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Figure : Standard OCT system based on a Michelson interferometer [Huang
et al 91].
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The FF-OCT system

We consider Maxwell’s equations

divx D(t , x) = 0,
divx B(t , x) = 0,

curlx E(t , x) = −1
c
∂B
∂t

(t , x),

curlx H(t , x) =
1
c
∂D
∂t

(t , x),

for t ∈ R and x ∈ R3, and the material equations

D(t , x) = E(t , x) +

∫ ∞
0

χ(τ, x)E(t − τ, x)dτ,

B(t , x) = H(t , x),

where χ is the electric susceptibility.
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The FF-OCT system
Let Ω ⊂ R3 be the domain where the sample is located. We set

Isotropic medium: χ is scalar, i.e. multiple of the identity matrix
χ = χ1.

Anisotropic medium: χ : R×R3 → R3×3

χ(t , x) = 0 for t < 0, x ∈ R3

χ(t , x) = 0 for t ∈ R, x ∈ R3 \ Ω,

Then, the Fourier transform Ê of E , given by

Ê(ω, x) =

∫ ∞
−∞

E(t , x)eiωtdt ,

satisfies

curlx curlx Ê(ω, x)− ω2

c2 (1+ χ̂(ω, x))Ê(ω, x) = 0

for ω ∈ R, x ∈ R3
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The FF-OCT system

The sample is illuminated by a laser beam described by the electric
field E (0) which sstisfies

curlx curlx Ê (0)(ω, x)− ω2

c2 Ê (0)(ω, x) = 0.

Moreover, we assume that

supp E (0)(t , ·) ∩ Ω = ∅, for t ≤ 0.

Then, the electric field E (generated by this incoming light beam in the
presence of the sample) satisfies the initial condition

E(t , x) = E (0)(t , x) for t ≤ 0, x ∈ R3.
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The FF-OCT system
The measurements are obtained by the combination of E
(backscattered field from the sample) and Er (back-reflected field from
the mirror).
The mirror is placed orthogonal to the unit vector e3 = (0,0,1) through
the point r e3 and we assume that

Er (t , x) = E (0)(t , x) for t < 0, x ∈ R3.

The intensity

Ir ,j(x) =

∫ ∞
0
|Ej(t , x) + Er ,j(t , x)|2dt , j ∈ {1,2,3}.

is measured at some detector points, located on the plane

D = {x ∈ R3 | x3 = d}

parallel to the mirror at a distance d > 0 from the origin.
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The FF-OCT system

Figure : The two scattering problems involved in OCT.
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The FF-OCT system

In this setup, it is easy to acquire besides the intensity Ir also the
intensity of the two waves E and Er separately.
Therefore, we consider instead of Ir the function

Mr ,j(x) =
1
2

(
Ir ,j −

∫ ∞
0
|Ej(t , x)|2dt −

∫ ∞
0
|Er ,j(t , x)|2dt

)
for r ∈ (−∞,R), j ∈ {1,2,3}, and x ∈ D as our measurement data, or
equivalently,

Mr ,j(x) =

∫ ∞
−∞

(Ej − E (0)
j )(t , x)(Er ,j − E (0)

j )(t , x)dt

=

∫ ∞
−∞

(Êj − Ê (0)
j )(ω, x)(Êr ,j − Ê (0)

j )(ω, x)dω.

Isotropic case: Mr (x) =
∑3

j=1 Mr ,j(x).
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The FF-OCT system
If E satisfies the (vector) Helmholtz equation and the material
equations. Then, Ê solves

Ê(ω, x) = Ê (0)(ω, x) +

(
ω2

c2 1 + gradx divx

)∫
R3

G(ω, x − y)χ̂(ω, y)Ê(ω, y)dy ,

where

G(ω, x) =
eiωc |x |

4π|x |
, x 6= 0, ω ∈ R.

