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Electrical impedance tomography (EIT)
is an emerging medical imaging technique

Feed electric currents through
electrodes. Measure the re-
sulting voltages. Repeat the
measurement for several cur-
rent patterns.
Reconstruct distribution of

electric conductivity inside the
patient. Different tissues have
different conductivities, so EIT
gives an image of the patient’s
inner structure.

EIT is a harmless and pain-
less imaging method suitable
for long-term monitoring.



This talk concentrates on applications of EIT
to chest imaging

Medical applications: monitoring
cardiac activity, lung function, and
pulmonary perfusion.



The mathematical model of EIT is the inverse
conductivity problem introduced by Calderón

Ω

Let Ω ⊂ R2 be the unit disc and
σ : Ω → R the conductivity with
0 < c ≤ σ(z) ≤ C for z ∈ Ω.

Injecting current ϕ at the boundary ∂Ω
leads to the elliptic PDE{

∇ · σ∇u = 0 in Ω,

σ ∂u∂ν = ϕ on ∂Ω.

For uniqueness we require
∫
∂Ω ϕ = 0

and
∫
∂Ω u = 0.

Boundary measurements are modelled
by the Neumann-to-Dirichlet map

Rσ : ϕ 7→ u|∂Ω .

Calderón’s problem is to re-
cover σ from the knowledge
of Rσ. It is a nonlinear and
ill-posed inverse problem.



We illustrate the measurement process in EIT
Given the phantom

σ



We illustrate the measurement process in EIT
We apply currents on the boundary
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We illustrate the measurement process in EIT
Creating the voltage distribution
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We illustrate the measurement process in EIT
We can measure the boundary trace
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We illustrate the measurement process in EIT
This is the current-to-voltage measurement

u

�
�
��� @

@
@@R

-Rσ



We illustrate the measurement process in EIT
We do this for different current patterns
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Representing the measurement

I For a fixed conductivity σ, the Neumann-to-Dirichlet map (ND
map), also know as current-to-voltage map, is the linear
operator that maps every possible Neumann data to the
corresponding Dirichlet data.



Representing the measurement

I For a fixed conductivity σ, the Neumann-to-Dirichlet map (ND
map), also know as current-to-voltage map, is the linear
operator that maps every possible Neumann data to the
corresponding Dirichlet data.

I We measure the ND map with respect to an orthonormal basis
ϕn (the applied current), and obtain a matrix approximation
Rσ by the inner product

(Rσ)i ,j = (Rσϕi , ϕj) = (ui |∂Ω, ϕj).
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A (very) brief history of the two-dimensional
D-bar method for EIT important for our work

1980 Calderón: Introduces the inverse conductivity problem

1988 Novikov & 1996 Nachman: Uniqueness and reconstruction
for 2D EIT with C 2 conductivities and infinite-precision data

2000 Siltanen, Mueller and Isaacson: Numerical implementation
of Nachman’s method

2009 Knudsen, Lassas, Mueller and Siltanen: Regularized EIT



There exists a nonlinear Fourier transform
adapted to electrical impedance tomography
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The nonlinear Fourier transform can be recovered
from infinite-precision EIT measurements
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Nonlinear IFT

6
Ideal
measurement

[Nachman; 1996]



Measurement noise prevents the recovery of the
nonlinear Fourier transform at high frequencies
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We truncate away the bad part in the transform;
this is a nonlinear low-pass filter
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There is currently only one regularized method for
reconstructing the full conductivity distribution

-
BIE

?

Nonlinear
IFT
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Practical
measurement

-
Lowpass

[Knudsen, Lassas, Mueller & Siltanen; 2009]



Scattering transform by a Born approximation

We can compute the scattering transform from the ND map by eval-
uating

t(k) =

∫
∂Ω
∂νe

i k̄ ζ̄(R1 −Rσ)∂νψ(ζ, k)ds(ζ).



Scattering transform by a Born approximation

We can compute the scattering transform from the ND map by eval-
uating

t(k) =

∫
∂Ω
∂νe

i k̄ ζ̄(R1 −Rσ)∂νψ(ζ, k)ds(ζ).

We approximate the complex geometric optics solutions by their
asymptotic behaviour

ψ(ζ, k) ≈ e ikz .

