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INVERSE PROBLEMS

Related to measuring an effect with an intent to determine the cause
from obtained measurements.

f—— 9() [ ——u

m Effect: v is measured (with errors)

m Cause: one of g or f is usually known

We consider physics-driven Inverse Problems where the system g is
known (— some physical law).
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INVERSE PROBLEMS IN PHYSICS: DIFFUSION

DIFFUSION

Stochastic movement of a collection of particles from regions of high
concentration to regions of lower concentration (until an equilibrium is
established).

Sensor networks measure:
m Leakages in/from factories, X
m Temperature in server rooms, *%° o

m Nuclear fallouts (Fukushima).

The field u(x, t) induced by a source distribution f(x, t) satisfies:

%u(x7 t) — pV2u(x, t) = f(x, t). (1)
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INVERSE PROBLEMS IN PHYSICS: DIFFUSION

DIFFUSION

Stochastic movement of a collection of particles from regions of high
concentration to regions of lower concentration (until an equilibrium is
established).

Sensor networks measure:
m Leakages in/from factories,
m Temperature in server rooms,

m Nuclear fallouts (Fukushima).

The field u(x, t) induced by a source distribution f(x, t) satisfies:

%u(x, £) — uV2u(x, t) = (x, t). (1)
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INVERSE PROBLEMS IN PHYSICS: WAVE

A disturbance that travels through a medium from one location to
another (transferring energy).

Such fields arise in acoustics, electromagnetics, fluid dynamics and so on.
Sensor networks measure:

m Bioelectric neural currents in
neurons of cerebral cortex
(EEG/MEG),

m Pressure waves from a
speaker/acoustic source.

1 02

gﬁu(x, t) — V2u(x, t) = f(x, t).
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SENSOR NETWORKS AND INVERSE PROBLEMS

Other PDEs: Laplace's Equation, Advection-/Convection-Diffusion
Equation, Helmholtz and many more.
Given these (spatiotemporal) measurements we may wish to find:

m source of factory leakage, detect plume sources
m find hot/cold spots in server clusters

m predict nuclear fallout concentration elsewhere
m center of mass of active regions

m acoustic source localization

Sources can be localized or non-localized — Parameterize sources f.
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PROBLEM FORMULATION: FIELD SOURCES

Instantaneous Non-Instantaneous

- M M

§ f(x, t)= E CmO(X—Emy t—Tm) f(x, t)= E Cme®mE=Tm) 5 (x— & YH(t—Tm)
m=1 m=1

g

i f(x, t)=cL(x)é(t — T) f(x, t)=cL(x)e*C~ T H(t — )

©

S

2 f(x, t)=cF(x)d(t — ) f(x, t)=cF(x)e“t=IH(t — 1)

&

Where,

m L(x) € Q describes a line with endpoints {&1, &5}
m F(x) € Q describes a convex polygon with vertices {£1,&2,...,&m}.

B Qm, Cm,&m and 7, is the release rate, intensity, location and activation
time of m-th source.
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ProBLEM FOrRMULATION: FieLD PDE MODEL

Let u(x, t) denote the field induced by a source distribution f(x, t) then a
physics-driven system, in general, has the Green's function solution:

u(x, t) = (F * g)(x, t):/IGRZ /tleRg(x',t’)f(x—x’,t—t’)dt’dx' 2)

where g(x, t) is the Green function of the field.
For e.g.,

= 2D diffusion field: 2 u(x,t) — pV2u(x,t) = f(x,t), has

g(x,t) = We H qu H(t), where H(t) is the step function.
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PrROBLEM FORMULATION: FIELD MEASUREMENTS

A1Mm

Estimate f(x, t) from spatiotemporal samples {@, | = u(Xn, t;)}n, for
n=1,...,Nand I =0,...,L, of the measured field.

f—> g(-) I R AR AT TA N[0
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SOURCE RECONSTRUCTION FRAMEWORK

Recall that
u(x, t) = / / g(xX, tf(x —x',t — t')dt'dx’
x' €R2 Jt'eR
= <f(X/, t/)ag(x - X/, t— t/)>x’,t’ :
Mathematically the spatiotemporal sample ¢, is

