
Motivation and mathematical setup
Unique solvability and stability of the IBVP

The inverse identification problem
Conclusions

Reconstruction of the stored energy function of a certain
class of hyperelastic materials from Cauchy data

joined work with Thomas Schuster, Frank Binder, F. Schöpfer and Arne Wöstehoff

Julia Piontkowski

Saarland University
Department of Mathematics
66123 Saarbrücken, Germany

IWaP 2015, Bremen, 7. April 2015

J. Piontkowski



Motivation and mathematical setup
Unique solvability and stability of the IBVP

The inverse identification problem
Conclusions

Overview

1 Motivation and mathematical setup
Motivation
Mathematical foundations of elasticity

2 Unique solvability and stability of the IBVP

3 The inverse identification problem
Uniqueness of the inverse identification problem
Recovering the stored energy function as a conic combination
Ongoing research

4 Conclusions

J. Piontkowski



Motivation and mathematical setup
Unique solvability and stability of the IBVP

The inverse identification problem
Conclusions

Motivation
Mathematical foundations of elasticity

Overview

1 Motivation and mathematical setup
Motivation
Mathematical foundations of elasticity

2 Unique solvability and stability of the IBVP

3 The inverse identification problem
Uniqueness of the inverse identification problem
Recovering the stored energy function as a conic combination
Ongoing research

4 Conclusions

J. Piontkowski



Motivation and mathematical setup
Unique solvability and stability of the IBVP

The inverse identification problem
Conclusions

Motivation
Mathematical foundations of elasticity

Aims of Structural Health Monitoring (SHM)

Idea: Monitoring of construction elements in carbon fibre
reinforced composites by analyzing guided waves emitted by
integrated piezo-ceramic actors

 Structural Health Monitoring system (SHM) to detect defects
in carbon fibre reinforced composites

Sketch of experimental setup for an SHM sys-
tem

detection of defects
localization of defects
categorization of defects
expansion of defects

J. Piontkowski
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Relevance of SHM in industry

early detection of
delaminations and cracks
safety enhancement
reduction of maintenance
intervals
cost saving by optimal
assembly of sensors and
actuators
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Idea of SHM for anistropic plates

Signal emitted at piezo-ceramic actuator
Defects lead to reflection, attenuation and mode conversion
Signals measured at piezo-ceramic sensors
Inverse problem of damage localization from signal
measurements
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Identification of material parameters

Idea: Reconstruction of (spatial varying) material parameters to
get information on defects and to visualize them

Some references:
NAKAMURA, UHLMANN, 1994: Global uniqueness for an inverse boundary problem arising in elasticity
NAKAMURA, UHLMANN, 1995: Inverse problems at the boundary for an elastic medium
HÄHNER, 2002: Inverse reconstruction of mass density
BONNET, CONSTANTINESCU, 2005: Inverse problems in elasticity
KALTENBACHER, LORENZI, 2007: Reconstruction of material tensor under certain requirements
SEDIPKOV, 2011: Inverse problems in inhomogeneous, elastic media
BOURGEOIS ET AL., 2011: Linear sampling for elastic waveguides
IMANUVILOV, YAMAMOTO, 2011: Reconstruction of Lamé coefficients in 2D
IMANUVILOV, UHLMANN, YAMAMOTO, 2013: Uniquenes of Lamé coefficients from partial Cauchy
data in 3D
SCHUSTER, WÖSTEHOFF, 2014: On the identifiability of the stored energy function of hyperelastic
materials from sensor data at the boundary
BAL, MONARD, UHLMANN, 2015: Reconstruction of a fully anisotropic elasticity tensor from knowledge
of displacement fields
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Conservation and constitutive law
Conservation of mass:∫

Ut

∂ρ

∂t (t, x)dx = −
∫
∂Ut

ρu̇ · ndA

Conservation of momentum:
d
dt

∫
Ut
ρu̇dx =

∫
∂Ut

τ(t, ψ, n)dA +

∫
Ut

f (t, x)dx

Conservation of angular momentum:
d
dt

∫
Ut

x × ρu̇dx =

∫
∂Ut

ψ × τ(t, ψ, n)dA +

∫
Ut

x × f (t, x)dx

Constitutive law:

P(t, x) = P̂(x ,∇u(t, x))