Then we get (on the unit disk)

texp(k) =
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∂Ω
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Scattering transform by a Born approximation

We can compute the scattering transform from the ND map by eval-
uating

t(k) =

∫
∂Ω
∂νe

i k̄ ζ̄(R1 −Rσ)∂νψ(ζ, k)ds(ζ).

We approximate the complex geometric optics solutions by their
asymptotic behaviour

ψ(ζ, k) ≈ e ikz .

Then we get (on the unit disk)

texp(k) =

∫
∂Ω

i k̄ ζ̄e i k̄ ζ̄(R1 −Rσ)ikζe ikζds(ζ)

Which we use to solve the D-bar equation to obtain the reconstruc-
tion of σ!



What is the central idea of our research

I Introduce a framework for current patterns applied on a part
of the boundary by defining a partial-boundary
Neumann-to-Dirichlet map

I Analyse the error compared to full-boundary current patterns

I Restricted measurement on part of the boundary recovered by
extrapolation

I Use approximation to compute reconstructions from the partial
Neumann-to-Dirichlet map
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Why partial boundary?

In stationary monitoring, one
might not have access to part
of the patient, i.e. patient
lying on back.

Devices and electrodes
are bulky and restrict available
space.

Especially three dimen-
sional: Full boundary is simply
impractical.



A note on partial-boundary data

I For full-boundary data, the Dirichlet and Neumann problems
are essentially equivalent.

I This is not the case for partial-boundary data! (Different
subsets of the Cauchy data)
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I The Dirichlet problem => Voltage input
I Partial zero boundary condition means insulation, a physical

body is normally not
I Voltages will distribute on the whole boundary
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I For full-boundary data, the Dirichlet and Neumann problems
are essentially equivalent.

I This is not the case for partial-boundary data! (Different
subsets of the Cauchy data)

I The Dirichlet problem => Voltage input
I Partial zero boundary condition means insulation, a physical

body is normally not
I Voltages will distribute on the whole boundary
I Not practical



A note on partial-boundary data

I For full-boundary data, the Dirichlet and Neumann problems
are essentially equivalent.

I This is not the case for partial-boundary data! (Different
subsets of the Cauchy data)

I The Neumann problem => Current input
I Partial zero boundary condition means just no current is

injected
I BUT: Voltages will still distribute on the whole boundary



The partial-boundary problem setting

Γ
Applying a current f at part of the boundary
Γ ⊂ ∂Ω leads to the elliptic PDE

∇ · σ∇u = 0 in Ω,

σ ∂u∂ν = f on Γ

σ ∂u∂ν = 0 on Γc = ∂Ω\Γ.

With the zero mean conditions∫
Γ
f ds = 0 and

∫
∂Ω

u ds = 0.

For the Neumann problem
Francis Chung (2014) has
shown uniqueness for σ ∈
C 2(Ω) with Ω ⊂ Rn and
n ≥ 3.



Modelling the boundary functions

We use a space of functions supported on Γ as a subspace of
H̃−1/2(∂Ω) (zero mean H−1/2 functions) defined by

H̃
−1/2
Γ (∂Ω) := {ϕ ∈ H̃−1/2(∂Ω) : supp (ϕ) = Γ and

∫
Γ
ϕ = 0}.
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we define the partial ND map as

R̃σ := Rσ I .



Modelling the boundary functions

We use a space of functions supported on Γ as a subspace of
H̃−1/2(∂Ω) (zero mean H−1/2 functions) defined by

H̃
−1/2
Γ (∂Ω) := {ϕ ∈ H̃−1/2(∂Ω) : supp (ϕ) = Γ and

∫
Γ
ϕ = 0}.

Given a linear and bounded operator I : H̃−1/2(∂Ω)→ H̃
−1/2
Γ (∂Ω),

we define the partial ND map as

R̃σ := Rσ I .

Let the basis functions on Γ be produced by I, i.e. ϕ̃ = I ϕ for
ϕ ∈ H̃−1/2(∂Ω), then the central identity follows

Rσ ϕ̃ = Rσ I ϕ = R̃σϕ.



