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Model problem
Defect Scatterers

•
•

•

•

•

•

•

•

•
•

•

•

Goal: Determine defects or defective components in a complex and
unknown medium from multi-static measurements of scattered waves at
a given frequency.

Constraints:

I The background is unknown and cannot be accurately reconstructed.

I The background components diameters are comparable to the wavelength.

But: We have access to differential measures: measures with and
without defects.
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The original motivation
Detection of defects in a concrete like material using ultrasounds

An example of a concrete structure
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Outline

I A model problem (not for cracks)

I The Linear Sampling Method revisited

I Application to the case of differential measurements

I Numerical results and perspectives
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A simple model problem
Scalar acoustic equation for inhomogeneous media

The background index n0 : n0 = 1 in Rd \ D0 and Rd \ D0 is connected.

The modified index n : n = 1 in Rd \ D and Rd \ D is connected.

The total fields u0 ∈ H1
loc(Rd) and u ∈ H1

loc(Rd)

∆u0 + k2n0u0 = 0 and ∆u + k2nu = 0 in Rd

We assume that the field is generated by incident plane waves:

ui (θ, x) := e ikx·θ θ ∈ Sd−1

The scattered fields

us
0(θ, ·) = u0 − ui (θ, ·) and us(θ, ·) = u − ui (θ, ·) in Rd ,

satisfy the Sommerfeld radiation condition.
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A simple model problem
Scalar acoustic equation for inhomogeneous media

The background index n0 : n0 = 1 in Rd \ D0 and Rd \ D0 is connected.

The modified index n : n = 1 in Rd \ D and Rd \ D is connected.

Our data is formed by (noisy measurements of) so-called farfield patterns

u∞0 (θ, x̂) and u∞(θ, x̂) for all (θ, x̂) ∈ Sd−1 × Sd−1

Recall that with x̂ := x/|x |,

us
0(θ, x) =

e ik|x|

|x |(d−1)/2
(u∞0 (θ, x̂) + O(1/|x |))

us(θ, x) =
e ik|x|

|x |(d−1)/2
(u∞(θ, x̂) + O(1/|x |))

as |x | → ∞ .
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A simple model problem
Scalar acoustic equation for inhomogeneous media

The background index n0 : n0 = 1 in Rd \ D0 and Rd \ D0 is connected.

The modified index n : n = 1 in Rd \ D and Rd \ D is connected.

Our data is formed by (noisy measurements of) so-called farfield patterns

u∞0 (θ, x̂) and u∞(θ, x̂) for all (θ, x̂) ∈ Sd−1 × Sd−1

Goal: Assuming that D0 ⊂ D and would like to reconstruct (an approxi-
mation of)

Ω ≡ supp(n − n0)

without knowing (or approximating) n and n0.

Algorithm: introduce a filtered difference between the indicator functions
provided by a modified version of the Linear Sampling Method (LSM)
applied to each set of data separately.
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A generalized version of LSM

I A version based on a new exact characterization of the scatterer
geometry in terms of the farfields.

I A version capable of answering the imaging problem for differential
measure: explicit link with solutions of the interior transmission
problem.

I A flexible setting that can be generalized to limited aperture or/and
near-field data (ongoing).

Related reference: L. Audibert - H. Haddar, Inverse Problems, 2014
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Outline of LSM

Farfield Operator: F : L2(Sd−1)→ L2(Sd−1), defined by

Fg(x̂) :=

∫
Sd−1

u∞(θ, x̂)g(θ)ds(θ).

Let us define for ψ ∈ L2(D), the unique function w ∈ H1
loc(Rd) satisfying

∆w + nk2w = k2(1− n)ψ in Rd ,

lim
r→∞

∫
|x|=r

∣∣∂w
∂r − ikw

∣∣2 ds = 0.
(1)

Remark
ψ = ui (θ, ·)⇒ w = us(θ, ·)⇒ w∞ = u∞(θ, ·)

⇒ Fg is nothing but w∞ for w solution of (1) with ψ = vg in D, where

vg (x) :=

∫
Sd−1

ui (θ, x)g(θ)ds(θ), g ∈ L2(Sd−1), x ∈ Rd .
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Outline of LSM

Farfield Operator: F : L2(Sd−1)→ L2(Sd−1), defined by

Fg(x̂) :=

∫
Sd−1

u∞(θ, x̂)g(θ)ds(θ).