Let the medium be weakly scattering and sufficiently far from the
detector. Then, the solution is given by

Ê (1)(ω, ρϑ) ' Ê (0)(ω, ρϑ)

− ω2eiωc ρ

4πρc2

∫
R3
ϑ×

(
ϑ× (χ̂(ω, y)Ê (0)(ω, y))

)
e−iωc 〈ϑ,y〉dy ,

where ρ > 0 and ϑ ∈ S2.
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The FF-OCT system

The incident field propagates in the direction −e3, orthogonal to the
detector surface D, this means

E (0)(t , x) = f (t + x3
c ) p,

where p ∈ R3, with p3 = 〈p,e3〉 = 0, is the polarisation vector.
The vertical distribution f : R→ R satisfies

supp f ⊂ (R
c ,

d
c ).

Then, the electric field Er reflected by the mirror is given by

Er (t , x) =

{(
f (t + x3

c )− f (t + x3
c + 2 r−x3

c )
)
p if x3 > r ,

0 if x3 ≤ r .
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The FF-OCT system

For E (0) as above, then

Ê (0)(ω, x) =

(∫ ∞
−∞

f (t + x3
c )eiωtdt

)
p = f̂ (ω)e−iωc x3p,

and the measurements are given by

Mr ,j(x) = −pj

∫ ∞
−∞

(Ej − E (0)
j )(t , x)f (t + 2r−x3

c )dt ,

= −
pj

2π

∫ ∞
−∞

(Êj − Ê (0)
j )(ω, x)f̂ (−ω)eiωc (2r−x3)dω

for all j ∈ {1,2,3}, r ∈ (−∞,R), and x ∈ D.
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The FF-OCT system
To summarize,

χ̂
L7−→ Ê (1) − Ê (0) M7−→

(
Mr ,j(x)

)2
j=1

where

(Lv)(ω, ρϑ) = −ω
2ei ωc ρ

4πρc2 f̂ (ω)

∫
R3
ϑ×

(
ϑ× (v(ω, y) p)

)
e−i ωc 〈ϑ+e3,y〉dy ,

(Mv)(r , x) =

(
−

pj

2π

∫ ∞
−∞

vj (ω, x)f̂ (−ω)ei ωc (2r−x3)dω
)2

j=1

Thus, combining L,M, the forward operator F : χ̂ 7→ M, F =ML
models the direct problem.
The inverse problem is then formulated as an operator equation

F χ̂ = M.
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The Inverse Scattering Problem

Let the initial illumination be of the form Ê (0)(ω, x) = f̂ (ω)e−iωc x3p,
satisfying

supp f ⊂ (R
c ,

R
c + 2δ

c ) ⊂ (R
c ,

d
c ) for some δ > 0.

Then,

(Êj − Ê (0)
j )(ω, x)f̂ (ω)pj = −2

c

∫ R

−∞
Mr ,j(x)e−iωc (2r−x3)dr

for all j ∈ {1,2,3}, ω ∈ R, and x ∈ D.
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The Inverse Scattering Problem

In addition, for every ω ∈ R \ {0} with f̂ (ω) 6= 0, the formula

pj
[
ϑ× (ϑ× χ̃(ω, ωc (ϑ+ e3))p)

]
j

' 8πρc

ω2 |̂f (ω)|2

∫ R

−∞
Mr ,j(ρϑ)e−iωc (2r−ρ(ϑ3−1))dr

holds for all j ∈ {1,2}, ϑ ∈ S2
+ := {η ∈ S2 | η3 > 0}, and ρ = d

ϑ3
(asymptotically for χ→ 0 and ρ→∞).

Here χ̃ denotes the Fourier transform of χ with respect to time and
space,

χ̃(ω, k) =

∫ ∞
−∞

∫
R3
χ(t , x)e−i〈k,x〉eiωt dxdt =

∫
R3
χ̂(ω, x)e−i〈k,x〉dx .

L. Mindrinos (CSC, Vienna) Inverse scattering problem in tomography 07.04.2015 15 / 39



The Inverse Scattering Problem (Isotropic case)

Then, from the sum of Mr ,1 and Mr ,2 we obtain

χ̃(ω, ωc (ϑ+ e3)) 〈p, ϑ× (ϑ× p)〉 = χ̃(ω, ωc (ϑ+ e3))(〈ϑ,p〉2 − |p|2).

