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Parameter Identification in Differential Equations:
Some Examples

Identify spatially varying coefficients/source a, b, c in elliptic
boundary value problem

−∇(a∇u) + cu = b in Ω ,

Ω ⊆ Rd , d ∈ {1, 2, 3}, from boundary or (restricted) interior
observations of u.

Identify parameter ϑ in

u̇(t) = f (t, u(t), ϑ) t ∈ (0,T ) , u(0) = u0(ϑ)

from discrete of continuous observations of u.
yi = gi (u(ti ), ϑ), i ∈ {1, . . . ,m} or y(t) = g(t, y(t), ϑ), t ∈ (0,T )

bound constraints arise naturally
 use them for regularizing the inverse problem
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Problem Setting

nonlinear inverse problem

F (x) = y

F : X → Y , X , Y Banach spaces,
forward operator = observation operator ◦ parameter-to-state map
F not continuously invertible, noisy data

S(y , y δ) ≤ δ

S : Y × Y → R data misfit functional
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Tikhonov, Ivanov, Morozov regularization
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Tikhonov Regularization

S : Y × Y → R data misfit functional
R : X → R regularization functional
Tikhonov regularization: xδα solves

min
x∈D(F )

S(F (x), y δ) + αR(x) .

regularization parameter chosen, e.g., by discrepancy principle:
α ∈ argmax

{
α ≥ 0 : minimizer xδα exists and S(F (xδα), y δ) ≤ τδ

}
or
α such that minimizer xδα exists and δ < S(F (xδα), y δ) ≤ τδ
where τ ≥ 1 is a fixed constant independent of δ.

6



Tikhonov Regularization

S : Y × Y → R data misfit functional
R : X → R regularization functional
Tikhonov regularization: xδα solves

min
x∈D(F )

S(F (x), y δ) + αR(x) .

regularization parameter chosen, e.g., by discrepancy principle:
α ∈ argmax

{
α ≥ 0 : minimizer xδα exists and S(F (xδα), y δ) ≤ τδ

}

or
α such that minimizer xδα exists and δ < S(F (xδα), y δ) ≤ τδ
where τ ≥ 1 is a fixed constant independent of δ.

6



Tikhonov Regularization

S : Y × Y → R data misfit functional
R : X → R regularization functional
Tikhonov regularization: xδα solves

min
x∈D(F )

S(F (x), y δ) + αR(x) .

regularization parameter chosen, e.g., by discrepancy principle:
α ∈ argmax

{
α ≥ 0 : minimizer xδα exists and S(F (xδα), y δ) ≤ τδ

}
or
α such that minimizer xδα exists and δ < S(F (xδα), y δ) ≤ τδ
where τ ≥ 1 is a fixed constant independent of δ.

6



Ivanov, Morozov

Morozov regularization (method of the residual): xδMo solves

min
x∈D(F )

R(x) s.t. S(F (x), y δ) ≤ τδ

Ivanov regularization (method of quasi solutions): xδρ solves

min
x∈D(F )

S(F (x), y δ) s.t. R(x) ≤ ρ

where ρ ∈ {ρI∗, ρII∗ , ρIII∗ } (regularization parameter):
ρI∗ = ρ† = R(x†)
ρII∗ ∈ argmin

{
ρ ≥ 0 : minimizer xδρ exists and S(F (xδρ), y δ) ≤ τδ

}
ρIII∗ such that minimizer xδ

ρIII∗
exists and δ < S(F (xδ

ρIII∗
), y δ) ≤ τδ

where τ ≥ 1 is a fixed constant independent of δ.

[Lorenz& Worliczek’13, Ivanov’62,’63, Dombrovskaja& Ivanov’65,

Seidman& Vogel’89, Ivanov& Vasin& Tanana’02, Neubauer& Ramlau’14]
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a counterexample for the equivalence of
Tikhonov and Ivanov
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very similar to counerexample in [Lorenz& Worliczek’13] in 1-d:
X =Y= R, f (x) = (x − x0)3 + y , y δ = y + δ, r(x) = |x |.

x† = x0 solves f (x) = y
x† = x0 solves Ivanov minx∈R |f (x)− y δ| s.t. r(x) ≤ ρ with ρ = r(x†)
x† = x0 solves Morozov minx∈R r(x) s.t. |f (x)− y δ| ≤ δ
However, for any α > 0, a Tikonov minimizer
xδα ∈ argmin{1

2 |f (x)− y δ|2 + αr(x)} differs from x0:

Figure : Ivanov (left) and Tikhonov (right; for different values of α)
δ = 0.25
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Can be lifted to an ill-posed function space setting
X = L∞(Ω), Y = L2(Ω), S(y1, y2) = 1

2‖y1 − y2‖2
L2 , R(x) = 1

2‖x‖
2
L∞

F (x)(t) =

∫
Ω

Φ(t − s)f (x(s)) ds , t ∈ Ω

with Φ : Ω− Ω→ [0,∞) with
∫

Ω Φ(t − s) ds = 1 for all t ∈ Ω.
If Φ is weakly singular then F is compact.
If Φ is the Green’s function of a differential operator D then
F (x) = y is equivalent to

Dy = f (x)

(a nonlinear inverse source problem for a PDE)
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convergence analysis
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Assumptions

Assumption

There exist topologies TX , TY on X , Y such that

1 F is TX -TY -sequentially closed

2 R, S(·, yδ) are lower semicontinuous wrt. TX and TY .

3 ∀ C > 0: MR
C = {x ∈ D(F ) : R(x) ≤ C} is TX -compact.

