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@ Motovation: parameter identification in PDEs
@ Tikhonov, Ivanov, Morozov regularization
@ a counterexample for the equivalence of Tikhonov and Ivanov

@ convergence analysis

@ application to inverse problems for PDEs




motivation and problem setting




Parameter ldentification in Differential Equations:
Some Examples

o Identify spatially varying coefficients/source a, b, ¢ in elliptic
boundary value problem

—V(aVu)+cu=bin Q,

Q CRY, d e {1,2,3}, from boundary or (restricted) interior
observations of wu.
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bound constraints arise naturally
~> use them for regularizing the inverse problem

b (T <= =




Problem Setting

nonlinear inverse problem
F(x)=y

F: X =Y, X, Y Banach spaces,
forward operator = observation operator o parameter-to-state map
F not continuously invertible, noisy data

S(y,y’) <9

S: Y x Y — R data misfit functional




Tikhonov, lvanov, Morozov regularization




Tikhonov Regularization

S :Y x Y — R data misfit functional
R : X — R regularization functional
Tikhonov regularization: x’ solves

: 1)
XE”{;'(“F)S(F(X)’V ) + aR(x).
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Tikhonov Regularization

S:Y x Y — R data misfit functional
R : X — R regularization functional
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. s
ng)l(nF)S(F(X),y ) + aR(x).

regularization parameter chosen, e.g., by discrepancy principle:

o € argmax {& > 0: minimizer x] exists and S(F(x)),y%) <76}

or
« such that minimizer x? exists and § < S(F(x)),y?) < 16

where 7 > 1 is a fixed constant independent of §.
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lvanov, Morozov

o Morozov regularization (method of the residual): x},, solves
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lvanov, Morozov

o Morozov regularization (method of the residual): x},, solves

in R(x)s.t. S(F(x),y%) <70
o (x)st. S(F(x),y°) <7

@ lvanov regularization (method of quasi solutions): x, solves

in S(F(x),y%) s.t. R(x) <
Xg%((@yh (x)<p

where p € {pL, p!! | p!"} (regularization parameter):
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[Lorenz& Worliczek'13, Ivanov'62,'63, Dombrovskaja& lvanov'65,
Seidman& Vogel'89, lvanov& Vasin& Tanana’'02, Neubauer& Ramlau'14]

Q



a counterexample for the equivalence of
Tikhonov and lvanov




very similar to counerexample in [Lorenz& Worliczek'13] in 1-d:
X=Y=R, f(x)=(x-x)3+y, Yy =y+6 rkx) =|x.
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xT = xg solves Ivanov min, . [f(x) — y°| s.it. r(x) < p with p = r(x)
xt = xg solves Morozov min,cp r(x) s.t. |f(x) —y°| <&

However, for any a > 0, a Tikonov minimizer

x5 € argmin{3|f(x) — y°[> + ar(x)} differs from xo:

Can be lifted to an ill-posed function space setting
X =12(Q), Y = L2(Q), Sk y2) = 5ly1 = yallfos R(x) = 3lIx[17

F(x)(t):/QCD(t—s)f(x(s)) ds, teQ

with ® : Q — Q — [0, 00) with [, ®(t —s)ds =1 for all t € Q.
If ® is weakly singular then F is compact.

If ® is the Green's function of a differential operator D then
F(x) =y is equivalent to

Dy = f(x)

(a nonlinear inverse source problem for a PDE)




convergence analysis




Assumptions
There exist topologies Tx, Ty on X, Y such that
Q F is Tx-Ty-sequentially closed
@ R, S(-,y?) are lower semicontinuous wrt. Tx and Ty.
Q VC>0:ME={xeD(F): R(x) < C} is Tx-compact.
QVC>0y'eY:ME={yeF(DF)) :S(y,y’) < C} Ty-comp.
@ There exists a solution x' of Fx = y such that R(x") < cc.
Q i< S(F(XSO),y‘S).
@ S(y,y) =0 impliesy =y

© There exists a constant Cs > 0 such that for all y1,y>,y3 € Y

S(y1,y3) < Cs(S(y1,y2) + S(y3,2))




Assumptions

... like for Tikhonov regularization




Well-posedness
Theorem (Clason& BK& Klassen'16)

Let y° € Y, 7 >1,6 > 0 be fixed and let for the two functionals
R: X = Ra', S:YxY— Ra', conditions 1.-5. of Assumption 1
hold, With xT an R minimizing solution of Fx = y.

Then XM and x with p = pl. or with p = p!! or, if additionally
Assumption 1.6. holds, with p = p!!!

, are well defined and

R(X%) < R(XT) S(F(x?),y?) < 76.

