Publications of AG Inverse Problems and Imaging
Articles (7)
- D. Lorenz, A. Tillmann, M. E. Pfetsch.
An infeasible-point subgradient method using adaptive approximate projections.
Computational Optimization and Applications, 57(2):271-306, 2014.DOI: 10.1007/s10589-013-9602-3
online at: http://arxiv.org/abs/1104.5351 - D. Lorenz, B. Komander, M. Fischer, M. Petz, R. Tutsch.
Data fusion of surface normals and point coordinates for deflectometric measurements.
Journal of Sensors and Sensor Systems, 3:281-290, 2014. - D. Lorenz, J. Lellmann, C. Schönlieb, T. Valkonen.
Imaging with Kantorovich-Rubinstein discrepancy.
SIAM Journal on Imaging Sciences, 7(4):2833-2859, 2014.DOI: 10.1137/140975528
online at: http://arxiv.org/abs/1407.0221 - D. Lorenz, M. Matz, K. Schumacher, K. Hatlapatka, K. Baumann.
Observer-independent quantification of insulin granule exocytosis and pre-exocytotic mobility by TIRF microscopy.
Microscopy and Microanalysis, 20(1):206-218, 2014. - E. Herrholz, D. Lorenz, G. Teschke, D. Trede.
Sparsity and Compressed Sensing in Inverse Problems.
Lecture Notes in Computational Science and Engineering, 102:365-379, Springer Verlag, 2014. - D. Lorenz, C. Kruschel, J. S. Jørgensen.
Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized x-ray CT.
Inverse Problems in Science and Engineering, 23:1283-1305, 2014.DOI: 10.1080/17415977.2014.986724
online at: http://arxiv.org/abs/1409.0214 - D. Lorenz, S. Wenger, F. Schöpfer.
The linearized Bregman method via split feasibility problems: Analysis and generalizations.
SIAM Journal on Imaging Sciences, 2(7), 2014.DOI: 10.1137/130936269
online at: http://arxiv.org/abs/1309.2094
Proceedings (1)
- D. Lorenz, F. Schöpfer, S. Wenger, M. Magnor.
sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing.
IEEE International Conference on Image Processing.Recognized as one of the “Top 10%” papers
DOI: 10.1109/ICIP.2014.7025269
online at: http://arxiv.org/abs/1403.7543
Book Chapters (1)
- E. Herrholz, D. Lorenz, G. Teschke, D. Trede.
Sparsity and compressed sensing in inverse problems.
Extraction of Quantifiable Information from Complex Systems, S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab, H. Yserentant (Eds.), Lecture Notes in Computational Science and Engineering, pp. 365-379, Springer Verlag, 2014.