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Introduction

B Composite materials are at the foundation of many
contemporary engineering designs. Typically such materials
have periodic structure.

m Non-destructive testing

Important question: What kind of information about the
microstructure can we detect from scattering data?



Introduction

Mathematical understanding of wave propagation through
periodic media of bounded support.

Joint work with B. Guzina and S. Moskow
Transmission eigenvalues for a periodic medium and their use to

obtain information about the effective material properties of the
medium.

Joint work with H. Haddar and |. Harris



Scattering by a Periodic Media

Y := [0, 1]9, e > 0 small compared to ka. The wave number K is
fixed. x € D is referred to as the slow variable and x/e € Y as the fast
variable. Let A(y) = (a;(y)) be a symmetric matrix and n(y) s.th.

m a;(y) and n(y) are periodic functions with period Y

moinf inf £ A(y)¢ = Amin > 0, sup sup € - A(y)¢ = Amax < o0
yevy [¢|=t yeyY |g|=1

infycy N(Y) = Nmin >0 and supycy N(y) = Nmax < o0
The material properties of the inhomogeneity D are represented by
Ac == A(x/e) and n. := n(x/e¢) for x € D.



Scattering by an Inhomogeneous Media

The scattering problem for a given incident wave u' by the periodic
media D reads:

V- AX/e)Vxw, + k®n(x/e)w, = 0 in D
AU, +K?u. = 0 in RI\D
u—w. = f on oD

v-VxU.—v-A(X/e)VxWw. = g on 9D

where the scattered field u, satisfies the Sommerfeld radiation
condition
d—1

lim riz (8“6 - iku6> 0, r=|x]>o0
or

r—o0

f=—u' and g:=—v- VU  ontheinterface AD.



Homogenization Approach

BENSOUSSAN-LIONS-PAPANICOLAOU (1978), KESAVAN (1979),
MOSKOW-VOGELIUS (1993), ALLAIR (2002), KENIG-LIN-SHEN,
(2012)-(2013) ...

m Start with the ansatz
We(X) ~ Wo(X, ¥) + ewi (X, ¥) + EWa(X, y) + -
Ue(X) ~ Uo(X, ¥) + et (X, ¥) + La(X, y) + -
m Use the multi-scale differentiation

]
V=Vt _Vy

m Compare the powers of ¢

Note: For an arbitrary function ¢(x, y), x € Dand y € Y,
¢(x) denotes the mean value

3(x) = /Y o(x. ) dy.



Homogenization Approach

B U. = Up(x) in the exterior of D
m W, depends only on x
m the homogenized (formal) limiting problem is

V- -AVWy + K2npwo =0 in D
Aup+ K?uy=0 in RI\D
Uu—-w=Ff on 0D
v-VUug—v-AVW =g on oD.
(9xj

ayk(y)) dy

(3/'/(}’) —ai(y)

and the cell functions x/(y) are H'(Y) periodic solutions to

Yy AT = Ty - AVY = aly)

where n,=n and (Ap); :/
14

with zero-mean. (We use the Einstein summation notation).



Homogenization Approach

m Furthermore

wi(x,y) = — /(y)W + w1 (x) referred to as bulk correction
)

m It can be shown that w4 (x) satisfies

i 3 983
V~AhVW1+k2nhW1 = (ak,xl — ak/aX > ﬂ k? (ak/ op nXk> %

oy | 0xi0x;0x Ay OXk
where (3 is the unique zero-mean Y-periodic solution to

Vy - AnVyB(y) =n—n(y)

The source term can be shown to be zero! Hence it suffices to
take wy =0, in D.

B W + ewq and up do not satisfy the transmission conditions (even
approximately to the correct order). Hence we need to correct
for the boundary.



Homogenization Approach

Our boundary corrector is the radiating solution to
A(x/e)VO. + k?n(x/e)d. = 0 in D
NG, +K?0.=0 in R\ D

8W0
0F — 67 = —X(y) 5 on oD
0%

(Vb -v)" — (A(x/e)VO. - v)~ = (rot(q) + k2AV,B(y)Wo) - v on 9D

where q(x, y) is the Y-periodic solution to (note that vo — A,Vwy has
Y-average zero and zero divergence)

rot,(q) = vo — AV with
—(a0) - a2 (y)) 2
(vo(x,¥)); = <au(Y) a'k(y)ayk (y)) ox;

Alternatively, the Neumann transmission condition read

("0 — - 10t(q) + K24,V B(y)w >.y



Homogenization Approach

Let U, € H} ,(R9) is such U, = u. inR?\ Dand U, = w, in Dfor e > 0.