Reformulation of the problem setting

Γ
Given the current I ϕ = ϕ̃ ∈ H̃

−1/2
Γ (∂Ω)

consider the Neumann problem{
∇ · σ∇u = 0 in Ω,

σ ∂u∂ν = ϕ̃ on ∂Ω

The inverse problem is then: Given measure-
ment of

R̃σ : H̃−1/2(∂Ω)→ H̃1/2(∂Ω)

what can we deduce about σ?



Why this formulation?

I Calculating the partial ND matrix with respect to an
orthonormal basis:

(R̃σ)i ,j = (R̃σϕi , ϕj) = (Rσ ϕ̃i , ϕj)

I For the error analysis to the full-boundary ND map we only
need knowledge of I.
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Representing the ND map

We want to represent the Neumann-to-Dirichlet map by boundary
layer potentials. For that we multiply the conductivity equation with
a smooth test function and integrate over Ω∫

Ω
∇(σ∇u)vdx = 0.



Representing the ND map

We want to represent the Neumann-to-Dirichlet map by boundary
layer potentials. For that we multiply the conductivity equation with
a smooth test function and integrate over Ω∫

Ω
∇(σ∇u)vdx = 0.

Applying partial differentiation twice we obtain Green’s identity:∫
Ω
∇(σ∇u)vdx =

∫
∂Ω
σ ∂ν uvds−

∫
∂Ω
σ ∂ν vuds +

∫
Ω
∇(σ∇v)udx .



Choosing a suitable Green’s function

Let Gσ(x , y) be the Green’s functions of the conductivity equation
with Neumann boundary conditions, that is

−∇(σ∇Gσ(x , y)) = δ(x − y), for x , y ∈ Ω,

∂ν G (x , y) = 0, for y ∈ ∂Ω, x ∈ Ω.



Choosing a suitable Green’s function

Let Gσ(x , y) be the Green’s functions of the conductivity equation
with Neumann boundary conditions, that is

−∇(σ∇Gσ(x , y)) = δ(x − y), for x , y ∈ Ω,

∂ν G (x , y) = 0, for y ∈ ∂Ω, x ∈ Ω.

We can set v(y) = Gσ(x , y) and insert in∫
Ω
∇(σ∇u)vdy =

∫
∂Ω
σ ∂ν uvds −

∫
∂Ω
σ ∂ν vuds +

∫
Ω
∇(σ∇v)udy

to obtain

u(x) =

∫
∂Ω
∂ν u(y)Gσ(x , y)dsy , ∀x ∈ Ω.



Representation by single layer potentials

Taking the limit x → ∂Ω, we obtain the identity

u(x) = (Sσ ∂ν u)(x) , ∀x ∈ ∂Ω,

where Sσ : H−1/2(∂Ω) → H1/2(∂Ω) is the single layer potential
given by

Sσϕ(x) =

∫
∂Ω

Gσ(x , y)ϕ(y)dsy .



Representation by single layer potentials

Taking the limit x → ∂Ω, we obtain the identity

u(x) = (Sσ ∂ν u)(x) , ∀x ∈ ∂Ω,

where Sσ : H−1/2(∂Ω) → H1/2(∂Ω) is the single layer potential
given by

Sσϕ(x) =

∫
∂Ω

Gσ(x , y)ϕ(y)dsy .

Thus, in this representation, the Neumann-to-Dirichlet map coincides
with the single layer operator restricted to the space H̃−1/2(∂Ω):

Rσ = Sσ : H̃−1/2(∂Ω)→ H̃1/2(∂Ω).
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We can use this representation to define the partial ND map, by
using the central identity
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Basis of the error analysis

We can use this representation to define the partial ND map, by
using the central identity

R̃σϕ = Rσ I ϕ = Sσ(I ϕ) = u|∂Ω,

and the difference of ND maps can then be simply expressed by

(R̃σ −Rσ)ϕ = Rσ(ϕ̃−ϕ) = Sσ(ϕ̃−ϕ).

Further the error of ND maps is

‖(R̃σ −Rσ)ϕ‖L2(∂Ω) = ‖Sσ(I −1)ϕ‖L2(∂Ω).

⇒ By explicit knowledge of I we can give an asymptotic estimate
dependent on |Γ|.