@n,l = U(Xn, tl)
= <f(X, t)a g(xn =Xt — t)>x7t (3)
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Consider a weighted-sum of the samples {¢n ;}n.:

NoL
DD Wniens =

n=1 |=0

3
IIMZ
-

L
Z Wh,1 <f(x7 t)7g(x" — X, t— t)>x,t
1=0

L
f(x, t),ZZWn,/g(xn_xa t— t)> ’ (4)

n=1 /=0

Il
—

=V (x)r (1)
where w, ; € C are some arbitrary weights (to be determined).
We wish to find f(x, t):

m For our source types, can we choose functions W (x) and I'(t) that
makes this problem tractable? — YES!
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Let these (new) generalized measurements be

R(K) =D wans = (F(x, 1), V(X (2))

n=1 /=0

:// W ()l (t)f(x, t)dtdV,
QJte[0,T]

where W, (x) for k € Z9, d = {1,2}, and I'(t) a family of properly chosen
spatial and temporal sensing functions, respectively.
Proper choice = solvability & stability of new problem.

m As an example, take the instantaneous source distribution

M
f(x,t) = Z Cmd(x — Em, t — Tm), then:
m=1

R(K)= 3 enVi(€n)T (7).
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CHOICE OF SENSING FUNCTIONS

For x € R?, we may choose

m [(t)=e /T, and

m VU (x) = e kbatie) for k =0,1,..., K.
Then,

R(k) = Cme—ij/Te—k(§1,m+j§2,m)

M=

m=1

k
V-

I
M=
Eﬁ‘

1

3
I

Can be solved to jointly recover ¢/, = cpe ™™/ 7 and v,, = e~ (G1.mtic2m)
form=1,..., M from {R(k)}£_,, using Prony’s method providing
K>2M —1.
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CHOICE OF SENSING FUNCTIONS: 3D CASE

For x € R3, we may choose
m [(t)=e /T, and
BV = Uy o (x) = e fabatie)mikes for kg ko € {0,1,...,K}.
Consequently,
M

'R(kl, k2) — Z Cme—ij/Te—k1(§1,m+j52,m)—jk2€3,m

m=1

/ ki oko
C Ol B2

I
M=

1

3
Il

Algebraically Coupled Matrix Pencil (ACMP) applied on sequence
{R(k1, k2) }, k, can recover jointly all unknowns.
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NON-LOCALIZED SOURCE

The Instantaneous Line Source: f(x,t) = cL(x)§(t — 7), thus R(k)
reduces to:

R(K) = /Q /t W (X)F(£)F (x, £)dtdV
=cl(7) /Q\Ilk(x)L(x)dV
—T(7) /L s

1 2

= Ecﬁ(fl, &)F(r) Z(—l)mwk(gm)

m=1
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NON-LOCALIZED SOURCE

2
From R(k) = cl(&1,&)M(7) Z( 1)™W (&) and the usual choice for

m=1
sensing functions [(t) = e7t/T and W, (x) = e~ kx1+i%) | then:

2

R/ (k) £ kR(k) = cl(&1, &) (1) Y (=1)"Wk(€m)

m=1

2
= Cf(fl’ 52)e—j7'/T Z(—l)’"e‘k(flvmﬂizm)
m=1

Can again recover ¢, T and the endpoints (&1, &>) of the line source using
Prony’s method from {R'(k)}K_; (providing K > 4).
m Polygonal sources (complex analysis):
surface integral — line integral — WV, evaluated at vertices
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m Computing R(k)




COMPUTING R(k) RELIABLY FROM SENSOR

MEASUREMENTS?

N L
R(K) =D Waion
n=1 /=0
Thus computing R(k) is equivalent to finding the weights w,, ;. These
weights may be found:
By formulating a linear system (explicit)
m Inversion of large matrices.
m Conditioning and stability considerations.
m Uniform/non-uniform samples.
Using results universal sampling/FRI theory (explicit)
m Approximate Strang-Fix theory.
m Exponential reproduction.
m Uniform samples.
Using Green's second identity (implicit)
m For 2D diffusion field.
m Uniform/non-uniform samples.
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EXPLICIT COMPUTATION I: LINEAR SYSTEM