Lemma
For any ball Bg containing D,

[Ue = (Uo + €Ut + €0c) | 1By < Cellwolle(p)

where the constant C is independent of e and wy.

The proof is done by a duality argument to bound

/ (UE — Uo — 6U1 — e&e)qbdx
Br

by [|6ll14-1(s,) independently of e.



Homogenization Approach

The analysis of the boundary corrector function 6.
[0cll (D) + 10ell g1 g\ B) < Cre™ 2| Woll e (o)

[0cl28a) < CrlWollHe(y-

Note The L2-estimate is proven only for the corrector 4. using duality
argument and the previous lemma. L2-L? general estimates for the
transmission problem are not available (see AVELLANEDA-LIN and
KENIG-LIN-SHEN for the Dirichlet case.)

Unfortunately, finding the limit of the boundary corrector 6. as e — O is
a very hard problem in general

There is a vast literature in the case of the Dirichlet or Neumann
boundary value problems (BENSOUSSAN-LIONS-PAPANICOLAOU,
ALLAIR, MOSKOW-VOGELIUS, GERARD VARET-MASMOUDI .. .)

For the boundary corrector at a straight interface between a periodic
and a homogeneous half space (CLAY-FLISS-VINOLES)



Homogenization Approach

Theorem

Let u., w, be the solution to the original problem, uo, wo the solution to
the homogenized problem, and wy = —X/(y)%—"xvlf’ the bulk correction.
Then

[t = Uoll 1 (Ba\py + [IWe — (Wo + W)l oy < Ce'/2||Wol| ()

|ue — Uoll2(Ba\D) + |We — Woll2(p) < Cel[Woll1e(p)-

Theorem
In addition let 6. be the boundary corrector. Then

[We — (Wo + ewr + €0c) | 12(Br) < C62||W0HH4(D)

[ We — (Wo +ews +€0. )| 1 (p) + 1| Ue — (Uo+€0c )| 1 8Dy < Ce>?||Wo | e




Homogenization Approach

Remarks

m While the bulk correction is necessary for H' convergence, it
does not in general improve upon the L? estimate. Unless the
boundary correction goes to zero (in general not the case)

m Our convergence approach can be iteratively used to obtain
higher order estimates.The boundary correctors have the same
structure.

m Interesting is that starting at the order €2, the mean of the
scattered field outside D is affected not only by the boundary
layer but also by the mean of the bulk correction. This is referred
to as "dispersion effect" ALLAIRE-AMAR 1999,
WAUTIER-GUZINA 2014,

Such an effect could be important for the inverse problem of
detecting microstructure effects in the measured (mean)
scattered field outside the periodic media.



The Limit of the Boundary Layer

Example of a Boundary Corrector Limit

m Consider D := [0, 1] x [0, 1] (more generally it can be a convex
polygonal domain with sides of rational or infinite slope) and by
linearity compute lim._,o 6. with non-zero transmission data only
on one side at a time. Let us fix the side x; = 1, where

0 —6- :X1(x/€)g'j:° on DN {xy =1}
1

(VO.-v)t —(a(x/e)Vo. -v)” = %gﬂx/d%—f on DN {xy =1}

where

1
01(x/e) = ar1(x/e) — a1k(x/€)?)>;k(x/€) — Ai1



The Limit of the Boundary Layer

Example of a Boundary Corrector Limit

The above transmission data depends on the choice of e. If, for
example ¢ = 1/k for k an integer, the boundary layer problem would
see only the boundary slice of the periodic functions

X'(v) and gi(y).

Hence one can expect different limits of 6. for different sequences of e
going to zero. J

We assume that ¢ is a sequence going to zero for which the
boundary cutoff is fixed, i.e. the fractional part of 1/¢ is constant, i.e.
1 1
——|—] =4 for all k
€k (%

and the boundary data are now

X1 (57 y2) and g1 (6* }/2)



The Limit of the Boundary Layer

Need the solution of a strip problem

G"={y1>0,€[0,1]} and G ={y1 <0;)2€[0,1]}

Vy-alys, o) Vw™ =0 y1 <0, —00 < Yo < 40
A,wt =0 y1 >0, —00 < Yo < 400
wt(0,y2) —w(0,y2) = X' (4, y2) —00 < Y2 < +00

Oy, wt(0,y2) — @i(0, ¥2)0y,w= (0, y2) = 91(d. y2) —00 < yo < +00

such that w*, w— are periodic in y» and e~ Vw~ € L?(G~) and
evwt ¢ L2(GT) for some v > 0.