Choices for I - scaling

The functions ϕ are scaled on the partial-boundary Γ. We
parametrize the boundary ∂Ω by an angle θ ∈ [0, 2π]. Then de-
note Γ = [θ1, θ2] ⊂ [0, 2π]. The partial-boundary projection is then
given by

Is ϕ(θ) =

{
ϕ
(
θ−θ1
r

)
if θ ∈ Γ,

0 else ,
with r =

|Γ|
|∂Ω|

.



Choices for I - cut-off

The second option is a straight forward cut-off, such that

ϕ̃(θ) = Ic ϕ(θ) =

{
ϕ(θ)− 1

|Γ|
∫

Γ ϕ(τ)dτ if θ ∈ Γ,

0 else ,

We subtract the mean to ensure ϕ̃ ∈ H̃
−1/2
Γ (∂Ω)



Choices for I - electrode projection

A more realistic approach is given by the nonorthogonal projection
for a set of electrodes Em, m = 1, . . . ,M, introduced in [Hyvönen09]
by

Ie ϕ(θ) =
M∑

m=1

χm(θ)

|Em|

∫
Ēm

ϕ(τ) dτ,

where Ēm are the so-called extended electrodes.



Data error

Proposition (Error of the partial ND map)
Let Ω ⊂ R2 be the unit disk, σ ∈ L∞(Ω) be a conductivity with
0 < σ0 ≤ σ(x) and σ ≡ 1 close to ∂Ω.
Denote the partial ND maps by R̃c

σ = Rσ Ic and R̃s
σ = Rσ Is .

Let the basis functions be ϕn(θ) = 1√
2π
e inθ for n 6= 0, and Γ ⊂ ∂Ω

with |Γc | = h > 0. Then, for 0 ≤ h ≤ π, there is a constant C > 0
independent on n such that:

‖(R̃c
σ −Rσ)ϕn‖L2(∂Ω) ≤ Ch,

‖(R̃s
σ −Rσ)ϕn‖L2(∂Ω) ≤ Cn2h.



Data error: Idea of proof
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Data error: Idea of proof

Starting with

‖(R̃σ −Rσ)ϕn‖L2(∂Ω) = ‖Sσ(I −1)ϕn‖L2(∂Ω).

Using boundedness of the single layer potential, yields

‖Sσ(I −1)ϕn‖L2(∂Ω) ≤ c‖(I −1)ϕn‖H−1(∂Ω),

where ‖ϕ‖2H−1(∂Ω) =
∑

k∈Z(1 + k2)−1|ϕ̂(k)|2 and

ϕ̂(k) =
1
2π

∫ 2π

0
ϕ(θ)e−ikθdθ.

Thus we are left to calculate the Fourier coefficients for each choice
of I.



Error for difference data

The estimates immediately extend to difference data.

Corollary
Under the assumptions of the Proposition we have

‖(R̃c
σ,1 −Rσ,1)ϕn‖L2(∂Ω) ≤ Ch,

‖(R̃s
σ,1 −Rσ,1)ϕn‖L2(∂Ω) ≤ Cn2h,

where Rσ,1 := Rσ −R1, R̃σ,1 := R̃σ − R̃1.



Operator estimates for the cut-off

For the cut-off case, this is equivalent to the operator estimates

‖R̃c
σ −Rσ‖L2(∂Ω)→L2(∂Ω) ≤ Ch.

and
‖R̃c

σ,1 −Rσ,1‖L2(∂Ω)→L2(∂Ω) ≤ Ch.



Error of scattering transform

Given the operator estimates, we can directly prove:

Proposition
Let σ ∈ C 2(Ω) be bounded by 0 < c ≤ σ(x) ≤ C for all x ∈ Ω and
σ ≡ 1 close to ∂Ω.
Let Ω ⊂ R2 be the unit disk and Γ ⊂ ∂Ω with |Γc | = h.
For a fixed cut-off radius 0 < R <∞, let texpR be computed from
R1,σ and t̃expR from R̃c

1,σ.
Then for 0 ≤ h ≤ π, there are constants C1,C2 such that∣∣∣∣∣texpR (k)− t̃expR (k)

k̄

∣∣∣∣∣ ≤ C1h|k |eC2|k|, for |k | ≤ R.



