.1007/s00245-022-09826-7
online unter: https://arxiv.org/abs/2004.11574 - C. Clason, D. Lorenz, H. Mahler, B. Wirth.
Entropic regularization of continuous optimal transport problems.
Journal of Mathematical Analysis and Applications, 494(1), 2021.DOI: 10.1016/j.jmaa.2020.124432
online unter: http://arxiv.org/abs/1803.02848 - N. K. Bellam Muralidhar, N. Rauter, A. Mikhaylenko, R. Lammering, D. Lorenz.
Parametric model order reduction of guided ultrasonic wave propagation in fiber metal laminates with damage.
Modelling, 2(4):591-608, 2021.DOI: 10.3390/modelling2040031
online unter: https://www.preprints.org/manuscript/202109.0312/v1 - D. Lorenz, C. Meyer, P. Manns.
Quadratically regularized optimal transport.
Applied Mathematics & Optimization, 83:1919-1949, 2021.DOI: 10.1007/s00245-019-09614-w
online unter: https://arxiv.org/abs/1903.01112 - C. Brauer, D. Lorenz.
Complexity and applications of the homotopy principle for uniformly constrained sparse minimization.
Applied Mathematics & Optimization, 82(3):1-34, 2020. - B. Komander, D. Lorenz, L. Vestweber.
Denoising of image gradients and to- tal generalized variation denoising.
Journal of Mathematical Imaging and Vision, 61(1):21-39, 2019.DOI: 10.1007/s10851-018-0819-8
online unter: http://arxiv.org/abs/1712.08585 - F. Schöpfer, D. Lorenz.
Linear convergence of the Randomized Sparse Kaczmarz method.
Mathematical Programming, 173(1):509-536, 2019.DOI: 10.1007/s10107-017-1229-1
online unter: http://arxiv.org/abs/1610.02889 - D. Lorenz, Q. Tran-Dinh.
Non-stationary Douglas-Rachford and alternating direction method of multipliers: adaptive stepsizes and convergence.
Computational Optimization and Applications, 74(1):67-92, 2019.DOI: 10.1007/s10589-019-00106-9
online unter: http://arxiv.org/abs/1801.03765 - C. Brauer, D. Lorenz, A. Tillmann.
A primal-dual homotopy algorithm for ℓ1 -minimization with ℓ∞ -constraints.
Computational Optimization and Applications, 70:443-478, 2018.DOI: 10.1007/s10589-018-9983-4
online unter: http://arxiv.org/abs/1601.10022 - D. Lorenz, L. M. Mescheder.
An extended Perona-Malik model based on probabilistic models.
Journal of Mathematical Imaging and Vision, 60(1):128-144, 2018.DOI: 10.1007/s10851-017-0746-0
online unter: http://arxiv.org/abs/1612.06176 - D. Lorenz, K. Wirths.
Sarrus rules for matrix determinants and dihedral groups.
The College Mathematics Journal, 49(5):333-340, 2018.DOI: 10.1080/07468342.2018.1526019
online unter: https://arxiv.org/abs/1809.08948 - D. Lorenz, S. Rose, F. Schöpfer.
The randomized Kaczmarz method with mismatched adjoint.
BIT Numerical Mathematics, 48(4):1079-1098, 2018.DOI: 10.1007/s10543-018-0717-x
online unter: http://arxiv.org/abs/1803.02848 - D. Lorenz, J. Lorenz, C. Brauer.
Rank-optimal weighting or “How to be best in the OECD Better Life Index?”.
Social Indicators Research, 134:75-92, 2017.DOI: 10.1007/s11205-016-1416-0
online unter: http://arxiv.org/abs/1608.04556 - D. Lorenz, E. Resmerita.
Flexible sparse regularization.
Inverse Problems, 33(1), 2016.DOI: 10.1088/0266-5611/33/1/014002
online unter: http://arxiv.org/abs/1601.04429 - D. Lorenz, T. Pock.
An inertial forward-backward method for monotone inclusions.
Journal of Mathematical Imaging and Vision, 51(1):311-325, 2015.DOI: 10.1007/s10851-014-0523-2
online unter: http://arxiv.org/abs/1403.3522 - D. Lorenz, C. Kruschel.
Computing and analyzing recoverable supports for sparse reconstruction.
Advances in Computational Mathematics, 41(6):1119-1144, 2015.DOI: 10.1007/s10444-015-9403-6
online unter: http://arxiv.org/abs/1309.2460 - D. Lorenz, K. Bredies, S. Reiterer.
Minimization of non-smooth, non- convex functionals by iterative thresholding.