This problem has a unique solution up to an arbitrary constant (the
proof adapts the approach in J.L. LIONS (1981))

Setdt = ylim wand d~ = I|im w and define

Y1——o00

i=dt—d




The Limit of the Boundary Layer

We can prove that 6., — ¢* strongly in L2 (R?) where ¢* solves

V-AVO* + k?n60* = 0 in D
AG* +K%0* = 0 in R®2\D
- *6W0 _
(6 ) —(@) = 0 on 9D\ {xy =1}
_ Pw
(VO -v)* — (AVO* -v)” = a12(0,y2)w(0, y)~ pre 82(2 ondDN {x =1}
(VO*-v)t —(AVO*-v)~ = 0 on 9D\ {x3 =1}

where A is the homogenized matrix, and ai2(d, y2)w(0, y»)~ denotes
the average in the y» direction of a;ow at y; = 0 coming from the left
side of the strip.



Transmission Eigenvalues

Values of k. € C for which the transmission eigenvalue problem

Av+Kk?v =0 in D

V- -ANVwW+Kknw=0 in D
w=v on oD
v-AVw=v-Vv on oD

has a non trivial solution are called transmission eigenvalues.

m Ifeither Ay — 1 >00r Apax — 1 < 0or A=/ and either
Nmin — 1 >0 0r npay — 1 < 0 or n = 1, there exists infinitely many
real transmission eigenvalues (PAIVARINTA-SYLVESTER (2008),
CAKONI-GINTIDES-HADDAR (2010), CAKONI-KIRSCH (2010)).

m At a transmission eigenvalue, there is an incident wave that
produces an arbitrarily small scattered wave.



Transmission Eigenvalues

First step is to study asymptotic of the resolvent: For f, g € L2(D)

Av. +Kev.=f in D

V-AVW, +Knw. =g in D
W, =V, on oD
v-AVw,—v- -V, on oD

The limiting problem is

Avp+Kovyg=f in D

VAW + K2npwy = g in D
W =W on oD
v-AVWy —v -V on oD

Recall the bulk correction given by

i 8W0
wi(X,y) = =X (¥Y) 5
0%

with x/ the solution of same cell problem as for the forward problem.



Transmission Eigenvalues

To present the idea assume that Ay, > 1. We introduce

X(D) := {(w,v): w,veH(D)|w-ve H(D)}.

ae((We» Ve); ((,017902)) = /AtVWE : v¢1 + AminWe¢1 ax — /VVE : v¢2 + VeEZ ax
D D

be ((Wea Ve); (4,01 5 902)) = /(kzns + Amin)W€¢1 - (k2 + 1)Ve¢2 dx
D

Define the isomorphism T : X(D) — X(D) such that
(w,v) — (w,—v + 2w) and the operators A, B, : X(D) — X(D) by

(Ac(We, Vo) T(We, Ve)) == ac((We, Ve); T(We, V), coercive

(Bek(We, Ve); (We, Vi) := be (W, Ve); (We, Ve)),  compact

Fore =0, A., n. are replaced by Ay, np.



Transmission Eigenvalues

The interior transmission problem reads:
(Ac +Be k) (We, ve) =4 in X(D)

or
(I+A7Ce + KPATTK,) (We, ve) = ¢

with C. and K. compact operators independent of k2

Theorem
If k2 is not a transmission eigenvalue then

m (w.,Vv.) converge to (wp, vp) weakly in X(D) (strongly in
L2(D) x L3(D))

m If in addition wy € H?(D) then

(We — wo — ewy (X, X/€), Ve — Vo) — (0,0)

strongly in X(D). The rate of convergence is in general ¢'/2.




Transmission Eigenvalues

m The monotonicity result for a sequence of real transmission
eigenvalues

kj(AmaXa Nmin, D) < k£ < kj(amina Nmax D)

if Amin > 1 and 0 < npax < 1, implies that each of these real
eigenvalues is bounded with respect to e.

m Then the above analysis allow us to prove that each k!
converges to an eigenvalue of the homogenized problem. In
particular this is true for the first transmission eigenvalue.

m It is possible to actually obtain the convergence rates as well as
the correction term for simple eigenvalues. The approach is
based on the non-linear version of a result by OSBORN,
SPECTRAL APPROXIMATIONS FOR COMPACT OPERATORS,
(1975).

m Numerical implementations support the theory on the rate of
convergence which is €2 if x/ = 0 and of order ¢ in general.