J. Piontkowski
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Wave propagation in anisotropic materials

Wave propagation in a domain Ω ⊂ R3 is governed by the equation

ρ(x)ü(t, x)− divP̂(x ,∇u(t, x)) = f (t, x)

with

u : [0,T ]× Ω→ R3 displacement field
f : [0,T ]× Ω→ R3 volume force

ρ : Ω→ R mass density
P : [0,T ]× Ω→ R3×3 Piola-Kirchhoff stress tensor
P̂ : Ω× R3×3 → R3×3 response function

J. Piontkowski
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Hyperelasticity

A material is called hyperelastic, if there is a stored energy function
C : Ω× R3×3 → R with

P̂(x ,Y ) = ∇Y C(x ,Y ) = (∂Yij C(x ,Y ))i ,j

Physical requirements:
1 C(x , 0) = 0 for almost all x ∈ Ω

2 ∇Y C(x , 0) = 0 for almost all x ∈ Ω

J. Piontkowski
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Stored energy function as conic combination

Assumption: The function C(x ,Y ) has a representation

C(x ,Y ) =
N∑

K=1
αK CK (x ,Y )

with αK ≥ 0 and fixed CK : Ω× R3×3 → R

Compare:
KALTENBACHER, LORENZI, 2007
SCHUSTER, WÖSTEHOFF, 2014

J. Piontkowski
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IBVP for waves in hyperelastic, anisotropic materials

From all these assumptions we obtain the

Hyperelastic wave equation

ρ(x)ü(t, x)−
N∑

K=1
αKdiv[∇Y CK (x ,∇u(t, x))] = f (t, x)

u(0, x) = u0(x), x ∈ Ω

u̇(0, x) = u1(x), x ∈ Ω

u(t, x) = 0, (t, x) ∈ (0,T )× ∂Ω

J. Piontkowski
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Measurements

We assume to have N piezo sensors measurements of (weighted
mechanical) stresses on parts of the boundary

δL :=

∫
∂Ω
ϕL(x)>P̂(x ,∇u(TL, x)) · ν(x)dσ(x)

=
N∑

K=1
αK

∫
∂Ω
ϕL(x)>[∇Y CK (x ,∇u(TL, x))] · ν(x)dσ(x)

L = 1, ...,N with

ϕL ∈ L2(∂Ω,R3) weight functions
TL ∈ (0,T ) instants of time

ν : ∂Ω→ R3 outer unit normal field of ∂Ω

J. Piontkowski
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Admissible solutions and coefficient vectors

E (M0,M1,M2,M3, (κ
[a])a=1,2, (µ

[b])b=1,...,7) :={
(u, α) ∈ [L∞((0,T )× Ω,R3) ∩W 1,∞((0,T ),H1(Ω,R3))]× RN

+ :

‖∂xl∂xj u‖L∞((0,T ),L2(Ω,R3)) ≤ M0, ‖∂xl u̇‖L∞((0,T ),L∞(Ω,R3)) ≤ M1,

‖∂xl∂xj u̇‖L∞((0,T ),L∞(Ω,R3)) ≤ M2, ‖∂xl∂xj u‖L∞((0,T ),L∞(Ω,R3)) ≤ M3,

N∑
K=1

αKκ
[a]
K ≥ κ

[a],

N∑
K=1

αKµ
[b]
K ≤ µ

[b], a = 1, 2, b = 1, ..., 7
}

J. Piontkowski
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Continuous dependence on data

Theorem (Wöstehoff, Schuster, 2013)
With Ω bounded and having a C2-boundary, let u, ũ be two solutions to
the IVBP corresponding to (α, u0, u1, f ), (α̃, ũ0, ũ1, f̃ ), respectively,
(u, α), (ũ, α̃) ∈ E (M0,M1,M2,M3, (κ

[a])a=1,2, (µ
[b])b=1,...,7) and certain

restrictions especially to CK we have for all t ∈ (0,T )[
‖ρ(u̇ − ˙̃u)(t, ·)‖2L2(Ω,R3) + κ(α)‖(Ju − Jũ)(t, ·)‖2L2(Ω,R3×3)

+‖ρ(ü − ¨̃u)(t, ·)‖2L2(Ω,R3) + κ(α)‖(Ju̇ − J ˙̃u)(t, ·)‖2L2(Ω,R3×3)

+‖(u − ũ)(t, ·)‖2H2(Ω,R3)

]1/2

≤ C̄0
[
µ(α)‖(u0 − ũ0)(t, ·)‖2H2(Ω,R3) + ‖(u1 − ũ1)(t, ·)‖2H1(Ω,R3)

]1/2

+C̄1‖f − f̃ ‖W 1,1((0,T ),L2(Ω,R3)) + C̄2‖α− α̃‖∞.