Journal of Optimization Theory and Applications, 165(1):78-112, 2015. - D. Lorenz, A. Tillmann, M. E. Pfetsch.
Solving basis pursuit: Subgra- dient algorithm, heuristic optimality check, and solver comparison.
ACM Transactions on Mathematical Software (TOMS), 41(2), 2015.DOI: 10.1145/2689662
online unter: http://www.optimization-online.org/DB_HTML/2011/07/3100.html - D. Lorenz, A. Tillmann, M. E. Pfetsch.
An infeasible-point subgradient method using adaptive approximate projections.
Computational Optimization and Applications, 57(2):271-306, 2014.DOI: 10.1007/s10589-013-9602-3
online unter: http://arxiv.org/abs/1104.5351 - D. Lorenz, B. Komander, M. Fischer, M. Petz, R. Tutsch.
Data fusion of surface normals and point coordinates for deflectometric measurements.
Journal of Sensors and Sensor Systems, 3:281-290, 2014. - D. Lorenz, J. Lellmann, C. Schönlieb, T. Valkonen.
Imaging with Kantorovich-Rubinstein discrepancy.
SIAM Journal on Imaging Sciences, 7(4):2833-2859, 2014.DOI: 10.1137/140975528
online unter: http://arxiv.org/abs/1407.0221 - D. Lorenz, M. Matz, K. Schumacher, K. Hatlapatka, K. Baumann.
Observer-independent quantification of insulin granule exocytosis and pre-exocytotic mobility by TIRF microscopy.
Microscopy and Microanalysis, 20(1):206-218, 2014. - E. Herrholz, D. Lorenz, G. Teschke, D. Trede.
Sparsity and Compressed Sensing in Inverse Problems.
Lecture Notes in Computational Science and Engineering, 102:365-379, Springer Verlag, 2014. - D. Lorenz, C. Kruschel, J. S. Jørgensen.
Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized x-ray CT.
Inverse Problems in Science and Engineering, 23:1283-1305, 2014.DOI: 10.1080/17415977.2014.986724
online unter: http://arxiv.org/abs/1409.0214 - D. Lorenz, S. Wenger, F. Schöpfer.
The linearized Bregman method via split feasibility problems: Analysis and generalizations.
SIAM Journal on Imaging Sciences, 2(7), 2014.DOI: 10.1137/130936269
online unter: http://arxiv.org/abs/1309.2094 - D. Lorenz, S. Wenger, M. Magnor.
Fast image-based modeling of astronomical nebulae.
Computer Graphics Forum, 32(7), 2013. - D. Lorenz, P. Maaß, Q. M. Pham.
Gradient descent for Tikhonov functionals with sparsity constraints: theory and numerical comparison of step size rules.
Electronic Transactions on Numerical Analysis, 39:437-463, 2012. - D. Lorenz, S. Wenger, M. Ament, S. Guthe, A. Tillmann, D. Weiskopf, M. Magnor.
Visualization of astronomical nebulae via distributed multi-gpu compressed sensing tomography.
IEEE Transactions on Visualization and Computer Graphics, 18(12):2188-2197, 2012. - D. Lorenz, S. Schiffler, D. Trede.
Beyond convergence rates: exact recovery with the Tikhonov regularization with sparsity constraints.
Inverse Problems, 27(8), 085009(17pp), IOPscience, 2011.Paper selected in "2011 Highlights for Inverse Problems"
DOI: 10.1088/0266-5611/27/8/085009
online unter: arXiv.org e-Print archive - D. Lorenz, K. Chen.
Image sequence interpolation using optimal control.
Journal of Mathematical Imaging and Vision, 41(3):222-238, 2011.DOI: 10.1007/s10851-011-0274-2
online unter: http://arxiv.org/abs/1008.0548 - D. Lorenz, E. Resmerita, K. Frick.
Morozov’s principle for the augmented Lagrangian method applied to linear inverse problems.
Multiscale Modeling & Simulation, 9(4):1528-1548, 2011.DOI: 10.1137/100812835
online unter: http://arxiv.org/abs/1010.5181 - D. Lorenz.
A projection proximal-point algorithm for ℓ¹ -minimization.
Numerical Functional Analysis and Optimization, 31(2):172-190, 2010.DOI: 10.1080/01630560903381712
online unter: http://arxiv.org/abs/0904.1523 - D. Lorenz, A. Rösch.
Error estimates for joint Tikhonov- and Lavrentiev-regularization of constrained control problems.
