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Inverse Problems

Related to measuring an effect with an intent to determine the cause
from obtained measurements.

g(·)f u

Effect: u is measured (with errors)
Cause: one of g or f is usually known

We consider physics-driven Inverse Problems where the system g is
known (– some physical law).

Murray-Bruce and Dragotti (EEE-CSP) PDE-Driven Inverse Problems 3



Inverse Problems in Physics: Diffusion

Diffusion
Stochastic movement of a collection of particles from regions of high
concentration to regions of lower concentration (until an equilibrium is
established).

Sensor networks measure:
Leakages in/from factories,
Temperature in server rooms,
Nuclear fallouts (Fukushima).

The field u(x, t) induced by a source distribution f (x, t) satisfies:

∂

∂t u(x, t)− µ∇2u(x, t) = f (x, t). (1)
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Inverse Problems in Physics: Wave

Wave
A disturbance that travels through a medium from one location to
another (transferring energy).

Such fields arise in acoustics, electromagnetics, fluid dynamics and so on.
Sensor networks measure:

Bioelectric neural currents in
neurons of cerebral cortex
(EEG/MEG),
Pressure waves from a
speaker/acoustic source.

1
c2

∂2

∂t2 u(x, t)−∇2u(x, t) = f (x, t).
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Sensor Networks and Inverse Problems

Other PDEs: Laplace’s Equation, Advection-/Convection-Diffusion
Equation, Helmholtz and many more.
Given these (spatiotemporal) measurements we may wish to find:

source of factory leakage, detect plume sources
find hot/cold spots in server clusters
predict nuclear fallout concentration elsewhere
center of mass of active regions
acoustic source localization

Sources can be localized or non-localized −→ Parameterize sources f .
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Problem Formulation: Field Sources

Instantaneous Non-Instantaneous

Po
in

t

f (x, t)=

M∑
m=1

cmδ(x−ξm, t−τm) f (x, t)=

M∑
m=1

cmeαm(t−τm)
δ(x−ξm)H(t−τm)

Li
ne f (x, t)=cL(x)δ(t − τ) f (x, t)=cL(x)eα(t−τ)H(t − τ)

Po
ly

go
na

l

f (x, t)=cF (x)δ(t − τ) f (x, t)=cF (x)eα(t−τ)H(t − τ)

Where,
L(x) ∈ Ω describes a line with endpoints {ξ1, ξ2}.
F (x) ∈ Ω describes a convex polygon with vertices {ξ1, ξ2, . . . , ξM}.
αm, cm, ξm and τm is the release rate, intensity, location and activation
time of m-th source.
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Problem Formulation: Field PDE Model

Let u(x, t) denote the field induced by a source distribution f (x, t) then a
physics-driven system, in general, has the Green’s function solution:

u(x, t) = (f ∗ g)(x, t) =

∫
x′∈R2

∫
t′∈R

g(x′, t ′)f (x− x′, t − t ′) dt ′dx′ (2)

where g(x, t) is the Green function of the field.
For e.g.,

2D diffusion field: ∂
∂t u(x, t)− µ∇2u(x, t) = f (x, t), has

g(x, t) = 1
(4πt)d/2 e−

‖x‖2
4µt H(t), where H(t) is the step function.
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Problem Formulation: Field Measurements

Aim
Estimate f (x, t) from spatiotemporal samples {ϕn,l = u(xn, tl )}n,l for
n = 1, . . . ,N and l = 0, . . . , L, of the measured field.

g(·)f u ϕ
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Source Reconstruction Framework

Recall that

u(x, t) =

∫
x′∈R2

∫
t′∈R

g(x′, t ′)f (x− x′, t − t ′) dt ′dx′

= 〈f (x′, t ′), g(x− x′, t − t ′)〉x′,t′ .