0 o 4
holds for 2° € {xiyo, X1, X0y, X0}
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For any p1, p2 > p!! and any two minimizers X(S/., i€{1,2}

If F is linear, R = || - ||, and y® € F(X) C Y, then for any
p€(0,p(y°):=inf{p>0:y° € Q,} €[0,00]), any Ivanov
minimizer lies on the boundary of the feasible set, i.e., X =p




Convergence
Theorem (Clason& BK& Klassen'16)

Let y € F(D(F)) and let (y®)s=o be a family of noisy data
satisfying S(y,y°) < & such that (with yoi=y) for all 6 > 0, and
for two functionals R : X — Rgr , S YXY—> Rgr , Assumption
1.1.-1.5 and 1.7., 1.8. hold with x' an R-minimizing solution of
Fx=y.

Then we have Tx-subsequential convergence as 6 — 0 to x' for
x4, and for xg with p € {pL, p!!, p!""} (imposing Assumption 1.6.
for the latter).




Convergence
Theorem (Clason& BK& Klassen'16)

Let y € F(D(F)) and let (y®)s=o be a family of noisy data
satisfying S(y,y°) < & such that (with yoi=y) for all 6 > 0, and
for two functionals R : X — Rgr , S:YXY— RS' , Assumption
1.1.-1.5 and 1.7., 1.8. hold with x' an R-minimizing solution of
Fx=y

Then we have 7}—subsequentia/ convergence as 6 — 0 to x! for

x4, and for x/‘f with p € {pL, p!!, p!""} (imposing Assumption 1.6.

for the latter).
Under a variational source condition for ¢ : R™ — R™

VX € {x € D(F) : R(x) < R(XT)} - E(x,x1) < ¢(S(F(%), F(x")))

vz {XMO,X", ,xp,,, ,,,} satisfy the rates
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Parameter ldentification in Elliptic PDEs
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from measurements of u, given f, ulpg =g. X = BV(Q)
o Identify the source term b = b(x) in

—Au=>binQ

from measurements of u, given ulpa =g. X = L7(Q)
o Identify the potential c in
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from measurements of u, given f, ujpg =g. X = L>(Q)
Hence 2%, 135, & e {x,‘\sﬂo,xgi,xg,*,,x/‘f,*,,} are well-defined and
converge weakly* in X to af, b', cf as § — 0, .

> < > CE>» <=




Inverse Source Problem
Identify the source term b = b(x) in

—Au=bin

from measurements of u, given u|pq =g, 2 C RY.
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Identify the source term b = b(x) in
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from measurements of u, given u|pq =g, 2 C RY.
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Inverse Source Problem
Identify the source term b = b(x) in

—Au=binQ
from measurements of u, given u|pq =g, 2 C RY.
S(y1,x2) = y1 = yelle)» P € [L,00],  R(b) = ||b]| 1~
b e {XI(\S/Ioaxnggg?ngl} converges weakly* in L°(Q) to bf as § — 0.
Variational source condition

vh e {b e X :R(b) < R(bT)} . E(b, b") < ¢(S(F(b), F(b1)))

holds with

E(b1, ba) = ||b1 — bally-1p(q), #(t) = \/E or

E(br.b2) = [Ib1 — ballpvi@y-, 6(8) = €452, p>d,ee (0,14
Hence B9 € {XMO’XZL’Xgi” pg,} satisfy the rates

A A _d_.
162 — b |10y = O(VE), (1B — bl |y = 0677 9?)




Numerical Experiments

X=L>®Q),Y= L2(Q), g=0 A: H&(Q) — H‘l(Q) ~
Consider Tikhonov, Morozov, Ivanov as PDE constrained
optimization problems with pointwise control bounds:

min%|\u—y5||f2(m+ar st. —Au=b, [b(x)|<r, xeQ

minr st. —Au=b, %Hu—y‘sH%Q(Q)STé, Ib(x)| <r, xeQ

min 3 ||u 7)/6”%2(9) st. —Au=b, [b(x)]<p, xeQ




Numerical Experiments: Smooth Source




Numerical Experiments: Smooth Source; § = 1%

exact o= x|

T

_ t . : i
p = 11||x7| p by dlsgr.prlqcé < ||:X> I




Numerical Experiments: Smooth Source; § = 3%

exact o= x|

2
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Numerical Experiments: Smooth Source; § = 10%

exact o= x|

_ t . : i
p = 11||x7| p by dlsgr.prlr}cé < ||:x> I




Numerical Experiments: Smooth Source; Cross Sections
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Numerical Experiments: Bang-Bang Source
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Numerical Experiments: Bang-Bang Source; § = 2%
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Numerical Experiments: Bang-Bang Source; § = 4%
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Numerical Experiments: Bang-Bang Source; Cross Sections
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Conclusions

@ lvanov regularization allows to naturally incorporate
information on pl = R(x")

o If pl is known then optimal convergence rates are obtained
without needing knowledge on ¢ and ¢!

o underestimation of p! still yields a stable solution,
overestimation might be fatal
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Thank you for your attention!
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