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Tikhonov regularization

General Setup
Let X,Y be Banach spaces
F : dom(F ) ⊂ X→ Y be a (possibly nonlinear) forward operator
f † ∈ dom(F ) the true solution
gδ ∈ Y observed data with ‖gδ − F (f †)‖Y ≤ δ

Tikhonov regularization: Find an approximate solution

f δα ∈ argmin
f∈dom(F )

[
1
α

∥∥F (f )− gδ
∥∥2
Y + Ω(f )

]
,

where Ω is an appropriate penalty term.
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Distance to true solution

Spectral source conditions:

f † = ϕ
(
F ′[f †]∗F ′[f †]

)
ω

with an index function ϕ,  additional restrictive requirements for
nonlinear operators (tangential cone condition)

H. Engl, M. Hanke and A. Neubauer. Regularization of inverse problems, Kluwer, 1996.

Variational source conditions (VSC):

∀f ∈ dom(F ) : β∆Ω(f , f †) ≤ Ω(f )− Ω(f †) + ψ
(∥∥F (f )− F (f †)

∥∥2
Y

)
for a concave index function ψ and a β ∈ (0, 1].
First used (with ψ(t) = c

√
t) in

B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer. A convergence rates result for
Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems
23:987–1010, 2007.
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Advantages of VCSs

simplify proofs, e.g. one can easily show that a VSC implies the
convergence rate

β∆Ω(f δα , f †) ≤ 4ψ(δ2)
for the optimal choice of the regularization parameter α

M. Grasmair. Generalized Bregman distances and convergence rates for non-convex
regularization methods. Inverse Problems 26:115014, 2010.
F. Werner and T. Hohage. Convergence rates in expectation for Tikhonov-type
regularization of inverse problems with Poisson data. Inverse Problems 28:104004,
2012.

for linear operators between Hilbert space even necessary conditions
for certain rates of convergence

J. Flemming, B. Hofmann, and P. Mathé. Sharp converse results for the
regularization error using distance functions. Inverse Problems, 27:025006, 2011.

no differentiability assumption  no restrictive assumption
connecting F and F ′ needed (tangential cone condition)
allow extension to Banach spaces and general data misfit/penalty
terms
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...but
Verification of VSCs:

Reformulations of VSC with ψ(x) =
√
x for a phase retrieval and an

option pricing problem.
B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer. A convergence rates result
for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse
Problems 23:987–1010, 2007.

Spectral source conditions imply VSCs.
For linear operators F with `q penalty term via the range of F ∗

M. Burger, J. Flemming, and B. Hofmann. Convergence rates in `1-regularization if
the sparsity assumption fails. Inverse Problems, 29:025013, 2013.
S. W. Anzengruber, B. Hofmann, and R. Ramlau. On the interplay of basis
smoothness and specific range conditions occurring in sparsity regularization. Inverse
Problems, 29:125002, 2013.
J. Flemming and M. Hegland. Convergence rates in `1-regularization when the basis
is not smooth enough. Applicable Analysis, 94:464–476, 2015.

Acoustic scattering
T. Hohage and F. Weidling. Verification of a variational source condition for acoustic
inverse medium scattering problems. Inverse Problems, 31:075006, 2015.

 few verifications so far
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VSC vs. stability estimates
Let K ⊂ dom(F ) be some smoothness class (e.g. a Sobolev ball), and ∆
a symmetric error measure.

Variational source condition: ∀f † ∈ K , f ∈ dom(F ) :

β∆(f , f †) ≤ Ω(f )− Ω(f †) + ψ
(∥∥F (f )− F (f †)

∥∥2
Y

)
Conditional stability estimate: ∀f1, f2 ∈ K :

β∆(f1, f2) ≤ ψ
(
‖F (f1)− F (f2)‖2Y

)
VSC =⇒ Stability:

W.l.o.g. Ω(f1) ≥ Ω(f2), choose f1 = f †, f2 = f

Stability ???=⇒ VSC:
sign of Ω(f )− Ω(f †) unknown
VSC must hold on the larger set dom(F )

Frederic Weidling VSC and stability for inverse EM medium scattering



Variational regularization theory
Problem description

Results
Proof and CGOs

Direct problem
Inverse Problems

Time-harmonic Maxwell equations

Time-harmonic Maxwell equations:

∇× E − iκH = 0
∇× H + iκnE = 0

with wave number κ and refractive index n:

κ := ω
√
µ0ε0 n(x) := 1

ε0

(
ε(x) + iσ(x)

ω

)

µ0 magnetic permeability, assumed to be constant
ε(x) > 0 electric permittivity, with ε− ε0 compactly supported
σ(x) ≥ 0 conductivity, compactly supported
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Direct problem

Given incident field (E i,H i) fulfilling

∇× E − iκH = 0 ∇× H + iκnE = 0

for n = 1 find the scattered field (E s,Hs) such that Silver-Müller
radiation condition is fulfilled

lim
|x |→∞

(Hs(x)× x − |x |E s(x)) = 0

and (E ,H) = (E i,H i) + (E s,Hs) solves the pdes.