Mathematically the spatiotemporal sample ϕn,l is

ϕn,l = u(xn, tl )

= 〈f (x, t), g(xn − x, tl − t)〉x,t (3)
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Consider a weighted-sum of the samples {ϕn,l}n,l :

N∑
n=1

L∑
l=0

wn,lϕn,l =
N∑

n=1

L∑
l=0

wn,l 〈f (x, t), g(xn − x, tl − t)〉x,t

=

〈
f (x, t),

N∑
n=1

L∑
l=0

wn,l g(xn − x, tl − t)︸ ︷︷ ︸
=Ψk (x)Γ(t)

〉
, (4)

where wn,l ∈ C are some arbitrary weights (to be determined).
We wish to find f (x, t):

For our source types, can we choose functions Ψk(x) and Γ(t) that
makes this problem tractable? — YES!
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Let these (new) generalized measurements be

R(k) =
N∑

n=1

L∑
l=0

wn,lϕn,l =〈f (x, t),Ψk(x)Γ(t)〉

=

∫
Ω

∫
t∈[0,T ]

Ψk(x)Γ(t)f (x, t)dtdV ,

where Ψk(x) for k ∈ Zd , d = {1, 2}, and Γ(t) a family of properly chosen
spatial and temporal sensing functions, respectively.
Proper choice =⇒ solvability & stability of new problem.

As an example, take the instantaneous source distribution

f (x, t) =
M∑

m=1
cmδ(x− ξm, t − τm), then:

R(k) =
M∑

m=1
cmΨk(ξm)Γ(τm).
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Choice of Sensing Functions: 2D Case

For x ∈ R2, we may choose
Γ(t) = e−jt/T , and
Ψk(x) = e−k(x1+jx2), for k = 0, 1, . . . ,K .

Then,

R(k) =
M∑

m=1
cme−jτm/T e−k(ξ1,m+jξ2,m)

=
M∑

m=1
c ′mvk

m.

Can be solved to jointly recover c ′m = cme−jτm/T and vm = e−(ξ1,m+jξ2,m)

for m = 1, . . . ,M from {R(k)}K
k=0, using Prony’s method providing

K ≥ 2M − 1.
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Choice of Sensing Functions: 3D Case

For x ∈ R3, we may choose
Γ(t) = e−jt/T , and
Ψk → Ψk1,k2 (x) = e−k1(x1+jx2)−jk2x3 , for k1, k2 ∈ {0, 1, . . . ,K}.

Consequently,

R(k1, k2) =
M∑

m=1
cme−jτm/T e−k1(ξ1,m+jξ2,m)−jk2ξ3,m

=
M∑

m=1
c ′mαk1

mβ
k2
m .

Algebraically Coupled Matrix Pencil (ACMP) applied on sequence
{R(k1, k2)}k1,k2 can recover jointly all unknowns.
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Non-localized Source

The Instantaneous Line Source: f (x, t) = cL(x)δ(t − τ), thus R(k)
reduces to:

R(k) =

∫
Ω

∫
t
Ψk(x)Γ(t)f (x, t)dtdV

=cΓ(τ)

∫
Ω

Ψk(x)L(x)dV

=cΓ(τ)

∫
L(x)

Ψk(x)dS

=
1
k c`(ξ1, ξ2)Γ(τ)

2∑
m=1

(−1)mΨk(ξm)
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Non-localized source

From R(k) = 1
k c`(ξ1, ξ2)Γ(τ)

2∑
m=1

(−1)mΨk(ξm) and the usual choice for

sensing functions Γ(t) = e−jt/T and Ψk(x) = e−k(x1+jx2), then:

R′(k) , kR(k) = c`(ξ1, ξ2)Γ(τ)
2∑

m=1
(−1)mΨk(ξm)

= c`(ξ1, ξ2)e−jτ/T
2∑

m=1
(−1)me−k(ξ1,m+jξ2,m)

Can again recover c, τ and the endpoints (ξ1, ξ2) of the line source using
Prony’s method from {R′(k)}K

k=1 (providing K ≥ 4).
Polygonal sources (complex analysis):
surface integral → line integral → Ψk evaluated at vertices
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Computing R(k) reliably from sensor
Measurements?

R(k) =
N∑

n=1

L∑
l=0

wn,lϕn,l

Thus computing R(k) is equivalent to finding the weights wn,l . These
weights may be found:

1 By formulating a linear system (explicit)
Inversion of large matrices.
Conditioning and stability considerations.
Uniform/non-uniform samples.

2 Using results universal sampling/FRI theory (explicit)
Approximate Strang-Fix theory.
Exponential reproduction.
Uniform samples.