⇒ Considering the (compact) operator H : L2(Sd−1)→ L2(D) defined by

Hg := vg |D , (2)

and the (compact) operator G : R(H) ⊂ L2(D)→ L2(Sd−1) defined by

Gψ := w∞,

then clearly:

F = G ◦ H
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Main ingredient of LSM

Theorem: Assume that ITP is well posed. With φ∞z (x̂) = e−ikx̂·z we
have: φ∞z ∈ R(G ) if and only if z ∈ D.

Main ingredients of the proof:

I R(H) = {v ∈ L2(D); ∆v + k2v = 0 in D}.
I φ∞z is the farfield of Φ(·, z), radiating solution of ∆Φ + k2Φ = −δz .

Interior Transmission Problem (ITP): (u, v) ∈ L2(D)× L2(D) such
that u − v ∈ H2(D) and

∆u + k2nu = 0 in D,
∆v + k2v = 0 in D,
(u − v) = f on ∂D,
∂
∂ν (u − v) = g on ∂D,

(3)

for given f ∈ H
3
2 (∂D) and g ∈ H

1
2 (∂D).

Remark: A well posed ITP requires n 6≡ 1 in any neighborhood of ∂D.
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Main theorem of LSM
Farfield Operator: F : L2(Sd−1)→ L2(Sd−1), defined by

Fg(x̂) :=

∫
Sd−1

u∞(θ, x̂)g(θ)ds(θ).

Theorem: Assume that ITP is well posed. Then the operator F is
injective with dense range. Moreover, the following holds.

I If z ∈ D then there exists g εz such that ‖Fg εz − φz‖L2(Sd−1) ≤ ε and
lim sup
ε→0

‖Hg εz ‖L2(D) <∞.

I If z /∈ D then for all g εz such that ‖Fg εz − φz‖L2(Sd−1) ≤ ε,
lim
ε→0
‖Hg εz ‖L2(D) =∞.

⇒ Gives a “characterization” of D in terms of a nearby solutions of

Fg εz ' φz .

Problems: This is not constructive...

I We do not know how to construct g εz . In practice we use a
regularization scheme.

I We cannot compute ‖Hg εz ‖L2(D). In practice we use ‖g εz ‖L2(Sd−1).
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A robust formulation of LSM

Idea: Reconstruct a nearby solution of the LSM by using a least squares
misfit functional with a penalty term that controls ‖Hg εz ‖2

L2(D).

We exploit the (second) Factorization:

w∞(x̂) = −
∫

D

e−iky .x̂(1− n)k2(ψ(y) + w(y))dy ,

⇒ G = H∗Tψ where H∗ : L2(D)→ L2(Sd−1) is the adjoint of H given
by

H∗ϕ(x̂) :=

∫
D

e−iky .x̂ϕ(y)dy , ϕ ∈ L2(D), x̂ ∈ Sd−1,

and where T : L2(D)→ L2(D) is defined by

Tψ := −k2(1− n)(ψ + w), (4)

F = H∗ ◦ T ◦ H
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A robust formulation of LSM

Idea: Reconstruct a nearby solution of the LSM by using a least squares
misfit functional with a penalty term that controls ‖Hg εz ‖2

L2(D).

F = H∗ ◦ T ◦ H

Theorem: Assume that (ITP) is well posed and there exists n0 > 0 and
α > 0 such that

1−<(n(x)) + α=(n(x)) ≥ n0 for a.e. x ∈ D
or
<(n(x))− 1 + α=(n(x)) ≥ n0 for a.e. x ∈ D.

Then: |(Tψ,ψ)L2(D)| ≥ c‖ψ‖2
L2(D) for all ψ ∈ R(H).

