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Electrical impedance tomography (EIT)



Electrical impedance tomography (EIT)
is an emerging medical imaging technique

Feed electric currents through

electrodes. Measure the re-

sulting voltages. Repeat the

measurement for several cur- .
rent patterns.

Reconstruct distribution of Z
electric conductivity inside the
patient. Different tissues have
different conductivities, so EIT
gives an image of the patient's
inner structure.

EIT is a harmless and pain-

less imaging method suitable
for long-term monitoring. wﬁf



This talk concentrates on applications of EIT
to chest imaging

Medical applications: monitoring
cardiac activity, lung function, and
pulmonary perfusion.
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The mathematical model of EIT is the inverse
conductivity problem introduced by Calderén

Let Q@ c R? be the unit disc and
o : 2 — R the conductivity with
0<c<o(z)<Cforze.

Injecting current ¢ at the boundary 02
leads to the elliptic PDE

V.-oVu = 0inQ,
0% = @ on Q.

For uniqueness we require [0 ¢ = 0
and [y u=0.

Boundary measurements are modelled
by the Neumann-to-Dirichlet map

Calderén's problem is to re-
cover o from the knowledge
of R,. Itis a nonlinear and
ill-posed inverse problem.
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We illustrate the measurement process in EIT

Given the phantom
o




We illustrate the measurement process in EIT

We apply currents on the boundary
o
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We illustrate the measurement process in EIT

Creating the voltage distribution
u
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We illustrate the measurement process in EIT
We can measure the boundary trace
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We illustrate the measurement process in EIT
This is the current-to-voltage measurement
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We illustrate the measurement process in EIT

We do this for different current patterns
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We illustrate the measurement process in EIT

We do this for different current patterns
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Representing the measurement

» For a fixed conductivity o, the Neumann-to-Dirichlet map (ND
map), also know as current-to-voltage map, is the linear
operator that maps every possible Neumann data to the
corresponding Dirichlet data.



Representing the measurement

» For a fixed conductivity o, the Neumann-to-Dirichlet map (ND
map), also know as current-to-voltage map, is the linear
operator that maps every possible Neumann data to the
corresponding Dirichlet data.

» We measure the ND map with respect to an orthonormal basis
©n (the applied current), and obtain a matrix approximation
R, by the inner product

(Rs)ij = (Rowi, i) = (uilaq, ¢;)-
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The D-bar algorithm



A (very) brief history of the two-dimensional
D-bar method for EIT important for our work

1980 Calderén: Introduces the inverse conductivity problem

1988 Novikov & 1996 Nachman: Uniqueness and reconstruction
for 2D EIT with C? conductivities and infinite-precision data

2000 Siltanen, Mueller and Isaacson: Numerical implementation
of Nachman's method

2009 Knudsen, Lassas, Mueller and Siltanen: Regularized EIT



There exists a nonlinear Fourier transform
adapted to electrical impedance tomography




The nonlinear Fourier transform can be recovered
from infinite-precision EIT measurements
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[Nachman; 1996]



Measurement noise prevents the recovery of the
nonlinear Fourier transform at high frequencies
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We truncate away the bad part in the transform:;
this is a nonlinear low-pass filter
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There is currently only one regularized method for
reconstructing the full conductivity distribution
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[Knudsen, Lassas, Mueller & Siltanen; 2009]



Scattering transform by a Born approximation

We can compute the scattering transform from the ND map by eval-
uating

t(k) = /m 0, (Ry — Ro)8,(C, K)ds(C).



Scattering transform by a Born approximation

We can compute the scattering transform from the ND map by eval-
uating
tk) = [ 9, Ry~ Ro)D,0(C, k)s(¢).
o0

We approximate the complex geometric optics solutions by their
asymptotic behaviour

¢(Ca k) ~ eikz'
Then we get (on the unit disk)

(k)= [ 9, (Ry — Ro)d,e™ds(C)
o

- / ikCe®(Ry — R,)ik¢e™ ds(¢)
o0



Scattering transform by a Born approximation

We can compute the scattering transform from the ND map by eval-
uating

t(k) = /{m 0, (Ry — Ro)8,(C, K)ds(C).