3 Using Green’s second identity (implicit)
For 2D diffusion field.
Uniform/non-uniform samples.

Murray-Bruce and Dragotti (EEE-CSP) PDE-Driven Inverse Problems 18



Explicit computation I: Linear System

We desire {wn,l}n,l , so that ∑N
n=1

∑L
l=0

wn,l g(xn − x, tl − t) = Ψk (x)Γ(t), where
g ,Ψk and Γ are known.
For e.g. the 2D heat problem g(x, t) = 1

4πt e−
‖x‖2
4µt H(t), also

Γ(t) = e−jt/T and Ψk(x) = e−k(x1+jx2).
1 Can formulate a linear system: g(x1 − x′1, tl − t′j ) · · · g(xN − x′1, tl − t′j )

...
...

g(x1 − x′I , tl − t′j ) · · · g(xN − x′I , tl − t′j )

[ w1,l
...

wN,l

]
=

 Ψk (x′1)Γ(t′j )

...
Ψk (x′I )Γ(t′j )


Gl,j wl = pj

⇒

[ G0,1 · · · GL,1
...

...
G0,J · · · GL,J

][ w0
...

wL

]
=

[ p1
...

pJ

]
.

Gw = p

2 Solve Gw = p, where G ∈ RN(L+1)×IJ , w ∈ RN(L+1) and p ∈ RIJ .

Murray-Bruce and Dragotti (EEE-CSP) PDE-Driven Inverse Problems 19



Explicit computation II: Approx. Strang-Fix

Alternatively, can obtain a closed-form expression for wn,l

Task: compute {wn,l}n,l such that,

∑
n

L∑
l=0

wn,l g(xn − x, tl − t) = e−k(x1+jx2)e−jt/T .

Our problem is multi-dimensional so in 2D, for e.g.,
xn = (n1∆x1 , n2∆x2 ) and tl = l∆t , we actually desire1:∑
n1,n2,l

wn1,n2,l (k) g(n1∆x1−x1, n2∆x2−x2, l∆t−t) = e−k(x1+jx2)e−jt/T .

1A lexicographic ordering of {(n1∆x1 , n2∆x2 )}n1,n2 gives the usual n = 1, . . . ,N,
where N = N1N2.
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Explicit computation II: Approx. Strang-Fix

Consider classical 1D exponential reproduction problem:∑
n∈Z

wn(k)g(x − n) = ejωk x ,

for k ∈ Z.
1 Strang-Fix Conditions: Above equation holds iff

G(ωk) 6= 0 and G(ωk + 2π`) = 0 ∀` ∈ Z\{0},

where G = F(g) is the Fourier transform of g (Poisson Summation).
2 Approximate Strang-Fix Conditions: For approximate exponential

reproduction, i.e.
∑

n∈Z wn(k)g(x − n) ≈ ejωk x , then

wn(k) =
1

G(ωk)
ejωk n.

The constant-least squares coefficients.
Murray-Bruce and Dragotti (EEE-CSP) PDE-Driven Inverse Problems 21



Explicit computation II: Approx. Strang-Fix

Can extend to multiple dimensions using Poisson summation formula for
lattices and the multi-dimensional Fourier Transform of g(x, t):

G(ωx1 , ωx2 , ωt)=

∫
t∈R

∫
x∈R2

g(x,t)e−j(ωx1 x1+ωx2 x2+ωt t)dxdt.

The desired coefficients for problem in 2D space and time is:

wn1,n2,l (k) =
1

G(−jk, k, 1/T )
ekn1 ejkn2 ejl/T .
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Implicit computation of weights {wn,l}n,l

1 Green’s second identity: Let u(x, t) and Ψk(x) be scalar functions
in C2, over Ω ∈ R2, then:∮

∂Ω

(Ψk∇u−u∇Ψk ) · n̂∂ΩdS =

∫
Ω

(
Ψk∇2u−u∇2Ψk

)
dV ,

where n̂∂Ω is the outward pointing unit normal to the boundary ∂Ω.
2 Substitute (inhomogenous) PDE and choose Ψk to satisfy

∂Ψk
∂t + µ∇2Ψk = 0, thus:∫

Ω

∂

∂t
(uΨk )dV − µ

∮
∂Ω

(Ψk∇u − u∇Ψk ) · n̂∂ΩdS =

∫
Ω

Ψk f dV .