Classical solution theory
Let the refractive index satisfy:

n ∈ D :=
{
n ∈ C1,α(R3) : supp(1− n) ⊂ B(π),<(n) > 0,=(n) ≥ 0

}
Then there exists a unique solution (E ,H) ∈ C1.
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Inverse near field problem

Image from wikipedia

Incident fields are generated by dipoles

E i
y ,a(x) = − 1

iκ∇×∇× aΦ(x , y)

H i
y ,a(x) = ∇× aΦ(x , y)

for all y ∈ ∂B(R) with R > π, a ∈ R3 and
Φ(x , y) = eiκ|x−y |/(4π |x − y |)

Measurements are the matrices

Ey ,a(x) = wn(x , y)a

on ∂B(R)× ∂B(R).
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Inverse far field problem
Incident fields are plane waves

E i
d,p(x) = d × (p × d)eiκd·x

H i
d,p(x) = 1

iκ∇× E i
d,p(x)

for all directions d ∈ ∂B(1) and polarization
p ∈ R3.

Far field expansion

E s
p,d(x) = eiκr

r
(
E∞d,p(x̂) + o(1)

)
as r = |x | → ∞ for measurement direction x̂ = x/r ∈ ∂B(1).

Measurements are the matrices defined by

E∞d,p(x̂) = e∞n (x̂ , d)p
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Functional setup
Define

Db :=
{
n ∈ C1,α(R3) : supp(1− n) ⊂ B(π),<(n) ≥ b,=(n) ≥ 0

}
and let m > 7/2 and set X = Hm([−π, π]3) with norm

‖f ‖2Hm =
∑
γ∈Z3

〈γ〉m
∣∣∣f̂ (γ)

∣∣∣2

Near field operator

Fn : Hm([−π, π]3) ∩Db → (L2(∂B(R)× ∂B(R)))3×3, n 7→ wn.

Far field operator

Ff : Hm([−π, π]3) ∩Db → (L2(∂B(1)× ∂B(1)))3×3, n 7→ e∞n .
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Main theorem

Theorem
Assume that 7/2 < m < s, s 6= 2m + 3/2 and n† ∈ Db satisfies
‖n†‖Hs ≤ Cs for some Cs ≥ 0. Then a VSC holds true for the operator
Fn with β = 1/2, and ψ given by

ψn(t) := A
(
ln(3 + t−1)

)−2ν
, ν := min

{
s −m

m + 5/2 ,
s −m

s −m + 1

}
,

where the constant A > 0 depends on m, s, b,Cs , κ and R.

Remark: Instability results show optimality up to value of exponent
N. Mandache. Exponential instability in an inverse problem for the Schrödinger equation.
Inverse Problems, 17:1435–1444, 2001.
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Corollaries

Corollary (convergence rate)
Under the assumptions of the previous theorem the error bound∥∥nδα − n†

∥∥
Hm ≤ 2

√
2A
(
ln(3 + δ−2)

)−ν
holds true for Tikhonov regularization for optimal α.

Corollary (stability estimate)

Suppose 7
2 < m < s, s 6= 2m + 3/2 and n1 and n2 satisfy nj ∈ Db with

‖nj‖Hs ≤ Cs for j = 1, 2 and some Cs > 0. Then

‖n1 − n2‖Hm ≤
√
2A
[
ln
(
3 + ‖Fn(n1)− Fn(n2)‖−2(L2(∂B(R)×∂B(R)))3×3

)]−ν
.
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VSC for far field data

Theorem
Under the assumptions of the previous theorem the operator Ff fulfills for
all 0 < θ < 1 a VSC with β = 1/2 and ψ given by

ψf(t) := B
(
ln(3 + t−1)

)−2νθ
with a constant B > 0 depending only on m, s,Cs , κ, b and θ.

Remark: One obtains similar corollaries as in the near field case.
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Stability result comparison

new Hähner Caro Lai
data near and far

field
far field Cauchy Cauchy

validity global local any-
where

global local around
0

stability of σ, ε σ, ε σ, ε, µ σ
norm Hm L∞ H1 H−s
exponent < 1 1/15 unknown,

< 1/3
≤ 1

special strong norm
image space

Hölder-
logarithmic

P. Hähner. Stability of the inverse electromagnetic inhomogeneous medium problem.
Inverse Problems, 16:155–174, 2000.
P.Caro. Stable determination of the electromagnetic coefficients by boundary measurements.
Inverse Problems, 26:105014, 2010.
R.-Y. Lai, V. Isakov and J.-N. Wang. Increasing stability for the conductivity and
attenuation coefficient. arXiv:1505.00108, 2015.
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Proof in a nutshell