J. Piontkowski
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Admissible data

D(m, r) := {(f , u0, u1) ∈W 1,1((0,T ), L2(Ω,R3))×
(H2(Ω,R3) ∩ H1

0 (Ω,R3))× H1(Ω,R3) :

‖f ‖W 1,1((0,T ),L2(Ω,R3)) + ‖u0‖H2(Ω,R3) + ‖u1‖H1(Ω,R3) ≤ r ,
‖W (u0)−1‖∞ ≤ 1/m}

with

W (u0) =

(∫
∂Ω

ϕL(x)>[∇Y CK (x ,∇u0(x))] · ν(x)dσ(x)

)
K ,L=1,...,N

J. Piontkowski



Motivation and mathematical setup
Unique solvability and stability of the IBVP

The inverse identification problem
Conclusions

Uniqueness of the inverse identification problem
Recovering the stored energy function as a conic combination
Ongoing research

Uniqueness and continuous dependency

Let
(f , u0, u1), (f̃ , ũ0, ũ1) ∈ D(m, r)

be two sets of data and let

(u, α), (ũ, α̃) ∈ E (M0,M1,M2,M3, κ
[1], (µ[b])b=1,...,7)

be two solutions of the identification problem corresponding to

(f , u0, u1, δ) and (f̃ , ũ0, ũ1, δ̃)

respectively. Let
T̄ := max{T1, ...,TN}

be sufficiently small.

J. Piontkowski
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Uniqueness and continuous dependency

T̄ sufficiently small:

K̂ (T̄ ) := C(r ,M0) max
L=1,...,N

‖ϕL‖L2(∂Ω,R3)

N∑
K=1

µ
[1]
K T̄ 1/4 < m

and

Ĉ(T̄ ) :=
C̃

K̂ (T̄ )
max

L=1,...,N
‖ϕL‖L2(∂Ω,R3)

N∑
K=1

αKµ
[1]
K T̄ 1/4 < 1

J. Piontkowski
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Uniqueness and continuous dependency

Theorem (Wöstehoff, Schuster, 2013)

Then, there are constants Ĉ0,Ĉ1 > 0 such that

‖α− α̃‖∞ ≤ 1
(m − K̂ (T̄ ))(1− Ĉ(T̄ ))

{
‖δ − δ̃‖∞ +

+ Ĉ0
[
‖u0 − ũ0‖2H2(Ω,R3) + ‖u1 − ũ1‖2H1(Ω,R3)

]1/2
+

+ Ĉ1‖f − f̃ ‖W 1,1((0,T ),L2(Ω,R3))

}

J. Piontkowski
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Linearization: linear, hyperelastic materials

We have:
P(t, x) = P̂(x ,Y ) = ∇Y C(x ,Y )

with Y = ∇u(t, x).
Linearization around Y = I provides:

C(x) = ∇Y P̂(x , I) = ∇Y∇Y C(x , I)

the elasticity tensor.
The stored energy function of a linear, hyperelastic material is:

C̃(Y ) =
1
2ε(Y ) : C : ε(Y )

with ε(Y ) = 1
2(Y + Y>).

J. Piontkowski
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Linearized model
Wave propagation in a domain Ω ⊂ R3 of anisotropic, linear
hyperelastic material is governed by the equation:

ρ(x)ü(t, x)−
N∑

K=1
αK L>CK (x)Lu(t, x) = f (t, x)

L :=


∂1 0 0
0 ∂2 0
0 0 ∂3
0 ∂3 ∂2
∂3 0 ∂1
∂2 ∂1 0

 matrix differential operator

N∑
K=1

αKCK ∈ R6×6 spd. elasticity tensor

u displacement field
f volume force

J. Piontkowski
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Set of admissible parameters
Take

X3 := {M ∈ P3×3
3 |M> = M} with

P3 ⊂ C (Ω) a 3-dimensional subspace
and the subset of admissible parameters

M3
ε,s := {M ∈ X3|y>M(x)y ≥ εy>y ,

y>M(x)y ≤ sy>y ∀y ∈ R3,∀x ∈ Ω}

Convexity, closedness and boundedness, i.e. compactness, of
M3
ε,s ⊂ X3 are easy to see with respect to the norm

‖M‖X3 := sup
y∈R3\{0}

‖y>My‖∞
y>y

J. Piontkowski
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Decomposition of polynomial elasticity tensor

Theorem
Let 0 < η < ε < s. Then, there is a finite number of elements
H1, ...,HN ∈ M3

η,s+ε−η, such that

M3
ε,s ⊂ conv{H1, ...,HN}.

