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Electrical impedance tomography (EIT)

Source: (left) Bastian Harrach, (right) Kyoung Hun Lee

▸ Apply electric currents on subject’s boundary
▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject.
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Mathematical Model

Ω ⊂Rn: imaged body, n ≥ 2
σ(x): conductivity
u(x): electric potential

g: current density

Inside Ω, u(x) solves:

∇⋅(σ(x)∇u(x)) = 0

Idealistic model for boundary measurements (continuum model):

σ∇u ⋅ν = g, on ∂Ω
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Calderón problem

Can we recover σ ∈ L∞
+
(Ω) in

∇⋅(σ∇u) = 0, x ∈Ω (1)

from all possible Dirichlet and Neumann boundary values

{(u∣∂Ω,σ∂νu∣∂Ω) ∶ u solves (1)}?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2
◇
(∂Ω) → L2

◇
(∂Ω), g↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g.
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Calderón problem

▸ σ is uniquely defined by Λ(σ): Kohn and Vogelius (1984),
Sylvester and Uhlmann (1987)
Nachman (1996), Astala and Päivärinta (2006)

▸ Recovering of σ from Λ(σ): D-bar method, Factorization
method, Enclosure method, NOSER algorithm, GREIT
algorithm ...
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Minimization problem of the linearized residual

Recovering of σ from Λmeas

↝ Find σ such that Λ(σ) =Λmeas?

↝ Find σ such that ∥Λmeas−Λ(σ)∥2→min!

↝ Linearized Tikhonov:
∥Λmeas−Λ(σ0)−Λ

′(σ0)(σ −σ0)∥2+α ∥σ −σ0∥2→min!

Advantage:
▸ Flexible and fast
▸ Good reconstruction images

Drawback:
▸ Images usually contain ringing artifacts
▸ Convergence unclear

▸ Convergence against true sol for exact data Λ(σ)?
▸ Convergence against true sol for noisy data Λmeas?
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Linearization and shape reconstruction

Theorem (Harrach/Seo, SIMA 2010)

Let κ , σ , σ0 pcw. analytic.

Λ
′(σ0)κ =Λ(σ)−Λ(σ0) Ô⇒ supp∂Ωκ = supp∂Ω(σ −σ0)

supp
∂Ω

: outer support ( = supp + parts unreachable from ∂Ω)

↝ Linearized EIT equation contains correct shape information
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Monotonicity-based imaging

▸ Inclusion detection: For σ = 1+χD with unknown D,
use τ = 1+χB, with small ball B.

B ⊆D Ô⇒ τ ≤ σ Ô⇒ Λ(τ) ≥Λ(σ)
▸ Algorithm: Mark all balls B with Λ(1+χB) ≥Λ(σ)
▸ Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?

Theorem (Harrach/Ullrich, SIMA 2013)

B ⊆D ⇐⇒ Λ(1)+ 1
2 Λ

′(1)χB ≥Λ(σ).
Proof: Monotonicity & localized potentials

Shape can be reconstructed by linearized monotonicity tests
↝ fast, rigorous, allows globally convergent implementation
↝ very sensitive to noise
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Improving residuum-based methods

Let Ω∖D connected. σ = 1+ γχD,γ ∈ L∞
+
(Ω).

▸ Pixel partition Ω = ⋃m
k=1 Pk

▸ Monotonicity tests

βk ∈ [0,∞] max. values s.t. βkΛ
′(1)χPk ≥Λ(σ)−Λ(1)

▸ Let a ∶= 1− 1
1+infD γ

, then βk ≥ a if Pk ⊆D.

Lemma 1 (Harrach/M., submitted, 2015) Pk ⊆D if and only if βk > 0

▸ R(κ) ∈Rs×s: Discretization of lin. residual Λ(σ)−Λ(1)−Λ
′(1)κ

(e.g. Galerkin proj. to fin.-dim. space)

▸ Lemma 1 ↝ upper bound for κ : βk

▸ βk may be +∞↝ new upper bound for κ : min{a,βk}
Mach Nguyet Minh: Enhancing residual-based techniques with shape reconstruction features in EIT



Improving residuum-based methods

Theorem 2 (Harrach/M., submitted, 2015)

The monotonicity-constrained residuum minimization problem

∥R(κ)∥F→min! s.t. κ ∣Pk = const., 0 ≤ κ ∣Pk ≤min{a,βk}

possesses a unique solution κ̂ , and Pk ⊆ supp κ̂ iff Pk ⊆ supp(σ −1).
Moreover, κ̂ ∣Pk =min{a,βk}.
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Proof of Theorem 2:

▸ Existence of minimizer:
▸ κ ↦ ∥R(κ)∥2

F continuous.
▸ The admissible set is compact.