4 ∀ C > 0, yδ ∈ Y : MS
C = {y ∈ F (D(F )) : S(y , yδ) ≤ C} TY -comp.

5 There exists a solution x† of Fx = y such that R(x†) <∞.

6 δ < S(F (xδ
ρ0

), yδ).

7 S(ỹ , y) = 0 implies ỹ = y

8 There exists a constant CS > 0 such that for all y1, y2, y3 ∈ Y

S(y1, y3) ≤ CS(S(y1, y2) + S(y3, y2))

12



Assumptions

. . . like for Tikhonov regularization
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Well-posedness

Theorem (Clason& BK& Klassen’16)

Let y δ ∈ Y , τ ≥ 1, δ > 0 be fixed and let for the two functionals
R : X → R̄+

0 , S : Y × Y → R̄+
0 , conditions 1.–5. of Assumption 1

hold, with x† an R-minimizing solution of Fx = y.
Then xδMo and xδρ with ρ = ρI∗ or with ρ = ρII∗ or, if additionally

Assumption 1.6. holds, with ρ = ρIII∗ , are well defined and

R(x̂δ) ≤ R(x†) S(F (x̂δ), y δ) ≤ τδ.

holds for x̂δ ∈ {xδMo , xδ
ρI∗
, xδ

ρII∗
, xδ

ρIII∗
}.

For any ρ1, ρ2 ≥ ρII∗ and any two minimizers xδρi , i ∈ {1, 2}

ρ1 ≤ ρ2 ⇒ S(F (xδρ1
), y δ) ≥ S(F (xδρ2

), y δ)

If F is linear, R = ‖ · ‖, and y δ ∈ F (X ) ⊆ Y , then for any
ρ ∈ (0, ρ(y δ) := inf

{
ρ > 0 : y δ ∈ Qρ

}
∈ [0,∞]), any Ivanov

minimizer lies on the boundary of the feasible set, i.e., ‖xδρ‖ = ρ
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Convergence

Theorem (Clason& BK& Klassen’16)

Let y ∈ F (D(F )) and let (y δ)δ>0 be a family of noisy data
satisfying S(y , y δ) ≤ δ such that (with y 0 := y) for all δ ≥ 0, and

for two functionals R : X → R̄+
0 , S : Y × Y → R̄+

0 , Assumption
1.1.–1.5. and 1.7., 1.8. hold with x† an R-minimizing solution of
Fx = y.
Then we have TX -subsequential convergence as δ → 0 to x† for
xδMo and for xδρ with ρ ∈ {ρI∗, ρII∗ , ρIII∗ } (imposing Assumption 1.6.
for the latter).

Under a variational source condition for φ : R+ → R+

∀x̃ ∈
{

x ∈ D(F ) : R(x̃) ≤ R(x†)
}

: E (x̃ , x†) ≤ φ(S(F (x̃),F (x†)))

x̂δ ∈ {xδMo , x
δ
ρI∗
, xδ
ρII∗
, xδ
ρIII∗
} satisfy the rates

E (x̂δ, x†) = O(φ(δ))

15



Convergence

Theorem (Clason& BK& Klassen’16)

Let y ∈ F (D(F )) and let (y δ)δ>0 be a family of noisy data
satisfying S(y , y δ) ≤ δ such that (with y 0 := y) for all δ ≥ 0, and

for two functionals R : X → R̄+
0 , S : Y × Y → R̄+

0 , Assumption
1.1.–1.5. and 1.7., 1.8. hold with x† an R-minimizing solution of
Fx = y.
Then we have TX -subsequential convergence as δ → 0 to x† for
xδMo and for xδρ with ρ ∈ {ρI∗, ρII∗ , ρIII∗ } (imposing Assumption 1.6.
for the latter).
Under a variational source condition for φ : R+ → R+

∀x̃ ∈
{

x ∈ D(F ) : R(x̃) ≤ R(x†)
}

: E (x̃ , x†) ≤ φ(S(F (x̃),F (x†)))

x̂δ ∈ {xδMo , x
δ
ρI∗
, xδ
ρII∗
, xδ
ρIII∗
} satisfy the rates

E (x̂δ, x†) = O(φ(δ))

15



application to inverse problems for PDEs
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Parameter Identification in Elliptic PDEs

S(y1, y2) = ‖y1− y2‖Y = ‖y1− y2‖Lp(Ω) , p ∈ [1,∞], R = ‖ · ‖X

Identify the diffusion coefficent a = a(x) in

−∇(a∇u) = f in Ω

from measurements of u, given f , u|∂Ω = g . X = BV (Ω)

Identify the source term b = b(x) in

−∆u = b in Ω

from measurements of u, given u|∂Ω = g . X = L∞(Ω)

Identify the potential c in

−∆u + cu = f in Ω

from measurements of u, given f , u|∂Ω = g . X = L∞(Ω)

Hence âδ, b̂δ, ĉδ ∈ {xδMo , x
δ
ρI∗
, xδ
ρII∗
, xδ
ρIII∗
} are well-defined and

converge weakly* in X to a†, b†, c† as δ → 0.
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Inverse Source Problem
Identify the source term b = b(x) in

−∆u = b in Ω

from measurements of u, given u|∂Ω = g , Ω ⊆ Rd .