Applicable Analysis - An International Journal, 89(11):1679-1692, 2010.DOI: 10.1080/00036811.2010.496360
online unter: http://arxiv.org/abs/0909.4648 - D. Lorenz, B. Jin.
Heuristic parameter-choice rules for convex variational regularization based on error estimates.
SIAM Journal on Numerical Analysis, 48(3):1208-1229, 2010.DOI: 10.1137/100784369
online unter: http://arxiv.org/abs/1001.5346 - D. Lorenz, K. Chen.
Image sequence interpolation based on optical flow, segmentation, and optimal control.
IEEE Transactions on Image Processing, 21(3):1020-1030, 2010. - D. Lorenz, J. Lorenz.
On conditions for convergence to consensus.
IEEE Transactions on Automatic Control, 55(7):1651-1656, 2010.DOI: 10.1109/TAC.2010.2046086
online unter: http://arxiv.org/abs/0803.2211 - K. Bredies, D. Lorenz, P. Maaß.
A generalized conditional gradient method and its connection to an iterative shrinkage method.
Computational Optimization and Applications, 42(2):173-193, Springer Verlag, 2009. - B. Jin, D. Lorenz, S. Schiffler.
Elastic-Net Regularization: Error estimates and Active Set Methods.
Inverse Problems, 25(11), 2009. - L. Denis, D. Lorenz, D. Trede.
Greedy Solution of Ill-Posed Problems: Error Bounds and Exact Inversion.
Inverse Problems, 25(11), 115017(24pp), 2009.DOI: 10.1088/0266-5611/25/11/115017
online unter: arXiv.org e-Print archive - L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, D. Trede.
Inline hologram reconstruction with sparsity constraints.
Optics Letters, 34(22):3475-3477, 2009.DOI: 10.1364/OL.34.003475
online unter: HAL (Hyper Articles en Ligne) open archive - D. Lorenz.
On the role of sparsity in inverse problems.
Journal of Inverse and Ill-posed Problems, 17(1):69-76, 2009. - D. Lorenz, K. Bredies.
Regularization with non-convex separable constraints.
Inverse Problems, 25(8), 085011, 2009. - D. Lorenz, R. Griesse.
A semismooth Newton method for Tikhonov functionals with sparsity constraints.
Inverse Problems, 24(3), 035007, 2008.DOI: 10.1088/0266-5611/24/3/035007
online unter: http://dx.doi.org/10.1088/0266-5611/24/3/035007 - D. Lorenz.
Convergence rates and source conditions for Tikhonov regularization with sparsity constraints.
Journal of Inverse and Ill-posed Problems, 16(5):463-478, 2008.DOI: 10.1515/JIIP.2008.025
online unter: http://dx.doi.org/10.1515/JIIP.2008.025 - K. Bredies, D. Lorenz.
Iterated hard shrinkage for minimization problems with sparsity constraints.
SIAM Journal on Scientific Computing, 30(2):657-683, 2008. - K. Bredies, D. Lorenz.
Linear Convergence of iterative soft-thresholding.
Journal of Fourier Analysis and Applications, 14(5):813-837, Springer Verlag, 2008. - K. Bredies, D. Lorenz.
On the convergence speed of iterative methods for linear inverse problems with sparsity constraints.
Journal of Physics, Conference Series, 124(1):2031-2043, 2008. - D. Lorenz, D. Trede.
Optimal Convergence Rates for Tikhonov Regularization in Besov Scales.
Inverse Problems, 24(5), 055010(14pp), 2008.DOI: 10.1088/0266-5611/24/5/055010
online unter: arXiv.org e-Print archive - S. Dahlke, D. Lorenz, P. Maaß, C. Sagiv, G. Teschke.
The Canonical Coherent States Associated With Quotients of the Affine Weyl-Heisenberg Group.
Journal of Applied Functional Analysis, 3(2):215-232, 2008. - K. Bredies, T. Bonesky, D. Lorenz, P. Maaß.
A Generalized Conditional Gradient Method for Non-Linear Operator Equations with Sparsity Constraints.
Inverse Problems, 23:2041-2058, 2007. - T. Bonesky, K. Bredies, D. Lorenz, P. Maaß.
A generalized conditional gradient method for nonlinear operator equations with sparsity constraints.
Inverse Problems, 23(5), 2007. - D. Lorenz.
Non-convex variational denoising of images: Interpolation between hard and soft wavelet shrinkage.
Current Developments in Theory and Applications of Wavelets, 1(1):31-56, 2007. - E. Klann, D. Lorenz, P. Maaß, H. Thiele.
Shrinkage versus Deconvolution.