Reformulate VSC to〈
n†, n† − n

〉
Hm ≤

1
4
∥∥n† − n

∥∥2
Hm + ψ(δ)

Show VSC holds independently of δ outside of a ball
Split in high and low frequencies

Use Alessandrini type identity and CGOs to bound low frequencies
Use higher smoothness of true solution for high frequencies

Choose occurring parameter in dependence of δ such that right hand
side is approximately minimal
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Alessandrini type estimate
Connection between potentials and data

Lemma
Let 2R > R ′ > R > π, m > 7/2 and assume that n1 and n2 are two
refractive indices satisfying nj ∈ Db ∩ Hm such that ‖nj‖Hm ≤ Cm for
some Cm ≥ 0. Let Ej ,Hj ∈ C1(B(2R)) ∩ L2(B(2R)) be solutions to the
pdes in B(2R) for n = nj for j = 1, 2. Then the estimate∣∣∣∣∣

∫
B(π)

(n1 − n2)E1E2 dx

∣∣∣∣∣
≤C ‖w1 − w2‖(L2((∂B(R))2))3×3 ‖E1‖L2(B(R′)) ‖E2‖L2(B(R′))

holds true, where wj is the near field scattering data for n = nj for
j = 1, 2 and C depends on κ,R, b and Cm.

P. Hähner. Stability of the inverse electromagnetic inhomogeneous medium problem.
Inverse Problems, 16:155–174, 2000.
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General idea

Desired solutions Ej are of the form

Ej = ηjeiζj ·x ζj ∈ C3 ζ1 = ζ2 ζj · ζj = κ2

to obtain bounds on Fourier coefficient ζ1 + ζ2.

Inhomogeneous case
Not possible
Aim: construct solutions close to these
Strategy: transformation to Helmholtz like equation
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Helmholtz type equation

Construct Helmholtz type equation for (E ′,H ′) = (n1/2E ,H) with
E i = ηeiζ·x

(∆ + κ2)
(
E ′
H ′
)

=Q
(
E ′
H ′
)

Q(x) :=κ2(1− n)16 + iκn−1/2
(

03 −∇n×
∇n× 03

)
−
(
D
(∇n

n
)

03
03 03

)
− 1

4n
−2
(
13(∇n · ∇n) 03

03 03

)
+ 1

2n
−1
(
13(∆n) 03

03 03

)
In order to apply the usual CGO theory one needs to bound ‖Q‖2 for
n ∈ Db ∩ Hm, ‖n‖Hm ≤ Cm.

D. Colton and L. Päivärinta. The uniqueness of a solution to an inverse scattering problem
for electromagnetic waves. Archive for rational mechanics and analysis, 119:59–70, 1992.
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Form and estimate of CGOs

For =(ζ) ≥ C ‖Q‖2 one obtains existence of solution to the
time-harmonic Maxwell equations of the form

E (x , ζ, η) = eiζ·x [η + f (x , ζ, η)ζ + V (x , ζ, η)] , x ∈ B(R ′)

fulfilling the estimate

‖f (·, ζ, η)‖L2(B(R′)) + ‖V (·, ζ, η)‖L2(B(R′)) ≤ C |η|
|=(ζ)| .
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Inserting in Alessandrini estimate

Lemma
Let R > π, m > 7/2 and n1 and n2 be two refractive indices such that
nj ∈ Db ∩ Hm such that ‖nj‖Hm ≤ Cm with Cm ≥ 0 and corresponding
near field data wj for j = 1, 2. Let

t ≥ C(1 + κ2)C2
mb−2

and 1 ≤ % ≤ 2
√
κ2 + t2. Then there exists a constant C depending only

on R, κ, b and Cm such that

|(n̂1 − n̂2) (γ)| ≤ C
(
‖w1 − w2‖(L2((∂B(R))2))3×3 e3Rt + ‖n1 − n2‖Hm

%

t

)
holds true for all γ ∈ Z3 with |γ| ≤ %.

Remark: The better estimate on ‖Q‖2 improves previous results which
had an additional factor of %3.
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Summary

First proof of (logarithmic) convergence rates for Tikhonov applied
to electromagnetic medium scattering under Sobolev smoothness
A compatible stability estimate for electromagnetic medium
scattering
Proof

improves parameter dependence of previous results
shows that ideas of the proof of the VSC for acoustic medium
scattering can be applied to other problems

but ...
We cannot guarantee that a global minimum of the Tikhonov
functional can be computed. This still requires F ′ and conditions
such as the tangential cone condition.
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Thank you for your attention.

F. Weidling and T. Hohage. Variational source conditions and stability estimates for inverse
electromagnetic medium scattering problems, arxiv, 1512.06586, 2015.
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