▸ Step 1: If κ ∣Pk = const., 0 ≤ κ ∣Pk ≤min{a,βk}, then

Λ(σ)−Λ(1)−Λ
′(1)κ ≤ 0.

▸ Step 2: If κ̂ =∑ α̂kχk is a minimizer, then suppκ̂ ⊆D.
▸ Step 1 ↝Λ(σ)−Λ(1)−Λ

′(1)α̂kχk ≤Λ(σ)−Λ(1)−Λ
′(1)κ̂ ≤ 0.

▸ Lemma 1 + definition of βk ↝ if α̂k > 0, then Pk ⊆D.
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Proof of Theorem 2:

▸ Step 3: If κ̂ is a minimizer, then κ̂ ∣Pk =min{a,βk}
▸ If there exists a pixel Pk such that κ̂(x) <min{a,βk} in Pk, we

can choose h > 0 such that κ̂ +hχk =min(a,βk) in Pk.
▸ R(κ̂) and R(κ̂ +hχk) symmetric ↝ real eigenvalues.
▸ R(κ̂ +hχk) =R(κ̂)+hSk.
▸ Poincaré’s inequality and the unique continuation principle ↝ Sk

is positive definite matrix ↝ λi(Sk) > 0.
▸ Weyl’s Inequalities

λi(κ̂ +hχk) ≥ λi(κ̂)+hλN(Sk) > λi(κ̂) for all i ∈ {1, . . . ,N}.

▸ Step 1 ↝ λi(κ̂) ≤ 0,λi(κ̂ +hχk) ≤ 0.
▸ Thus,

∥R(κ̂+hχk)∥2
F −∥R(κ̂)∥2

F =∑N
i=1 ∣λi(κ̂+hχk)∣2−∑N

i=1 ∣λi(κ̂)∣2 < 0,
which contradicts the minimality of κ̂ .
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Proof of Theorem 2:

▸ Step 4: If Pk ⊆D, then Pk ⊆ suppκ̂ .
▸ κ̂ is a minimizer + Step 3 ↝ κ̂ =∑P

k=1 min(a,βk)χk.
▸ Pk ⊆D + Lemma 1 ↝ min(a,βk) > 0↝ Pk ⊆ suppκ̂ .

▸ Uniqueness of minimizer:
▸ Step 3 ↝ a unique minimizer κ̂ =∑P

k=1 min(a,βk)χk.
▸ This minimizer fulfills

κ̂ = a in Pk, if Pk ⊆D,

κ̂ = 0 in Pk, if Pk ⊈D.
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Improving residuum-based methods

Convergence for noisy data: ∥Λ
δ (σ)−Λ(σ)∥op ≤ δ

▸ Rδ (κ) ∈Rs×s: Discretization of lin. residual for noisy data Λ
δ (σ)

Λ
δ (σ)−Λ(1)−Λ

′(1)κ

▸ β
δ

k ∈ [0,∞] max. values s.t. β
δ

k Λ
′(1)χPk ≥Λ

δ (σ)−Λ(1)
Then β

δ

k ≥ βk

↝ Pk ⊆D⇒ β
δ

k ≥ a
↝ β

δ

k = 0⇒ Pk ⊈D

Theorem 3 (Harrach/M., submitted, 2015)

The monotonicity-constrained residuum minimization problem

∥Rδ (κ)∥F→min! s.t. κ ∣Pk = const., 0 ≤ κ ∣Pk ≤min{a,β δ

k }
possesses a solution κ̂

δ , and κ̂
δ → κ̂ pointwise.

Proof of Theorem 3: unique minimality of κ̂
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Numerical experiment: Simulated data 10% noise

Reference body: ball diameter 2. Inclusions: one half-elipse + two small balls diameter 0.2

(Left-to-right) First row: True conductivity, Reference conductivity, NOSER solver

Second row: Our method, Monotonicity-based imaging, EIDORS default solver
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Numerical experiment: iirc phantom data

Tank: diameter 20cm. Rod: diameter 2cm

First row: Our method (left), Monotonicity-based imaging (right)

Second row: NOSER solver (left), EIDORS default solver (right)
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Conclusions

▸ EIT is a highly ill-posed, non-linear inverse problem.
▸ Generic solvers for non-linear inverse problems

▸ Very flexible, real-time implementation, good enough
reconstruction image

▸ Ringing artifacts, convergence unclear

▸ Improving residuum-based methods for EIT shape
reconstruction

▸ allow fast, rigorous, globally convergent implementations.
▸ work in any dimensions n ≥ 2, full or partial boundary data.
▸ can enhance standard residual-based methods.
▸ yield rigorous resolution guarantees for realistic settings.
▸ need definiteness assumption.

▸ Future work: Method applicable without definiteness
assumption.
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