⇒ |(Fg , g)L2(Sd−1)| ≥ c‖Hg‖2
L2(D)

⇒ |(Fg , g)L2(Sd−1)| is equivalent to ‖Hg‖2
L2(D)
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Abstract setting for a Generalized LSM (GLSM)
We consider two bounded linear operators F : X → X ∗ and B : X → X ∗

F = GH and B = H∗TH

H : X → Y , T : Y → Y ∗ and G : R(H) ⊂ Y → X ∗ are bounded.

For α > 0 be a given parameter and φ ∈ X ∗ we consider:

Jα(φ; g) := α|〈Bg , g〉|+ ‖Fg − φ‖2 ∀g ∈ X .

Remark This functional has not a minimizer in general!

Assume that F has dense range. Then for all φ ∈ X ∗,

jα(φ) := inf
g∈X

Jα(φ; g)→ 0 as α→ 0.

⇒ Nearby solutions (of the farfield equation) are given by gα ∈ X such
that

Jα(φ; gα) ≤ jα(φ) + p(α).

where p(α) > 0 is such that p(α)→ 0 as α→ 0
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Main theorem of GLSM (for noise free)
F : X → X ∗, B : X → X ∗ and F = GH and B = H∗TH

Jα(φ; g) := α|〈Bg , g〉|+ ‖Fg − φ‖2 ∀g ∈ X .

Theorem: We assume in addition that

I G is compact and F = GH has dense range.

I T satisfies: |〈Tϕ, ϕ〉| > µ ‖ϕ‖2 ∀ϕ ∈ R(H).

Consider for α > 0 and φ ∈ X ∗, gα ∈ X such that

Jα(φ; gα) ≤ jα(φ) + p(α) and p(α) ≤ Cα.

I φ ∈ R(G ) ⇒ lim sup
α→0

|〈Bgα, gα〉| <∞.

I φ /∈ R(G ) ⇒ lim
α→0
|〈Bgα, gα〉| =∞.
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Consider for α > 0 and φ ∈ X ∗, gα ∈ X such that

Jα(φ; gα) ≤ jα(φ) + p(α) and p(α) ≤ Cα.

I φ ∈ R(G ) ⇒ lim sup
α→0

|〈Bgα, gα〉| <∞.

I φ /∈ R(G ) ⇒ lim
α→0
|〈Bgα, gα〉| =∞.

Application: R(G ) characterizes the inclusion D ⇒ F and B uniquely
determine D.
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Jα(φ; g) := α|〈Bg , g〉|+ ‖Fg − φ‖2 ∀g ∈ X .

Theorem: We assume in addition that

I G is compact and F = GH has dense range.

I T satisfies: |〈Tϕ, ϕ〉| > µ ‖ϕ‖2 ∀ϕ ∈ R(H).

Consider for α > 0 and φ ∈ X ∗, gα ∈ X such that

Jα(φ; gα) ≤ jα(φ) + p(α) and p(α) ≤ Cα.

I φ ∈ R(G ) ⇒ lim sup
α→0

|〈Bgα, gα〉| <∞.

I φ /∈ R(G ) ⇒ lim
α→0
|〈Bgα, gα〉| =∞.

Similar asymptotic characterizations: Inf-Criterion (Nachman-Päivärinta-
Teirilä (2007), Kirsch-Grinberg (2008)), Probe Method (Ikehata (2005),
Erhard-Potthast (2006)).

28 / 56



Application with the natural choice: B = F

For z ∈ Rd we consider g z
α ∈ L2(Sd−1) such that

Jα(φ∞z ; g z
α) ≤ jα(φ∞z ) + p(α) and p(α) ≤ Cα.

φ∞z (x̂) = e−ikx̂·z

Theorem: Assume that there exists n∗ > 0 and α > 0 such that

1−<(n(x)) + α=(n(x)) ≥ n∗ for a.e. x ∈ D or
<(n(x))− 1 + α=(n(x)) ≥ n∗ for a.e. x ∈ D.

Then, except for a countable set of k (without finite accumulation points),

I z ∈ D ⇒ lim sup
α→0

|〈Fg z
α, g z

α〉| <∞.

I z /∈ D ⇒ lim
α→0
|〈Fg z

α, g z
α〉| =∞.

29 / 56



Application with the natural choice: B = F

For z ∈ Rd we consider g z
α ∈ L2(Sd−1) such that

Jα(φ∞z ; g z
α) ≤ jα(φ∞z ) + p(α) and p(α) ≤ Cα.