We approximate the complex geometric optics solutions by their
asymptotic behaviour

d}(Ca k) ~ eikz'
Then we get (on the unit disk)

P (k) = /8 ) ikCe™ C(Ry — Ry)ikCe™ds(¢)

Which we use to solve the D-bar equation to obtain the reconstruc-
tion of ol



What is the central idea of our research

» Introduce a framework for current patterns applied on a part
of the boundary by defining a partial-boundary
Neumann-to-Dirichlet map

» Analyse the error compared to full-boundary current patterns

» Restricted measurement on part of the boundary recovered by
extrapolation

» Use approximation to compute reconstructions from the partial
Neumann-to-Dirichlet map



Outline

The partial-boundary problem



Why partial boundary?

In stationary monitoring, one
might not have access to part
of the patient, i.e. patient

lying on back. e
Devices and electrodes é

are bulky and restrict available =~
space.

Especially  three dimen-
sional: Full boundary is simply
impractical.

cederh



A note on partial-boundary data

» For full-boundary data, the Dirichlet and Neumann problems
are essentially equivalent.
» This is not the case for partial-boundary data! (Different
subsets of the Cauchy data)



A note on partial-boundary data

» For full-boundary data, the Dirichlet and Neumann problems
are essentially equivalent.
» This is not the case for partial-boundary data! (Different
subsets of the Cauchy data)

» The Dirichlet problem => Voltage input
» Partial zero boundary condition means insulation, a physical
body is normally not
» Voltages will distribute on the whole boundary



A note on partial-boundary data

» For full-boundary data, the Dirichlet and Neumann problems
are essentially equivalent.
» This is not the case for partial-boundary data! (Different
subsets of the Cauchy data)

» The Dirichlet problem => Voltage input
» Partial zero boundary condition means insulation, a physical
body is normally not
» Voltages will distribute on the whole boundary
» Not practical



A note on partial-boundary data

» For full-boundary data, the Dirichlet and Neumann problems
are essentially equivalent.

» This is not the case for partial-boundary data! (Different
subsets of the Cauchy data)

» The Neumann problem => Current input
» Partial zero boundary condition means just no current is
injected
» BUT: Voltages will still distribute on the whole boundary



The partial-boundary problem setting

Applying a current f at part of the boundary

I C 02 leads to the elliptic PDE

V-oVu = 0inQ,
a% = fonl
o5, = 0onlc=0Q\l

With the zero mean conditions

/fds:Oand/ uds=0.
r o0

For the Neumann problem
Francis Chung (2014) has
shown uniqueness for o €
C%(Q) with Q C R" and
n> 3.



Modelling the boundary functions

We use a space of functions supported on I' as a subspace of
H=1/2(9Q) (zero mean H~1/2 functions) defined by

H2(09) = {p € HY2(09) : supp (¢) =T and /r90 = 0}.



Modelling the boundary functions

We use a space of functions supported on I' as a subspace of
H=1/2(9Q) (zero mean H~1/2 functions) defined by

H2(09) = {p € HY2(09) : supp (¢) =T and /F‘P = 0}.

Given a linear and bounded operator T : H=1/2(99Q) — Ijlr_l/z(GQ),
we define the partial ND map as



Modelling the boundary functions

We use a space of functions supported on I' as a subspace of
H=1/2(9Q) (zero mean H~1/2 functions) defined by

H2(09) = {p € HY2(09) : supp (¢) =T and /F‘P = 0}.

Given a linear and bounded operator T : H=1/2(99Q) — Ijlr_l/z(GQ),
we define the partial ND map as

Ry =RsT.

Let the basis functions on I be produced by Z, i.e. ¢ = Z¢ for
@ € H~Y/2(9Q), then the central identity follows

RO’SE/:RO'ISOZ,’%O'SD'



Reformulation of the problem setting

Given the current Zyp = ¢ € ﬁ;l/z(E)Q)
consider the Neumann problem

{ V-oVu = 0inQ,

od4 = § ondQ

The inverse problem is then: Given measure-
ment of

Ry - HY2(0Q) — HY?(8Q)

what can we deduce about o7



Why this formulation?