Since 〈ϑ,p〉2 < |p|2 for every combination of p ∈ R2 × {0} and ϑ ∈ S2
+,

we have direct access to

χ̃(ω, ωc (ϑ+ e3)), ω ∈ R \ {0}, ϑ ∈ S2
+,

of χ in a subset of R×R3.

Remark
Here, the problem is to reconstruct the 4D susceptibility from the 3D
measurement data.
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The Inverse Scattering Problem (Isotropic case)

Recall that

m̂ : R× S2
+ → C, m̂(ω, ϑ) = χ̃(ω, ωc (ϑ+ e3)).

Lemma

The inverse Fourier transform m : R× S2
+ → C of m̂ with respect to ω

is given by

m(t , ϑ) =
c√

2(1 + ϑ3)

∫ ∞
−∞

∫
Eτ−t,ϑ

χ(τ, y)ds(y)dτ,

for t ∈ R, τ, σ ∈ R and ϑ ∈ S2
+, where Eσ,ϑ denotes the plane

Eσ,ϑ = {y ∈ R3 | 〈ϑ+ e3, y〉 = cσ}.
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The Inverse Scattering Problem (Isotropic case)

Thus, the measurements provide the Radon transform of χ(τ, ·),

m(t , ϑ) =
c√

2(1 + ϑ3)

∫ ∞
−∞

χ̄(τ ; τ − t , ϑ)dτ.

Discretisation
We assume, for some T > 0:

suppχ(·, x) ⊂ [0,T ] for all x ∈ R3.

Thus, the function χ̄(τ ; ·, ϑ) is discretised for every τ ∈ R and ϑ ∈ S2
+

and the step size depends on the size of the support of χ(·, x).
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The Inverse Scattering Problem (Isotropic case)
Then, we consider the following discretisation

χ̄n(τ, ϑ) =

∫
EnT ,ϑ

χ(τ, y)ds(y), n ∈ Z, τ ∈ (0,T ), ϑ ∈ S2
+,

of the Radon transform of the functions χ(τ, ·) and we extend it over
the planes EnT +ε,ϑ,

χ̄n(τ, ϑ) ≈
∫

EnT +ε,ϑ

χ(τ, y)ds(y), for all ε ∈ [−T
2 ,

T
2 ).

Then,

m(t , ϑ) ≈ c√
2(1 + ϑ3)

∫ T

0
χ̄N(τ−t)(τ, ϑ)dτ,

where N(σ) =
⌊
σ
T + 1

2

⌋
denotes the integer closest to σ

T .

This approximation can now be iteratively solved for χ̄.
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The Inverse Scattering Problem (Isotropic case)

Figure : Discretisation of χ with respect to the detection points.
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The Inverse Scattering Problem (Isotropic case)

Theorem

Let

m̄(t , ϑ) =
c√

2(1 + ϑ3)

∫ T

0
χ̄N(τ−t)(τ, ϑ)dτ, ϑ ∈ S2

+, t ∈ R,

for some constant T > 0 with the integer valued function
N(σ) =

⌊
σ
T + 1

2

⌋
.

Then, χ̄ fulfils the recursion relation

χ̄n(τ, ϑ) = χ̄n+1(τ, ϑ) +

√
2(1 + ϑ3)

c
∂m̄
∂t

(τ − (n + 1
2)T , ϑ),

for n ∈ Z, τ ∈ (0,T ), ϑ ∈ S2
+.
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The Inverse Scattering Problem (Anisotropic case)
The problem is to reconstruct χ : R×R3 → R3×3 from

χϑ,p,j(ω, ϑ) := pj
[
ϑ× (ϑ× χ̃(ω, ωc (ϑ+ e3))p)

]
j , j = 1,2,

where we assume that measurements for every p ∈ R2 × {0} are
available.
As before, a reconstruction formula holds for the functions

χ̄p,j(τ ;σ, ϑ) =

∫
Eσ,ϑ

χϑ,p,j(τ, y)ds(y)

for all p ∈ R2 × {0}, τ ∈ R, σ ∈ R, ϑ ∈ S2
+, and j ∈ {1,2}, where

χ̄(τ ;σ, ϑ) =

∫
Eσ,ϑ

χ(τ, y)ds(y)

denotes the Radon transform data of χ(τ, ·).
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The Inverse Scattering Problem (Anisotropic case)