φ∞z (x̂) = e−ikx̂·z

Theorem: Assume that there exists n∗ > 0 and α > 0 such that

1−<(n(x)) + α=(n(x)) ≥ n∗ for a.e. x ∈ D or
<(n(x))− 1 + α=(n(x)) ≥ n∗ for a.e. x ∈ D.

Then, except for a countable set of k (without finite accumulation points),

I z ∈ D ⇒ lim sup
α→0

|〈Fg z
α, g z

α〉| <∞.

I z /∈ D ⇒ lim
α→0
|〈Fg z

α, g z
α〉| =∞.
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Application with the natural choice: B = F

⇒ An indicator of some approximation of D is given by

z → 1/|〈Fg z
α, g z

α〉|.

Remarks

I In this case

lim
α→0
|〈Fg z

α, g z
α〉| = lim

α→0
|〈φ∞z , g z

α〉| = lim
α→0
|vg z

α
(z)|

⇒ We obtain a similar indicator function as the one proposed by
Arens (2004), Arens-Lechleiter (2009), to justify LSM using the
(F ∗F )1/4 of Kirsch (1997) in the case =n = 0.

I However this turns out to be a bad indicator function for noisy
measurements.
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On other possible choices for B
Under more restrictive assumptions on the refractive index

I If =n > n0 > 0 in D then we can use

B = =(F ) =
1

2i
(F − F ∗)

I If Re(e it(n − 1)) > n0|n − 1] > n1 > 0 in D for some t

B = F# := |e itF + e−itF ∗|+ =(F )

(Using the Factorization theorem of Kirsch-Grinberg)

Remarks

I For these cases the functional Jα is convex.

I In these cases we also have (Kirsch-Grinberg)

z ∈ D iff φz ∈ R(B1/2).

32 / 56



Main theorem of GLSM for noisy operators
Bδ and F δ compact operators corresponding with noisy measurements∥∥F δ − F

∥∥ ≤ δ‖F δ‖ and
∥∥Bδ − B

∥∥ ≤ δ‖Bδ‖

for some δ > 0.

Remark:
|〈Bg , g〉| ≤ |

〈
Bδg , g

〉
|+ δ‖Bδ‖ ‖g‖2
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∥∥ ≤ δ‖F δ‖ and
∥∥Bδ − B

∥∥ ≤ δ‖Bδ‖

for some δ > 0.

Remark:
|〈Bg , g〉| ≤ |

〈
Bδg , g

〉
|+ δ‖Bδ‖ ‖g‖2

⇒ We consider the functional:

Jδα(φ; g) := α(|
〈
Bδg , g

〉
|+ δ‖Bδ‖ ‖g‖2) +

∥∥F δg − φ∥∥2 ∀ g ∈ X ,
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|+ δ‖Bδ‖ ‖g‖2) +

∥∥F δg − φ∥∥2 ∀ g ∈ X ,

Theorem: Let gδα be the minimizer of Jδα(φ; ·) for α > 0, δ > 0 and
φ ∈ X ∗. Then

I φ ∈ R(G ) ⇒ lim sup
α→0

lim sup
δ→0

(∣∣〈Bδgδα, gδα
〉∣∣+ δ‖Bδ‖

∥∥gδα∥∥2
)
<∞

I φ /∈ R(G ) ⇒ lim
α→0

lim inf
δ→0

(∣∣〈Bδgδα, gδα
〉∣∣+ δ‖Bδ‖

∥∥gδα∥∥2
)

=∞

35 / 56



Main theorem of GLSM for noisy operators
Bδ and F δ compact operators corresponding with noisy measurements∥∥F δ − F

∥∥ ≤ δ‖F δ‖ and
∥∥Bδ − B

∥∥ ≤ δ‖Bδ‖

for some δ > 0.