» Calculating the partial ND matrix with respect to an
orthonormal basis:

(Ry)ij = (Rovi,0j) = (Ro @15 ;)

» For the error analysis to the full-boundary ND map we only
need knowledge of Z.
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Error analysis



Representing the ND map
We want to represent the Neumann-to-Dirichlet map by boundary

layer potentials. For that we multiply the conductivity equation with
a smooth test function and integrate over Q

/ V(oVu)vdx = 0.
Q



Representing the ND map
We want to represent the Neumann-to-Dirichlet map by boundary

layer potentials. For that we multiply the conductivity equation with
a smooth test function and integrate over Q

/ V(oVu)vdx = 0.
Q

Applying partial differentiation twice we obtain Green's identity:

/V(aVu)vdX:/ o0y uvds—/ o0, vuds—i—/V(aVv)udx.
Q o o Q



Choosing a suitable Green’s function

Let G,(x,y) be the Green's functions of the conductivity equation
with Neumann boundary conditions, that is

—V(oVG,(x,y)) =d(x —y), for x,y € Q,
0, G(x,y) =0, fory € 0Q,x € Q.



Choosing a suitable Green’s function

Let G,(x,y) be the Green's functions of the conductivity equation
with Neumann boundary conditions, that is

—V(eVGy(x,y)) = (x — y), for x,y € Q,
0, G(x,y) =0, fory € 0Q,x € Q.

We can set v(y) = G,(x,y) and insert in

/V(UVu)vdy—/ o0, uvds—/ o0, vuds—i—/V(aVv)udy
Q o0 oN Q

to obtain

u(x) = Oy u(y)Gs(x,y)ds,, Vx € Q.
o0



Representation by single layer potentials

Taking the limit x — 09, we obtain the identity
u(x) = (S, 0, u)(x) , VxeoQ,

where S, : H7Y/2(9Q) — HY2(dQ) is the single layer potential
given by

Syp(x) = /8 . Go (%, y)p(y)dsy.



Representation by single layer potentials

Taking the limit x — 09, we obtain the identity
u(x) = (S, 0, u)(x) , VxeoQ,

where S, : H7Y/2(9Q) — HY2(dQ) is the single layer potential
given by

Syp(x) = /8 . Go (%, y)p(y)dsy.

Thus, in this representation, the Neumann-to-Dirichlet map coincides
with the single layer operator restricted to the space H=1/2(9Q):

Re = Sy - HY2(0Q) — HY?(8Q).



Basis of the error analysis

We can use this representation to define the partial ND map, by
using the central identity

Rop =Ro Ly = S;(T ) = uloq,



Basis of the error analysis

We can use this representation to define the partial ND map, by
using the central identity

ﬁago =RoeZp = S,(Z )= ulsq,
and the difference of ND maps can then be simply expressed by

(’ﬁ'o - RU)SD = Ra(g_‘)p) = 50(95_90)'



Basis of the error analysis

We can use this representation to define the partial ND map, by
using the central identity

ﬁogo =RoeZp = S,(Z )= ulsq,
and the difference of ND maps can then be simply expressed by
(ﬁo - RU)SD = Ra(g_‘)p) = 50(95_90)'

Further the error of ND maps is

I(Re — Ro)elli200) = I15+(Z —1)@ll12(0)-



Basis of the error analysis

We can use this representation to define the partial ND map, by
using the central identity

Rop =Re Lo = S:(Z ) = ulog,
and the difference of ND maps can then be simply expressed by
(Ro = Ro)p = Ro(@—¢) = So(&—¢)-
Further the error of ND maps is
I(Re = Ro)elli2o0) = 15-(Z ~1)¢ll 12(00).

:> By explicit knowledge of 7 we can give an asymptotic estimate
dependent on |I].



Choices for 7 - scaling

The functions ¢ are scaled on the partial-boundary ' We
parametrize the boundary 0Q by an angle 6 € [0,27]. Then de-
note I = [y, 62] C [0,2x]. The partial-boundary projection is then
given by

-0, i
1580(9):{(’0( ') toer, with r:—“_|

0 else, 10Q
0.4 0.4
0.2 0.2
0 0
-0.2 -0.2

0.4 0.4



Choices for 7 - cut-off

The second option is a straight forward cut-off, such that

(9) — ﬁ Jre(r)dr ifoerl,

B(0) = ¢ o(0) = { ¢ .