Theorem
Let τ, σ ∈ R and ϑ ∈ S2

+, be fixed, and Pϑ ∈ R3×3 denote the
orthogonal projection in direction ϑ. Then, using that
ϑ× (ϑ× Xp) = −PϑXp, the data

pj [ϑ× (ϑ× χ̄(τ ;σ, ϑ))]j

for j = 1,2 and the three different polarisation vectors p = e1, e2 and
p = e1 + e2 uniquely determine the projection

(Pϑχ̄(τ ;σ, ϑ))k ,` =

∫
Eσ,ϑ

(Pϑχ(τ, y))k ,` ds(y) for k , ` ∈ {1,2}.

Moreover, measurements for additional polarisations p do not provide
further information.
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The Inverse Scattering Problem (Anisotropic case)

Let R ∈ SO(3) describe the rotation of the sample. Then, the
transformed susceptibility χR is given by

χR(t , y) = R χ(t ,RTy)RT.

If there exist for every R ∈ {R0,R1,R2} constants αR > 0 and ϑR ∈ S2
+

satisfying
ϑR + e3 = αRR(ϑ+ e3),

then, the data corresponding to the measurements of the rotated
sample at the detector in direction ϑR satisfy

χ̄R,p,j(τ ;αRσ, ϑR) = pj [ϑR × (ϑR × Rχ̄(τ ;σ, ϑ)RT]j

for all τ, σ ∈ R, p ∈ R2 × {0}, j = 1,2.
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The Inverse Scattering Problem (Anisotropic case)

Theorem
The measurements obtained at the detectors ϑR for the polarisations
p = e1,e2,e1 + e2 and rotations R = R0,R1,R2, so that every proper
subset of {RT

0 e3,RT
1 e3,RT

2 e3, ϑ+ e3} is linearly independent and such
that ϑR + e3 = αRR(ϑ+ e3), provide sufficient information to
reconstruct uniquely the Radon data χ̄(τ ;σ, ϑ).

Then, it is possible via an inversion of a limited angle Radon transform
to recover the susceptibility χ.
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Photoacoustic Tomography (PAT)

The object is irradiated by a short-pulsed laser beam.
Some of the light is absorbed and partially converted into heat.
The heat is converted to a pressure rise via thermoelastic
expansion.
The pressure rise propagates as an ultrasonic wave - the
photoacoustic wave.
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PAT-OCT system

The laser beam operates around 1000nm for both systems.
PAT and OCT use full field illumination.
PAT detection points and the OCT beam are being co-axially
aligned in order the images from each modality to be inherently
co-registered.
PAT and OCT scans are performed consecutively and the data
acquisition times differ considerably.
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The multi-modal system

Inverse Problem
Recover the optical properties of the sample from internal data
(absorbed radiation) and modified far-field data (OCT measurements).

We assume
The reconstruction of the absorbed energy from the PAT
measurements is solved (inverse source problem) [Kuchment and
Kunyansky 08].
The laser beam initialization is short enough such that the
pressure is generated instantaneously at t = 0.
The initial pressure p(0) is proportional to the absorbed energy wA.
The proportionality factor is the Grüneisen parameter γ.
Uniqueness results for non-dispersive medium and boundary data
[Bal and Zhou 14].
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The multi-modal system (Isotopic case)
Given the Maxwell’s equations and the Poynting vector S = c

4π (E ×H),
considering the conservation of energy for dielectric media, we obtain

wA(x) =
1

8π2

∫
R

ω=m χ̂(ω, x)|Ê(ω, x)|2dω,

for all x ∈ R3. Then,
p(0)(x) = γ(x)wA(x).