S(y1, y2) = ‖y1 − y2‖Lp(Ω) , p ∈ [1,∞], R(b) = ‖b‖L∞

b̂δ ∈ {xδMo , x
δ
ρI∗
, xδ
ρII∗
, xδ
ρIII∗
} converges weakly* in L∞(Ω) to b† as δ → 0.

Variational source condition

∀b̃ ∈
{

b ∈ X : R(b̃) ≤ R(b†)
}

: E (b̃, b†) ≤ φ(S(F (b̃),F (b†)))

holds with
E (b1, b2) = ‖b1 − b2‖W−1,p(Ω), φ(t) =

√
t or

E (b1, b2) = ‖b1 − b2‖BV (Ω)∗ , φ(t) = t(1− d
p
−ε)/2, p > d , ε ∈ (0, 1− d

p ]

Hence b̂δ ∈ {xδMo , x
δ
ρI∗
, xδ
ρII∗
, xδ
ρIII∗
} satisfy the rates

‖b̂δ − b†‖W−1,p(Ω) = O(
√
δ) , ‖b̂δ − b†‖BV (Ω)∗ = O(δ(1− d

p
−ε)/2)
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Numerical Experiments

X = L∞(Ω), Y = L2(Ω), g = 0, ∆ : H1
0 (Ω)→ H−1(Ω)  

Consider Tikhonov, Morozov, Ivanov as PDE constrained
optimization problems with pointwise control bounds:

min 1
2‖u − y δ‖2

L2(Ω) + αr s.t. −∆u = b , |b(x)| ≤ r , x ∈ Ω

min r s.t. −∆u = b , 1
2‖u − y δ‖2

L2(Ω) ≤ τδ , |b(x)| ≤ r , x ∈ Ω

min 1
2‖u − y δ‖2

L2(Ω) s.t. −∆u = b , |b(x)| ≤ ρ, x ∈ Ω

19



Numerical Experiments: Smooth Source
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Numerical Experiments: Smooth Source; δ = 1%
exact ρ = ‖x†‖

ρ = 1.1‖x†‖ ρ by discr.princ. < ‖x†‖
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Numerical Experiments: Smooth Source; δ = 3%
exact ρ = ‖x†‖

ρ = 1.1‖x†‖ ρ by discr.princ. < ‖x†‖
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Numerical Experiments: Smooth Source; δ = 10%
exact ρ = ‖x†‖

ρ = 1.1‖x†‖ ρ by discr.princ. < ‖x†‖
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Numerical Experiments: Smooth Source; Cross Sections
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Numerical Experiments: Bang-Bang Source
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Numerical Experiments: Bang-Bang Source; δ = 1%
exact ρ = ‖x†‖

ρ = 1.1‖x†‖ ρ by discr.princ. < ‖x†‖
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Numerical Experiments: Bang-Bang Source; δ = 2%
exact ρ = ‖x†‖

ρ = 1.1‖x†‖ ρ by discr.princ. < ‖x†‖
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Numerical Experiments: Bang-Bang Source; δ = 4%
exact ρ = ‖x†‖

ρ = 1.1‖x†‖ ρ by discr.princ. < ‖x†‖
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Numerical Experiments: Bang-Bang Source; Cross Sections

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

uex

uδIv,ρex
uδIv,1.1ρex
uδIv,ρdp
ρex

−ρex
ρdp

−ρdp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

uex

uδIv,ρex
uδIv,1.1ρex
uδIv,ρdp
ρex

−ρex
ρdp

−ρdp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

uex

uδIv,ρex
uδIv,1.1ρex
uδIv,ρdp
ρex

−ρex
ρdp

−ρdp

δ = 1% δ = 2% δ = 4%

29



Conclusions

Ivanov regularization allows to naturally incorporate
information on ρI∗ = R(x†)

If ρI∗ is known then optimal convergence rates are obtained
without needing knowledge on δ and φ!

underestimation of ρI∗ still yields a stable solution,
overestimation might be fatal

Thank you for your attention!
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Irwin Yousept

https://www.uni-due.de/mathematik/agclason/ifip2016

https://www.uni-due.de/mathematik/agclason/ifip2016

	motivation and problem setting
	Tikhonov, Ivanov, Morozov regularization
	a counterexample for the equivalence of Tikhonov and Ivanov
	convergence analysis
	application to inverse problems for PDEs