We subtract the mean to ensure ¢ € ﬁr_l/z((?Q)

04 04
02 0.2

0 0
0.2 0.2

0.4 0.4



Choices for 7 - electrode projection

A more realistic approach is given by the nonorthogonal projection
for a set of electrodes E,,, m = 1,..., M, introduced in [Hyvonen09]
by

M
1(0) = 3 %2 [ (o) ar,
m=1 m m

where E,, are the so-called extended electrodes.

0.5

-0.5

T -nl2 0 2 ™ - -nl2 0 2 ™



Data error

Proposition (Error of the partial ND map)

Let Q C R? be the unit disk, o € L°(Q) be a conductivity with

0 <00 < 0o(x) and o =1 close to 09. N

Denote the partial ND maps by RS = RoZ¢ and RS = R, I°.
Let the basis functions be ¢,(0) = \/%e"”e forn#0, and I C 00
with €| = h > 0. Then, for 0 < h <, there is a constant C > 0
independent on n such that:

(RS — Ro)enlliza0) < Ch,
(RS — Ro)enlliza0) < Cn*h.



Data error: Idea of proof

Starting with

”(ﬁo - RJ)‘PnHLZ(aQ) = ||50(I*1)‘PHHL2(8Q)~



Data error: Idea of proof

Starting with

”(ﬁ'a - RJ)‘PnHLZ(aﬂ) = HSU(Ifl)QDnHLz(aQ)'

Using boundedness of the single layer potential, yields

[15:(Z =1)enlliz(00) < cl(Z =1)¢nllH-1(50),



Data error: Idea of proof
Starting with
(R — Ra)enlliz(o0) = I1Se(Z —1)¢nll12(00)-
Using boundedness of the single layer potential, yields
[15:(Z =1)enlliz(00) < cl(Z =1)¢nllH-1(50),

where ]2 1(p0) = Sien(1+ k)~ (K)[? and

21 .
20 1/ o(0)e 0 dg.
0

T 2r

Thus we are left to calculate the Fourier coefficients for each choice
of T.



Error for difference data

The estimates immediately extend to difference data.

Corollary
Under the assumptions of the Proposition we have

I(RS1 = Ro1)enlli2o) < Ch,
[(R5.1 — Ro1)enlliza0) < Cn?h,

where le = 'Rg — Rl, le = 'Rg — Rl.



Operator estimates for the cut-off

For the cut-off case, this is equivalent to the operator estimates
[R5 — Rolli2(90)12(00) < Ch.

and B
IR61 — Roallizo)—12(00) < Ch.



Error of scattering transform

Given the operator estimates, we can directly prove:

Proposition

Let o € C%(Q) be bounded by 0 < ¢ < o(x) < C for all x € Q and
o =1 close to 0.

Let Q C R? be the unit disk and T C 9Q with |T€| = h.

For a fixed cut-off radius 0 < R < oo, let t?p be computed from
Ri and tp° from RS,

Then for 0 < h < 7, there are constants Cy, C, such that

tr” (k) — tg"(k)

k

< Chlk|e@k | for |k| < R.




Reconstruction error

Theorem (Reconstruction error)

Under the assumptions of the last proposition. Additionally let or
and g be reconstructed from t5", t5® respectively. Then there

exists a constant C > 0 depending only on R, such that

lor = orll12(Q) < Ch.



Reconstruction error

Theorem (Reconstruction error)

Under the assumptions of the last proposition. Additionally let or
and g be reconstructed from t5", t5® respectively. Then there

exists a constant C > 0 depending only on R, such that

HO’R — 5RHL2(Q) < Ch.

The proof uses continuous dependence of solutions of the D-bar
equation on the error in scattering transform and is based on:
[Knudsen, Lassas, Mueller and Siltanen 2009].
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Computational verification



Measurement extension

The previous estimates all assume measurements on the full bound-
ary. This is of course unrealistic.



Measurement extension

The previous estimates all assume measurements on the full bound-
ary. This is of course unrealistic.

Hence we have to extend the measurement from I' to 99 in a
sensible way.