We desire {wpj}n/, 50 that 3°% S~ w, ig(xe — x, 6 — t) = Wi(x)F (1), where

g,V and I are known.
_ 2

For e.g. the 2D heat problem g(x, t) = “ut H(t), also
r(t) = e=it/T and Vi(x) = e—k(xatix)

Can formulate a linear system:

1
47rte

glxi—x,t —t)) - glxw —xj, b —t]) wi T [ W) (e)
B Xt ) o gl xt— ) [ w1 | v
G, jw; = pj
Go -+ G wo ] [ p1
G(;,J GL,J we L P.J
Gw = p

Solve Gw = p, where G € RVN(LH)XH ' ¢ RNV(LHD) and p € RM.

MURRAY-BRUCE AND DRAGOTTI (EEE-CSP) PDE-DRIVEN INVERSE PROBLEMS



EXPLICIT COMPUTATION II: APPROX. STRANG-FIX

Alternatively, can obtain a closed-form expression for w;

m Task: compute {w, },, such that,

L

33 sty ot ) = e,

n [=0

m Our problem is multi-dimensional so in 2D, for e.g.,
Xn = (M, mA,,) and t; = IA;, we actually desire!:

—k(xitixe) amit/T
g Wiy 1 (K) 8(M Dy —x1, Dy, —Xo, A —t) = e katie) g =it/ T,

ny,n,l

LA lexicographic ordering of {(mAx, mA)} a0, gives the usual n=1,..., N,
where N = Ny Ns.
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EXPLICIT COMPUTATION II: APPROX. STRANG-FIX

Consider classical 1D exponential reproduction problem:

S wa(k)g(x — n) = &,

for k € Z.
Strang-Fix Conditions: Above equation holds iff

G(wk) #0 and G(wi + 27f) =0 V¢ € Z\{0},

where G = F(g) is the Fourier transform of g (Poisson Summation).

Approximate Strang-Fix Conditions: For approximate exponential
reproduction, i.e. >, wa(k)g(x — n) ~ e+, then
1

W,,(k) = G(wk) ejwkn.

The constant-least squares coefficients.
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EXPLICIT COMPUTATION II: APPROX. STRANG-FIX

Can extend to multiple dimensions using Poisson summation formula for
lattices and the multi-dimensional Fourier Transform of g(x, t):

G(UJXl y Wiy 5 wt):/ / g(x,t)e_j(wn Xl+wx2x2+wtt)dxdt.
teRJ xeRr?

The desired coefficients for problem in 2D space and time is:

1

kn1 .kng //T
Gk kyme € e

Wnl,"z,/(k) =
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IMPLICIT COMPUTATION OF WEIGHTS {w,},/

Green’s second identity: Let u(x,t) and W(x) be scalar functions
in C2, over Q € R2, then:

j{ (V Vu—uVWy) - ﬁans:/(kaQu—uv%uk) dv,
o9 Q
where figq is the outward pointing unit normal to the boundary 09Q.

pl Substitute (inhomogenous) PDE and choose Wy to satisfy
e 4 V2V = 0, thus:

/g(u\llk)dvfuf (W Vu — uV¥y) - ﬁagdS:/\kadV.
Q t o0 Q

Multiply through by '(t) and integrate over t = [0, T]:

1o} ov
/ /\Uk—quu de uf (\l!kVuf vak) NpndSdt // vV, rfdedVv
N
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IMPLICIT COMPUTATION OF WEIGHTS {w,},/

From'

ou oV ~ 4
\Uk + 7dV—,u (W Vu — uVV,) figedSdt= Vv, rfdedVv
0N QJo

=R (k)

= R(k) = (f(x, 1), Vi (x)[(t))
As such we can obtain {R(k)} by approximating the integrals from
the spatiotemporal samples using standard quadrature schemes.
m Mesh required.
m Integral simply a linear combination of field samples.

m Distributed computation (consensus-based estimation).
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SIMULATION RESULTS




SYNTHETIC DATA:

PoOINT DIFFUSION SOURCE

Localization Results
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Independent Trial Inde:

(a) Uniform spatial sampling (N = 49)
Centralized estimation for M = 1 diffusion source in 2D, field is sampled
for Tepg = 10s at Ait = 1Hz. Here K = 10.
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SYNTHETIC DATA: POINT DIFFUSION SOURCE