Reconstruction error

Theorem (Reconstruction error)
Under the assumptions of the last proposition. Additionally let σR
and σ̃R be reconstructed from texpR , t̃expR respectively. Then there
exists a constant C > 0 depending only on R , such that

‖σR − σ̃R‖L2(Ω) ≤ Ch.



Reconstruction error

Theorem (Reconstruction error)
Under the assumptions of the last proposition. Additionally let σR
and σ̃R be reconstructed from texpR , t̃expR respectively. Then there
exists a constant C > 0 depending only on R , such that

‖σR − σ̃R‖L2(Ω) ≤ Ch.

The proof uses continuous dependence of solutions of the D-bar
equation on the error in scattering transform and is based on:
[Knudsen, Lassas, Mueller and Siltanen 2009].
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Measurement extension

The previous estimates all assume measurements on the full bound-
ary. This is of course unrealistic.
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The previous estimates all assume measurements on the full bound-
ary. This is of course unrealistic.

Hence we have to extend the measurement from Γ to ∂Ω in a
sensible way.

Requirement: the extension has to preserve the linear error esti-
mates, which is for instance already surpassed by linear interpolation
O(h2).



Measurement extension

The previous estimates all assume measurements on the full bound-
ary. This is of course unrealistic.

Hence we have to extend the measurement from Γ to ∂Ω in a
sensible way.

Requirement: the extension has to preserve the linear error esti-
mates, which is for instance already surpassed by linear interpolation
O(h2).

⇒ The error is governed by restricting the input current to Γ, not
by restriction of the measurement!



The optimal measurement

Input ϕ̃ Full data u|∂Ω



The real measurement on the partial-boundary

Input ϕ̃ Partial data u|Γ



Difference data is smoother

Difference data Rσ,1 ϕ̃ Measured difference



Recovering the measurement by cubic splines

Difference data Rσ,1 ϕ̃ Recovered trace



The convergence result: Laplace equation

We want to verify the convergence for the constant conductivity
σ ≡ 1 and basis functions of different order:

‖(R̃1 −R1)ϕn‖L2(∂Ω) ≤ Ch

h h

‖(
R̃

1
−
R

1
)ϕ

n
‖ 2

scaling cut-off



The convergence result: Different conductivities

We want to check that the convergence estimate holds for different
conductivities

‖(R̃σ −Rσ)ϕ1‖L2(∂Ω) ≤ Ch

h h

‖(
R̃
σ
−
R
σ
)ϕ

1
‖ 2

scaling cut-off



The convergence result: difference ND-matrices
and extrapolation

At last we check the error of difference ND-matrices with 16 basis
functions and introduce the extrapolation, we should have

‖R̃σ,1 − Rσ,1‖2 ≤ Ch.

h h

‖R̃
σ
,1
−

R
σ
,1
‖ 2

Circular inclusion Heart-and-Lungs
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A simple circular inclusion: cut-off basis
Phantom

Full boundary

75% 50%

25% 12.5%



A simple circular inclusion: scaling basis
Phantom

Full boundary

75% 50%

25% 12.5%



Heart-and-Lungs on the unit circle: cut-off basis
Phantom

Full boundary

87.5% 75%

50%



Heart-and-Lungs on the unit circle: scaling basis
Phantom

Full boundary

87.5% 75%

50%



The convergence result: reconstructions

Let us check if the error estimates for the reconstructions hold as

‖σR − σ̃R‖L2(Ω) ≤ Ch.

h h

‖σ̃
R
−
σ
R
‖ 2

Circular inclusion Heart-and-Lungs



A realistic chest phantom

Phantom (on back) Full boundary



A realistic chest phantom: cut-off basis

Phantom 75%

66%



A realistic chest phantom: scaling basis

Phantom 75%

66%
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Conclusions

I With the partial ND map, we have introduced a framework in
which we can represent the measurement with respect to
various choices of boundary mappings.

I We have established error estimates to the full-boundary case.

I By the extrapolation approach of the measurement, even more
complicated phantoms can be reconstructed.

I Results will be submitted very soon



Ongoing research: A realistic approach

1 Use a realistic model (such as complete electrode model) and
incorporate noise

2 Extrapolation by optimization
I Alternating scheme to update extrapolated traces and partial

ND map

3 Incorporating real measurement data



Thank you for your attention
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