Proof by covering M3
ε,s with sets M + P, where M ∈ M3

ε,s and P is
an analogue to a polytope.

J. Piontkowski
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Isotropic elasticity tensor

C =



λ+ 2µ λ λ
λ λ+ 2µ λ
λ λ λ+ 2µ

µ
µ

µ


with Lamé parameters λ, µ with µ > 0 and 3λ+ 2µ > 0.

ρü − L>CLu = f ⇒ ρü − µ∆u − (λ+ µ)grad divu = f
(Lamé-Navier-equation)

J. Piontkowski
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Theorem
Let C be isotropic and ε ≤ 3λ+ 2µ, µ ≤ s. Then

C = α1C(ε, s) + α2C(s, ε)

with

α1 =
3sλ+ (2s − ε)µ

s2 − ε2 ≥ 0, α2 =
−3ελ+ (s − 2ε)µ

s2 − ε2 ≥ 0

and

C(ε, s) =


s/3 + 2ε s/3− ε s/3− ε
s/3− ε s/3 + ε s/3
s/3− ε s/3 s/3 + ε

ε
ε

ε


J. Piontkowski
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Identifiability for isotropic, hyperelastic materials

Main result for isotropic, hyperelastic materials:

The elasticity tensor C may be written as a conical combination of
two matrices that are elements of Mε,8s , so that C and hence C̃ is
uniquely determined by two measurements of piezo sensors, given
an appropriate excitation signal.

J. Piontkowski
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Ongoing research: Approach
Given: finite dictionary {C1, ...,CN}
Approach:

min
α∈RN

+

JR(α) := min
α∈RN

+

{1
2‖QT (α)− ũδ‖22 + βR(α)

}
,

where T maps α to u(C(α)) with C(α) =
∑N

K=1 αK CK and R is a
penalty term. Examples for R:

R(α) = ‖
∑

j
αjCj‖2U/2 or R(α) = ‖α‖1

The optimality conditions are:

0 ∈ T ′(α∗)∗Q∗(QT (α∗)− ũδ) + β∂R(α∗).

J. Piontkowski
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Fréchet derivative of T

The Fréchet derivative of T (with respect to α) T ′(α) is defined
by T ′(α)h = v , where v solves

ρv̈(t, x)− div[∇Y∇Y Cα(x , Ju(t, x)) : Jv(t, x)] = div[∇Y Ch(x , Ju(t, x))]

v(0, x) = v̇(0, x) = 0 for x ∈ Ω

v(t, x) = 0 for x ∈ ∂Ω

with

Cα =

N∑
K=1

αK CK and Ch =

N∑
K=1

hK CK .

J. Piontkowski
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Fréchet derivative of T

Lemma (P., Schuster, 2015)
The Gâteaux derivative of T exists and is continuous in h for all
h ∈ RN

+, i.e. there is a constant L1 > 0 with

‖T ′(α)h‖L2(0,T ;H1(Ω,R3)) ≤ L1‖h‖∞.
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Uniform convergence

Theorem (P., Schuster, 2015)
T is Fréchet differentiable, i.e. there are constants L2 > 0 and
β > 1 with

‖T (α + h)− T (α)− T ′(α)h‖L2(0,T ;H1(Ω,R3)) ≤ L2‖h‖β∞

for ‖h‖∞ → 0.

J. Piontkowski



Motivation and mathematical setup
Unique solvability and stability of the IBVP

The inverse identification problem
Conclusions

Uniqueness of the inverse identification problem
Recovering the stored energy function as a conic combination
Ongoing research

Fréchet derivative of T

The Fréchet derivative of T is very useful for
optimality conditions
linearization of T : T (α) = T (α∗) + T ′(α∗)(α− α∗)
iterative solution methods (for example Landweber)
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problem, when the stored energy function is a conic combination

Uniqueness and continuous dependency of (piezo) measurement
data of the inverse problem, i.e. identification of stored energy
function in linear case if it can be represented as conical
combination (also includes spatially variable energy functions)

Conditions for conic representations of (spatially variable) elasticity
tensors

Two piezo measurements are sufficient to identify isotropic materials

Fréchet derivative (useful for linearization, iterativ solving, optimal
conditions)
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At the end

Thank you for your attention!
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