Inverse Problems, 23:2231-2248, 2007. - D. Lorenz.
Solving variational methods in image processing via projections - a common view on T V -denoising and wavelet shrinkage.
Zeitschrift für angewandte Mathematik und Mechanik, 87(1):247-256, 2007. - K. Bredies, D. Lorenz, P. Maaß.
An optimal control problem in medical image processing.
Systems, Control, Modeling and Optimization, 202:249-259, Springer Verlag, 2006. - K. Bredies, D. Lorenz, P. Maaß.
Mathematical Concepts of Multiscale Smoothing.
Applied and Computational Harmonic Analysis, 19(2):141-161, Elsevier, 2005.
Tagungsbeiträge (12)
- L. Tondji, D. Lorenz, I. Necoara.
An accelerated randomized Bregman-Kaczmarz method for strongly convex linearly constraint optimization.
2023 European Control Conference (ECC).
- C. Brauer, Z. Zhao, T. Fingscheidt.
Learning to de- quantize speech signals by primal-dual networks: an approach for acoustic sensor networks.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
- D. Lorenz, H. Mahler.
Orlicz-space regularization for optimal transport and algorithms for quadratic regularization.
NeurIPS Workshop on Optimal Transport and Machine Learning, Vancouver, Kanada.
online unter: https://arxiv.org/abs/1909.06082
- C. Brauer, C. Clason, D. Lorenz, B. Wirth.
A Sinkhorn-Newton method for entropic optimal transport.
NIPS Workshop on Optimal Transport and Machine Learning.
online unter: http://arxiv.org/abs/171006635
- B. Komander, D. Lorenz.
Denoising of image gradients and constrained total generalized variation.
International Conference on Scale Space and Variational Methods in Computer Vision,.
- C. Brauer, D. Lorenz, T. Gerkmann.
Sparse reconstruction of quantized speech signals.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
- C. Brauer, D. Lorenz.
Cartoon-texture-noise decomposition with transport norms.
Scale Space and Variational Methods.
LNCS, S. 142-153, Springer Verlag, 2015. - D. Lorenz, F. Schöpfer, S. Wenger, M. Magnor.
sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing.
IEEE International Conference on Image Processing.Recognized as one of the “Top 10%” papers
DOI: 10.1109/ICIP.2014.7025269
online unter: http://arxiv.org/abs/1403.7543 - D. Lorenz, J. Lorenz.
Convergence to consensus by general averaging.
POSTA 09.
Lecture Notes in Control and Information Sciences , B. Rafael, S. Romero (Hrsg.), S. 91-100, Springer Verlag, 2009. - D. Lorenz, K. Bredies.
Iterated hard-thresholding for linear inverse prob- lems with sparsity constraints.
PAMM.
Proceedings in Applied Mathematics and Mechanics, S. 2060061-2060062, 2008. - K. Bredies, D. Lorenz, P. Maaß.
An optimal control problem in image processing.
PAMM.
Proceedings in Applied Mathematics and Mechanics, 6(1):859-860, 2006. - C. Brauer, D. Lorenz, L. Tondji.
Group equivariant networks for leakage detection in vacuum bagging.
30th European Signal Processing Confer- ence, EUSIPCO 2022.
online unter: https://eurasip.org/Proceedings/Eusipco/Eusipco2022/pdfs/0001437.pdf
Preprints (6)
- M. M. Alves, D. Lorenz, E. Naldi.
A general framework for inexact splitting algorithms with relative errors and applications to Chambolle-Pock and Davis-Yin methods.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/2407.05893
- D. Lorenz, M. Winkler, A. Leitão, J. C. Rabelo.
On inertial levenberg-marquardt type methods for solving nonlinear ill-posed operator equations.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/2406.07044
- D. Nganyu Tanyu, J. Ning, A. Hauptmann, B. Jin, P. Maaß.
Electrical Impedance Tomography: A Fair Comparative Study on Deep Learning and Analytic-based Approaches.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/2310.18636
- D. Lorenz, M. Winkler.
Minimal error momentum Bregman-Kaczmarz.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/2307.15435
- D. Nganyu Tanyu, I. Michel, A. Rademacher, J. Kuhnert, P. Maaß.
Parameter Identification by Deep Learning of a Material Model for Granular Media.
Zur Veröffentlichung eingereicht.DOI: 10.48550/arXiv.2307.04166
online unter: https://arxiv.org/abs/2307.04166 - D. Lorenz, E. Bednarczuk, T. H. Tran.
Proximal Algorithms for a class of abstract convex functions.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/2402.17072