Localization Results g
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Independent Trial Index

(b) Non-uniform spatial sampling (N = 45)
Centralized estimation for M = 1 diffusion source in 2D, field is sampled
for Teng = 10s at 2; = 1Hz. Here K = 10.
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SYNTHETIC DATA: LINE DIFFUSION SOURCE

Location Estimates

. ® Sensors
d ° —— Est. Source. i i i i
o . |—mesoues s Activation Time Estimates
L] L] T T T T T T T T
025 . R e True Actv. time
° Actv. time est.
° L)
02 ° ar
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=N 015
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01
L
° e o
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0 ° . 'Y r'y I P 0 i i i i i i i i
0 005 01 0.15 02 025 1 2 3 4 5 6 7 8 9 10

1 Independent Trial Index

N = 45 arbitrarily placed sensors, field sampled at 10Hz for T = 10s
with measurement SNR= 20dB. K =6 and R = 5.




SYNTHETIC DATA: TRIANGULAR DIFFUSION SOURCE

Estimates of Source Vertices Activation Time Estimates

DL o ® e somos || | ] True Actv. fimd
° e Source 250 ——Aclv. time est.
o X _Est. verfices
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35
02
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x X ®
° L] x ° L
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0 005 0.1 015 02 025 o 5 5 : + : - . o
X Independent Trial Index

N = 90 arbitrarily placed sensors, field sampled at 10Hz for T = 10s
with measurement SNR= 35dB. K =6 and R = 5.




SIMULATION RESULTS: REAL DIFFUSION DATA

True Thermal Field (i=7.15) Reconstructed Thermail Field (1=7.15)

Initial Thermal Map

X, X,

1
(b) Real field (left) and its reconstruction (right) at t = 7.1s.

True Thermal Field (1=8.25) Reconstructed Thermail Field (1=8.25)

(a) Thermal distribution (immediately after * *
activation) and location estimates. (c) Real field (left) and its reconstruction (right) at ¢ = 8.2s.




SIMULATION RESULTS: LAPLACE - SYNTHETIC DATA

Intensity

FIGURE 1: Single point source recovery in 3D using samples obtained by
N = 57 sensors with K1 = K, = 1 for spatial sensing function family. Results
for 20 independent trials are given.
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CONCLUSION

Reconstructing localized and non-localized sources: point, line and
(convex) polygons.
m Compute generalized measurements.
m Use tools from complex analysis to modify R(k).
m Recover location of point sources or endpoints (vertices) of line
(polygonal) source.




CONCLUSION

Reconstructing localized and non-localized sources: point, line and
(convex) polygons.
m Compute generalized measurements.
m Use tools from complex analysis to modify R(k).
m Recover location of point sources or endpoints (vertices) of line
(polygonal) source.

Further extensions

m Reconstructing localized sources in bounded regions (rooms).
m 3D source recovery.
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CONCLUSION

Reconstructing localized and non-localized sources: point, line and
(convex) polygons.
m Compute generalized measurements.
m Use tools from complex analysis to modify R(k).
m Recover location of point sources or endpoints (vertices) of line
(polygonal) source.
Further extensions
m Reconstructing localized sources in bounded regions (rooms).
m 3D source recovery.
Generalisation Possible
m Same principle can be generalized to PDE-driven fields: wave,
Poisson etc.
m Compute the analysis coefficients {wy,}.

m Turn to Finite Rate of Innovation (FRI) theory: exponential
reproduction.
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APPROXIMATE STRANG-FIX ERROR

From
1 jwgn
Wik, n

T G

then the approximation @k(x) of the exponential ¥, (x) = €< is
Bux) = e wnl k)8 (x — ).

This becomes 1, (x) = ej“’k"ﬁ > ez G(wi + 2ml)el*™> when we
substitute w,(k) = G(ik)ej“k” and apply Poisson’s summation formula.

We obtain the error e(x) = 1« (x)—tpx(x) for this approximation:

. 1 .
E(X) — lwix <1 _ m Z G(wk + 27T€)eJ27TZX> )

LEL

Will be small if G(wx + 27¢) decays quickly enough to zero as |¢|
increases.

m Exponential decay for Gaussian.
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