Requirement: the extension has to preserve the linear error esti-

mates, which is for instance already surpassed by linear interpolation
O(h?).



Measurement extension

The previous estimates all assume measurements on the full bound-
ary. This is of course unrealistic.

Hence we have to extend the measurement from I to 99 in a
sensible way.

Requirement: the extension has to preserve the linear error esti-
mates, which is for instance already surpassed by linear interpolation

O(h?).

—> The error is governed by restricting the input current to I, not
by restriction of the measurement!



The optimal measurement

Input @ Full data ulgq
04
0.05%
021
0r 0
-0.2
-0.05
-0.4 : : : : : :
- -7r/2 0 /2 - -7i/2 0 2




The real measurement on the partial-boundary

Input @ Partial data u|r
0.4 .
0.05%
021
0r 0
-0.2
-0.05
-0.4 ‘ : ‘ ‘ ‘ ‘
- -/2 0 72 -2 0 2




Difference data is smoother

Difference data R,1 ¢ Measured difference
5 x10° ’ , x10°
15}
]
05
NG
-05
-1
15 - 15

T -7r/2 0 /2 T Tor -7i/2 0 2 T



Recovering the measurement by cubic splines

x107°

\ Difference data R,1 ¢ Recovered trace
x107

T -7r/2 0 /2 T Tor -7i/2 0 2 T



The convergence result: Laplace equation

We want to verify the convergence for the constant conductivity
o =1 and basis functions of different order:

I(Ry — R1)enlli2(a0) < Ch

scaling cut-off

=—Theoretical rate| =——Theoretical rate

10" H{—n=1 1 10" f|—n=1




The convergence result: Different conductivities

We want to check that the convergence estimate holds for different

conductivities

(R — Ro)e1llzon) < Ch

scaling

Theoretical rate

101 L |y = 1
== =Circular inclusion
Heart-and-Lungs

[(Ro — Ro)erll2

10"

cut-off

L | g =1
== =Circular inclusion
Heart-and-Lungs

Theoretical rate




The convergence result: difference ND-matrices
and extrapolation

At last we check the error of difference ND-matrices with 16 basis
functions and introduce the extrapolation, we should have

IRs1 — Ry1]l2 < Ch.

Circular inclusion Heart-and-Lungs
1 =—Theoretical rate =——Theoretical rate
10" | |=—ND cut-off 1 1 00 [ | ==—=ND cut-off
ND cut-off extrapolated ND cut-off extrapolated
= ND scaling == ND scaling
= =ND scaling extrapolated| = =ND scaling extrapolated|
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Reconstructions



A simple circular inclusion: cut-off basis

Phantom 75% 50%
Full boundary 25% 12.5%

DD

12



A simple circular inclusion: scaling basis

Phantom 75% 50%
Full boundary 25% 12.5%

12



Heart-and-Lungs on the unit circle: cut-off basis

Phantom 87.5% 75%

oo &

Full boundary 50%




Heart-and-Lungs on the unit circle: scaling basis

Phantom 87.5% C’/o
Full boundary 50%
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The convergence result: reconstructions
Let us check if the error estimates for the reconstructions hold as

llor — 5R“L2(Q) < Ch.

Circular inclusion Heart-and-Lungs

Theoretical rate
——Cut-off
Scaling

0 Theoretical rate
10 [ | e Cuit-off
Scaling

lor — orll2
>




A realistic chest phantom

Phantom (on back) i Full boundary




A realistic chest phantom: cut-off basis

Phantom 75%

66%




A realistic chest phantom: scaling basis

Phantom 75%

e A9

66%
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Conclusions



Conclusions

» With the partial ND map, we have introduced a framework in
which we can represent the measurement with respect to
various choices of boundary mappings.

» We have established error estimates to the full-boundary case.

» By the extrapolation approach of the measurement, even more
complicated phantoms can be reconstructed.

» Results will be submitted very soon



Ongoing research: A realistic approach

1 Use a realistic model (such as complete electrode model) and
incorporate noise

2 Extrapolation by optimization

» Alternating scheme to update extrapolated traces and partial
ND map

3 Incorporating real measurement data



Thank you for your attention
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