3 Multiply through by Γ(t) and integrate over t = [0,T ]:∫ T

0
Γ

∫
Ω

Ψk
∂u
∂t

+u
∂Ψk
∂t

dV−µ
∮

∂Ω

(Ψk∇u − u∇Ψk )·n̂∂ΩdSdt︸ ︷︷ ︸
=R(k)

=

∫
Ω

∫ T

0
Ψk Γf dt dV
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Implicit computation of weights {wn,l}n,l

From:∫ T

0
Γ

∫
Ω

Ψk
∂u
∂t

+u
∂Ψk
∂t

dV−µ
∮

∂Ω

(Ψk∇u − u∇Ψk )·n̂∂ΩdSdt︸ ︷︷ ︸
=R(k)

=

∫
Ω

∫ T

0
Ψk Γf dt dV

⇒R(k) = 〈f (x, t),Ψk (x)Γ(t)〉

As such we can obtain {R(k)} by approximating the integrals from
the spatiotemporal samples using standard quadrature schemes.

Mesh required.
Integral simply a linear combination of field samples.
Distributed computation (consensus-based estimation).
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Synthetic data: Point Diffusion Source
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(a) Uniform spatial sampling (N = 49)
Centralized estimation for M = 1 diffusion source in 2D, field is sampled
for Tend = 10s at 1

∆t = 1Hz . Here K = 10.
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(b) Non-uniform spatial sampling (N = 45)
Centralized estimation for M = 1 diffusion source in 2D, field is sampled
for Tend = 10s at 1

∆t = 1Hz . Here K = 10.
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Synthetic data: Line Diffusion Source
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N = 45 arbitrarily placed sensors, field sampled at 10Hz for T = 10s
with measurement SNR= 20dB. K = 6 and R = 5.
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Synthetic data: Triangular Diffusion Source
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N = 90 arbitrarily placed sensors, field sampled at 10Hz for T = 10s
with measurement SNR= 35dB. K = 6 and R = 5.
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Simulation Results: Real Diffusion Data
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(b) Real field (left) and its reconstruction (right) at t = 7.1s.
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(c) Real field (left) and its reconstruction (right) at t = 8.2s.
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(d) Real field (left) and its reconstruction (right) at t = 10.2s.

Figure 12 Sensor distribution, location estimates and the field reconstructions. Source is
located at (0.06058, 0.03465) and activated at τ = 6.25s. A 15−bit uniform quantizer with
dynamic range (−1, 1) is used; for K = 5.
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Figure 12 Sensor distribution, location estimates and the field reconstructions. Source is
located at (0.06058, 0.03465) and activated at τ = 6.25s. A 15−bit uniform quantizer with
dynamic range (−1, 1) is used; for K = 5.
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Simulation Results: Laplace - Synthetic data
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Figure 1: Single point source recovery in 3D using samples obtained by
N = 57 sensors with K1 = K2 = 1 for spatial sensing function family. Results
for 20 independent trials are given.
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Conclusion

1 Reconstructing localized and non-localized sources: point, line and
(convex) polygons.

Compute generalized measurements.
Use tools from complex analysis to modify R(k).
Recover location of point sources or endpoints (vertices) of line
(polygonal) source.

2 Further extensions
Reconstructing localized sources in bounded regions (rooms).
3D source recovery.

3 Generalisation Possible
Same principle can be generalized to PDE-driven fields: wave,
Poisson etc.
Compute the analysis coefficients {wn,l}.
Turn to Finite Rate of Innovation (FRI) theory: exponential
reproduction.
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Thank You.
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Approximate Strang-Fix Error

From
wk,n =

1
G(ωk)

ejωk n,

then the approximation ψ̂k(x) of the exponential ψk(x) = ejωk x is
ψ̂k(x) =

∑
n∈Z wn(k)g(x − n).

This becomes ψ̂k(x) = ejωk x 1
G(ωk )

∑
`∈Z G(ωk + 2π`)ej2π`x when we

substitute wn(k) = 1
G(ωk ) ejωk n and apply Poisson’s summation formula.

We obtain the error ε(x) = ψk(x)−ψ̂k(x) for this approximation:

ε(x) = ejωk x

(
1− 1

G(ωk)

∑
`∈Z

G(ωk + 2π`)ej2π`x

)
.

Will be small if G(ωk + 2π`) decays quickly enough to zero as |`|
increases.

Exponential decay for Gaussian.
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