Dr. David Erzmann
Ehemaliger Mitarbeiter der WG Industrial MathematicsEmail: erzmann@uni-bremen.de
Theses (Selection)
- Long-term Forecasting of Energy Consumption Data using Attention-based Neural Networks (Cécile Pot d'or)
Publications (Selection)
- D. Erzmann, S. Dittmer.
Equivariant Neural Operators for gradient-Consistent Topology Optimization .
Journal of Computational Design and Engineering, 11(3):91-100, 2024.DOI: 10.1093/jcde/qwae039
- D. Erzmann.
Equivariant deep learning for 3D topology optimization.
Dissertationsschrift, Universität Bremen, 2024.DOI: 10.26092/elib/3439
- D. Erzmann, S. Dittmer, H. Harms, P. Maaß.
DL4TO: A Deep Learning Library for Sample-Efficient Topology Optimization.
Lecture Notes in Computer Science, Geometric Science of Information. GSI 2023 14071, Springer Verlag, 2023. - S. Dittmer, D. Erzmann, H. Harms, P. Maaß.
SELTO: Sample-Efficient Learned Topology Optimization.
Zur Veröffentlichung eingereicht.online at: https://arxiv.org/abs/2209.05098