Theorem: Let gδα be the minimizer of Jδα(φ; ·) for α > 0, δ > 0 and
φ ∈ X ∗. Then

I φ ∈ R(G ) ⇒ lim sup
α→0

lim sup
δ→0

(∣∣〈Bδgδα, gδα
〉∣∣+ δ‖Bδ‖

∥∥gδα∥∥2
)
<∞

I φ /∈ R(G ) ⇒ lim
α→0

lim inf
δ→0

(∣∣〈Bδgδα, gδα
〉∣∣+ δ‖Bδ‖

∥∥gδα∥∥2
)

=∞

⇒ From the numerical perspective this theorem indicates that a criterion
to localize the object would be

1/
(
|
〈
Bδgδα, gδα

〉
|+ δ‖Bδ‖

∥∥gδα∥∥2
)

for small values of α.
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On the numerical implementation

Jδα(φ; g) := α(|
〈
Bδg , g

〉
|+ δ‖Bδ‖ ‖g‖2) +

∥∥F δg − φ∥∥2

For each z in the sampling grid, compute

gz = arg min Jδα(φ∞z ; g),

then plot:

z 7→ 1/
(
|
〈
Bδgz , gz

〉
|+ δ‖Bδ‖ ‖gz‖2

)
Initialization: we use the Tikhonov-Morozov regularized solution

(η(δ) + (F δ)∗F δ)g0
z = (F δ)∗φ∞z

We choose: α = η(δ)/(‖F δ‖+ δ).
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Numerical results
Without optimization, Noise δ = 0%

1/|
〈
Bδg0

z , g0
z

〉
| 1/‖g0

z ‖2

1/
(
|
〈
Bδg0

z , g0
z

〉
|+ δ‖Bδ‖

∥∥g0
z

∥∥2
)

F] method
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Numerical results
Without optimization, Noise δ = 5%
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Numerical results Optim GLSM

GLSM without optim, δ = 1% GLSM without optim, δ = 5%

GLSM with optim, δ = 1% GLSM with optim, δ = 5%
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Towards applications to differential measurements

Main ingredient: exploit the link between GLSM and ITP.

F : X → X ∗ and B : X → X ∗

F = GH and B = H∗TH

Jα(φ; g) := α|〈Bg , g〉|+ ‖Fg − φ‖2 ∀g ∈ X . (5)

Theorem: We assume in addition that

ϕ 7→ |〈Tϕ, ϕ〉| is uniformly convex

Jα(φ; gα) ≤ jα(φ) + p(α) with
p(α)

α
→ 0 as α→ 0. (6)

If φ ∈ R(G ) then Hgα → ϕ such that G (ϕ) = φ.

This is a consequence of Tikhonov applied to G (ϕ) = φ.
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Towards application to differential measurements

Main ingredient: exploit the link between GLSM and ITP.

Corollary: with F = F and B = F]

Jα(φ∞z ; gαz ) ≤ jα(φ∞z ) + p(α) with
p(α)

α
→ 0 as α→ 0.

If z ∈ D then Hgαz → vz strongly in L2(D) where vz is such that there
exists uz ∈ L2(D) for which (uz , vz) is a solution of ITP with
(f , g) = (Φ(z , ·), ∂νΦ(z , ·))

Notation for ITP(D, n, f , g): (u, v) ∈ L2(D)× L2(D) such that
u − v ∈ H2(D) and 

∆u + k2nu = 0 in D,
∆v + k2v = 0 in D,
(u − v) = f on ∂D,
∂
∂ν (u − v) = g on ∂D.
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Application to differential measurements

Assumptions on the geometry:

D0 ⊂ D D = Ω ∪ D0 and n = n0 in D0 \ Ω

D0 =
⋃
i

D̃0,i ∪
⋃
i

D0,i .

D0,i , i = 1, . . . ,M the components of D0 that intersect with Ω.

D̃0,1

D0,2

D0,2 Ω2
Ω̃

D0,1

D̃0,2

Ω1

45 / 56



Application to differential measurements

Assumptions on the geometry:

D0 ⊂ D D = Ω ∪ D0 and n = n0 in D0 \ Ω

D0 =
⋃
i

D̃0,i ∪
⋃
i

D0,i .

D0,i , i = 1, . . . ,M the components of D0 that intersect with Ω.