Remark
If we assume non-dispersive medium or monochromatic source
illumination, then

wA(x) = σ(x)

∫
R

|E(t , x)|2dt ,

where σ is the conductivity. This formula is commonly used in TAT.
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The multi-modal system

We recall Ê (0)(ω, x) = f̂ (ω)e−iωc x3p, and we consider the limiting case
|̂f |2 = δ(· − ω) + δ(·+ ω).
Then, the Inverse Problem is equivalent to the integral equation,∫

R3

1
γ(y)

pH(ω, y)e−iωc 〈ϑ+e3,y〉dy = m(ω, ϑ),

for all ω ∈ R and ϑ ∈ S2
+, where

pH(ω, y) = (H+ i1)
(

8π2

ω p(0)(y)
)
,

m(ω, ϑ) = 8π2ρc2ω−2

〈P,ϑ×(ϑ×P)〉M(r , ϑ)e−iωc (2r+ρ(1−ϑ3)),

and H stands for the Hilbert transform. Moreover, χ̂ and γ are related
through

γ(x)χ̂(ω, x) = pH(ω, x).
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The Fredholm integral equation
Let

=m χ̂(ω, x) =
N∑

j=1

gj(ω)hj(x),

for some smooth functions gj , hj . Then, if supp G1 = R, and
supp H1 ⊃

⋃
ω∈R supp χ̂(ω, ·), where Gj = Hgj + igj , Hj = γhj , the

function Γ = H1
γ fulfils

Γ̂(v) +

∫
R3

K (v , k)Γ̂(k)dk = m̄(v),

for v = ω
c (ϑ+ e3), where

K (v , k) :=
1

(2π)3

N∑
j=2

Gj(ω)

G1(ω)

∫
Ω

Hj(y)

H1(y)
e−i〈v−k ,y〉dy

and
m̄(ωc (ϑ+ e3)) :=

m(ω, ϑ)

G1(ω)
.
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Numerical Examples

Focused illumination
We illuminate a small region inside the object. Thus, the unknowns are
simplified to,

χ̂(ω, x) = δ(x1)δ(x2)χ̂(ω, x3), γ(x) = δ(x1)δ(x2)γ(x3).

We set ϑ = e3 and

µ(x) :=
1

γ(x)
1D ∈ L2(R).

Then, the reduced integral equation reads∫
R

µ(y)pH(ω, y)e−iω2ydy = m̄(ω).
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Numerical Examples
To solve the integral equation, we consider the Galerkin method and
the hermite functions as an orthonormal basis of L2(R). We set

µ(x) =
N∑

k=0

µkhk (2x)

and

p̄(ω, x) =
N∑

k ,l=0

pk ,lhk (ω)hl(2x),

where the coefficients are given by,

µk =

∫
R

µ(x)hk (2x)d(2x), k = 0,1, ...,N

and

pk ,l =

∫
R

∫
R

p̄(ω, x)hk (ω)hl(2x)dωd(2x), k , l = 0,1, ...,N
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Numerical Examples

Then, we end up with the linear system

Aµ = m,

where A ∈ C3N×N , µ ∈ RN and m ∈ C3N .

We solve it, using Tikhonov regularization

min
{
‖Aµ−m‖22 + λ2‖Lµ‖22

}
,

where λ is the regularization parameter and L is the regularization
matrix.

L. Mindrinos (CSC, Vienna) Inverse scattering problem in tomography 07.04.2015 34 / 39



Numerical Examples

1st example: Let D = [−4,4] andW = [−3,3], we consider

µ(x) =

{
(0.5 x5 + x4 + x2) e−x2

, x ∈ D
0, x ∈ R \ D.

and

<e χ̂(ω, x) =

{
(h1(ω) + h1(2ω))µ(x), (ω, x) ∈ W ×D
0, (ω, x) ∈ W × (R \ D)
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Numerical Examples

Figure : Exact (left) and reconstructed (right) =m χ̂. The results are presented
for N = 25, λ = 0.001 and 3% noise.
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Numerical Examples
2nd example: Let D = [−2,2] andW = [−3,3], we consider

µ(x) =

{
h0(x) + h0(2x) + h1(3x), x ∈ D
0, x ∈ R \ D.

Figure : Reconstruction of the coefficients µj (left) and of µ(x) (right).
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Numerical Examples

Figure : Exact (left) and reconstructed (right) =m χ̂. The results are presented
for N = 30, λ = 0.001 and 3% noise.
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