Determination of Transmission Eigenvalues

Real transmission eigenvalues can be determined from the scattered
data

We consider the far field operator F. : L2(Q) — L?(Q) defined by
(F)®) = [ u(%.d. K)g(d)oss
Q

where u(X, d, k) is the far field pattern due to an incident plane
wave u' ;= €9 d ¢ Q a unit vector.

We look for the regularized solution g, k . of the far field equation

(F.g)(X) = doo(X,2,k), for gel?(Q), %xe€Q zeD J

where ¢ (X, z, k) is the far field pattern of the free space
fundamental solution ®(x, z, k) of the Helmholtz equation.



Solution of Far-Field Equation

i Va(x) = / 9(d)e*9dsy  then
Q

m For k not a transmission eigenvalue, the regularized solution
g := gz« of the far field equation is such that
li Xi
sm [ Vgll#(p) exists
m For k a transmission eigenvalue, the regularized solution
g = gz ks Of the far field equation is such that

lim v, =
lim [[vg lz¢(0) = o0

ARENS-LECHLEITER (2006), CAKONI-COLTON-HADDAR (2010)

Remark: Under restrictive conditions on A and n,
KIRSCH-LECHLEITER (2010), LECHLEITER-PETERS (2015) have
characterized the first few real transmission eigenvalues in terms of
the behavior of the eigenvalues of the normal far field operator.



Computation of Real TE

Variable maltizand Epsion= | Vasiable malrixand Epsion=0.1

21 22 23 24 25 26 21 28 29
Wave nu

21 22 23 24 25 26 27 28 29
Wave nun

1
n. = sin?(2rx;/e) +2 and A, = - (

sin?(xz/€) + 1 0 >
3 .

0 cos?(xq/e) + 1

D is the ball of radius r = 2. The effective material properties are
Ap = 3l and n, = 2 and the corresponding first transmission
eigenvalue is k) = 2.5340, for e = 0.5 and € = 0.1

Thanks to JIGUANG SUN for providing the code to compute the
transmission eigenvalues.



Determination of Effective Material Properties

The measured first transmission eigenvalue k! ~ k! can be used to
obtain information about the effective material properties A, and ny,.

m If A. =/, it is known that k; uniquely determines nj,.

Example for D the ball of radius 2, n. = n(x/e) = sin®(27x; /¢) 4 2.

€ Ke 1 n, reconstructed np
0.1 5.046 25 2.5188

m If n. = 1, k! uniquely determines a, where A, = apl.

Example D the ball of radius 2 and

A _ 1 (sin®(2rxg/e) + 1 0
<3 0 cos?(2rxi/e) +1)°
€ k] A, reconstructed Ay,

0.1 7.349 0.5/ 0.4851/




Determination of Effective Material Properties

ny)= A

[QOIN (2/3)!

V)
ey Y

ki(n(y))  ki(nn) ki(AY))  ki(An) | ki(n(y),A(y)) ki(nh, An)

1.0930 1.0757 1.9027 1.896 0.7673 0.7139
Aly) =1, n(y) reconstructed n, = 3.4123 (exact n, = 3.5)
Aly), n(y) =1 reconstructed a, = 0.4472

Aly), n(y) reconstructed ny,/an = 7.4704 (gives a, = 0.4685)




Determination of Effective Material Properties

An example with voids (which is not covered by our theory)
®

Y = [0, 1]? and the is domain D = [-3, 3] and

npy= {1 (=05 4 (v, ~05) < 0.252
Y)=15 it (y1—05)2+ (y» — 0.5)2 > 0.252

which gives that n, =5 — 7 and

Aly) = I if (y1 —0.5)% + (y2 — 0.5)? < 0.25
Y)= 9 051 if (y1—05)2+ (yo — 0.5)2 > 0.252

Ap = apl, where aj, can only be computed numerically.



Determination of Effective Material Properties

An example with voids

The computed first transmission eigenvalue using far field data.

ki(n(y)) | k(n(y),Aly))
0.8745 0.7599

The estimated effective material properties.

Aly)=1,n(y) reconstructed n, = 4.2678 (exact n, = 4.2146)
A(y), n(y) reconstructed n,/an = 5.0550 (hence a, = 0.8337)




