Logo Uni Bremen

Zentrum für Industriemathematik

ZeTeM > Forschung und Anwendungen > Projekte > Wavelet-Cluster-Verfahren für die Analyse von Proteinspektren

Kontakt Sitemap Impressum [ English | Deutsch ]

Wavelet-Cluster-Verfahren für die Analyse von Proteinspektren

Arbeitsgruppe:AG Technomathematik
Leitung: Prof. Dr. Dr. h.c. Peter Maaß ((0421) 218-63801, E-Mail: pmaass@math.uni-bremen.de )
Bearbeitung: Prof. Dr. Kristian Bredies
Projektförderung: Bremer Investitionssonderprogramm
Projektpartner: Prof. Dr. Herbert Thiele, Bruker Daltonik GmbH, Bremen
Laufzeit: seit 01.05.2003
Bild des Projekts Wavelet-Cluster-Verfahren für die Analyse von Proteinspektren

Die Überlebensrate bei den meisten Krebserkrankungen hängt entscheidend von einer zuverlässigen Früherkennung der Krankheit ab. Im Gegensatz zu krankheitsbedingten pathologischen Veränderungen, die über tomographische Verfahren erst vergleichsweise spät erkannt werden können, lassen sich Veränderungen der Proteinstruktur bereits im Frühstadium nachweisen. Deshalb werden Proteinprofile, die über Massenspektrometer aufgenommen werden, zunehmend im klinischen Einsatz als ergänzender und zuverlässiger Zusatzindikator im Frühstadium dieser Krankheit genutzt. Allerdings sind die kritischen Muster in den Proteinspektren, die eine Unterscheidung zwischen gesund und krankhaft liefern, nicht nur in den deutlichen Peaks der Spektren sondern gleichermaßen in der Form der Peaks und den feinskaligen Anteilen der Spektren enthalten. Ziel dieser Industriekooperation ist deshalb die Entwicklung von Wavelet-Cluster- Verfahren zur automatischen Auswertung derartiger Massenspektrometerdaten. Klassische Cluster-Verfahren für massenspektrometrische Daten basieren auf einer Bestimmung von Position und Fläche der wesentlichen Peaks. Die Feinstruktur des Spektrums wird bisher nicht berücksichtigt. Gemeinsam mit der Bruker Daltonik GmbH, einem weltweit führenden Produzenten von Massenspektrometern, wurde in diesem Projekt zunächst eine mathematische Modellierung der signifikanten Strukturen möglicher Spektren erarbeitet. Darauf aufbauend wurden Wavelet-Indikatoren zur Detektion kritischer Proteinmuster in Verbindung mit unterschiedlichen Klassifikationsmethoden (ClinProtTools, SVM) getestet. Dabei wurden für spezielle Krebsindikationen deutliche Verbesserungen erzielt. Dies wird aktuell in mehreren Schritten erweitert:

  • Aufbau einer Datenbank mit Proteinspektren zur Früherkennung von Ovarian-Krebs.
  • Erfassung kritischer Proteinmuster. Hier sollen erstmals Multiskalen-Deskriptoren entwickelt werden, die neben der Höhe der wesentlichen Proteinspektrallinien auch die Form der Peaks und die Struktur der feinskaligen Anteile der Spektren über geeignete Wavelet-Zerlegungen erfassen.
  • Entwicklung und Implementierung einer darauf aufbauenden Wavelet-Cluster-Methode und Evaluation dieser Methode anhand von Testdaten.
  • Kombination der Wavelet-Cluster-Methode mit bekannten Indikatoren.
  • Implementierung des Gesamtverfahrens bei Bruker Daltonik.
    proteinspektren
    Ausschnitt aus einem typischen Proteinspektrum
    proteinspektren2
    Auswertungsergebnisse bei herkömmlichem Entrauschen