Comparison of ITP solutions:

Theorem: Assume that <(n) > <(n0) > 1 or <(n) < <(n0) < 1 in Ω.
Let z ∈ D and consider (u, v) ∈ L2(D)×L2(D) (resp. (u0, v0) ∈ L2(D0)×
L2(D0)) solutions of ITP(D, n,Φz ,

∂Φz

∂ν ) (resp. ITP(D0, n0,Φz ,
∂Φz

∂ν )).
Then, except for a countable set of values of k ,

I If z ∈ D̃0,i then v = v0 in D0.

I If z ∈ D0,i , then v 6= v0 in D0,i and v = v0 in D0 \ D0,i .
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Application to differential measurements

Assumptions on the geometry:

D0 ⊂ D D = Ω ∪ D0 and n = n0 in D0 \ Ω

D0 =
⋃
i

D̃0,i ∪
⋃
i

D0,i .

D0,i , i = 1, . . . ,M the components of D0 that intersect with Ω.

We use this to obtain characterizations of Ω̃ and Ω0 := Ω ∪i D0,i .

D̃0,1

D0,2

D0,2 Ω2
Ω̃

D0,1

D̃0,2

Ω1
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Characterization of Ω0 in terms of F and F0

F farfield associated with D and n. B = F#

F0 farfield associated with D0 and n0. B0 = F0,#.

We introduce
D(g , g0) := |〈B0(g − g0), g − g0〉|.

Corollary: Under previous assumptions on D, D0, n, n0 and k and for gαz
and gα0,z the minimizing sequences associated resp with (F , B) and (F0,
B0)

I If z ∈
⋃

i D̃0,i then lim
α→0
D(gαz , g

α
0,z) = 0.

I If z ∈ Ω̃ then lim
α→0
D(gαz , g

α
0,z) =∞.

I If z ∈
⋃

i D0,i then lim
α→0
D(gαz , g

α
0,z) <∞.
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Characterization of Ω0 in terms of F and F0
The noise free case:

I(g , g0) := |〈Bg , g〉| (1 + |〈Bg , g〉|/|〈B0(g − g0), g − g0〉|) .

Corollary: Under previous assumptions on D, D0, n, n0 and k. For gαz
and gα0,z the minimizing sequences associated resp with (F , B) and (F0,
B0)

If z /∈ Ω0 then lim
α→0
I(gαz , g

α
0,z) =∞.

If z ∈ Ω0 then lim
α→0
I(gαz , g

α
0,z) <∞.

Therefore, the limit as α→ 0 of

z 7→ 1/I(gαz , g
α
0,z) is an indicator for Ω0 = Ω̃ ∪

⋃
i

D0,i
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Characterization of Ω0 in terms of F and F0
The noisy case:

For a fixed parameter η ∈ (0, 1), we define

gα,δ0,z = arg min
g
α
(〈

Bδ
0 g , g

〉
+ α−ηδ‖Bδ

0‖ ‖g‖
2
)

+
∥∥F δ0 g − φ∞z

∥∥2

gα,δz = arg min
g
α
(〈

Bδg , g
〉

+ α−ηδ‖Bδ‖ ‖g‖2
)

+
∥∥F δg − φ∞z ∥∥2

We then consider

D(α, z) = lim inf
δ→0

〈
Bδ

0 (gα,δ0,z − gα,δz ), gα,δ0,z − gα,δz

〉
A(α, z) = lim inf

δ→0

(〈
Bδgα,δz , gα,δz

〉
+ α−ηδ‖Bδ‖

∥∥gα,δz

∥∥2
)

I(α, z) := A(α, z) (1 + A(α, z)/D(α, z)) .

Theorem: Under previous assumptions on D, D0, n, n0 and k,

z ∈ Ω0 iff lim
α→0
I(α, z) < +∞.
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Some numerical results

Exact configuration Differential GLSM

Background Reconstruction Medium Reconstruction
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Background Reconstruction Medium Reconstruction
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Some numerical results for scattered background

Two defects of type inhomogeneities
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Some numerical results for scattered background

One defect of type internal crack
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Some numerical results for scattered background

A medium size external crack Differential GLSM

Reconstructed crack using
the exact background

Reconstructed crack using
a homogeneous background
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Thank you
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