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Connection to waves

A more general name for this talk could be, e.g.,

Utilizing solution techniques designed for parameter-dependent
PDEs in inverse boundary value problems.

EIT is just one example.
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Outline

I Problem setting (CEM, SCEM).
I Karhunen-Loève expansion.
I Polynomial chaos expansion.
I Bayesian inverse problem.
I Numerical examples.
I Real data.
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Complete electrode model (CEM)

We assume that
I D ⊂ R2 is a bounded domain with a smooth enough

boundary,
I ∂D is partially covered with M ∈ N \ {1} well-separated

connected electrodes {Em}Mm=1,
I σ ∈ L∞+ (D) models the conductivity of D,
I z1, . . . , zM ≥ c > 0 are the contact resistances between the

electrodes and the domain, and
I I = [Im]Mm=1 and U = [Um]Mm=1 of RM

� represent the net
current and voltage patterns on the electrodes.
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Complete electrode model (CEM)
Deterministic forward problem: Find

(u,U) ∈ H := H1(D)⊕ RM
�

such that the following equations hold:

∇ · (σ∇u) = 0 in D,

∂u
∂ν

= 0 on ∂D \ ∪mEm,

u + zm σ
∂u
∂ν

= Um on Em, m = 1, . . . ,M,∫
Em

σ
∂u
∂ν

dS = Im, m = 1, . . . ,M,

for a given electrode current pattern I ∈ RM
� .
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Stochastic complete electrode model (SCEM)

Modified assumptions:
I (Ω,Σ,P) is a probability space,
I σ : Ω× D → R is a random conductivity field in L∞(Ω× D),
I σ is uniformly strictly positive.
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Stochastic complete electrode model (SCEM)
Stochastic forward problem: Find

(u,U) ∈ L2
P(Ω;H) ' L2

P(Ω)⊗H, H := H1(D)⊕ RM
� ,

such that the following equations hold P-almost surely:

∇ · (σ∇u) = 0 in D,

∂u
∂ν

= 0 on ∂D \ ∪mEm,

u + zm σ
∂u
∂ν

= Um on Em, m = 1, . . . ,M,∫
Em

σ
∂u
∂ν

dS = Im, m = 1, . . . ,M,

for a given (deterministic) electrode current pattern I ∈ RM
� .
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Variational formulation for SCEM

Find (u,U) ∈ L2
P(Ω;H) such that

E
[
B
(
(u,U), (v ,V )

)]
= I · E[V ] for all (v ,V ) ∈ L2

P(Ω;H),

where

B
(
(u,U), (v ,V )

)
=

∫
D
σ∇u·∇v dx+

M∑
m=1

1
zm

∫
Em

(Um−u)(Vm−v) dS.

The unique solvability of this stochastic CEM forward problem
follows from the same line of reasoning as its deterministic
counterpart under the above assumptions on σ and z1, . . . , zM
(cf. [Somersalo92]).
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Log-normal random field (not the best choice?)

Conductivity σ is assumed to be a log-normal random field
I σ(ω, x) = exp(g(ω, x)),
I g(·, x) is Gaussian for all x ∈ D.

The random field σ can be characterized by defining
I the mean field Eg , and
I the covariance function Vg

of the underlying Gaussian random field g.

Remark
The requirement for σ to be uniformly strictly positive and
bounded does not hold for a log-normal random field. See
[Charrier12, Gittelson10] for suitable relaxations.
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The Karhunen–Loève expansion

According to the Karhunen–Loève theorem, the Gaussian
random field g allows the expansion

g(ω, x) = Eg[x] +
∞∑

l=1

√
λlYl(ω)φl(x),

where
I {Yl}l≥1 follow standard normal distribution and are

mutually independent,
I {λl}l≥1 and {φl}l≥1 are the eigenvalues and eigenfunctions

of the covariance operator defined by Vg , respectively.
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The exponential Karhunen–Loève expansion

For numerical computations σ is approximated as

σ(ω, x) ≈ σL(ω, x) = exp
(
Eg[x] +

L∑
l=1

√
λlYl(ω)φl(x)

)
.

The behaviour of the random coefficients {Yl}Ll=1 is
parametrized using a vector y = (y1, . . . , yL) ∈ RL, with the
(prior) probability distribution

dPY =
L∏

i=1

ρ(yi)dy =: π(y)dy,

where ρ : R→ R+ denotes the standard normal density.
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Wiener polynomial chaos expansion
I The mth univariate Hermite polynomial:

hm(x) := (−1)m exp(x2/2)
dm

dxm exp(−x2/2).

I Each µ ∈ (N∞0 )c determines a multivariate Hermite
polynomial (Chaos polynomial) via

Hµ(Y) :=
∞∏

m=1

hµm (Ym) =
∏

m∈suppµ

hµm (Ym),

where Y : Ω→ R∞ is an (infinite) vector consisting of
independent standard normals.

I The set P(Y) := {Hµ(Y) | µ ∈ (N∞0 )c} is an orthogonal
basis of L2

P(Ω) (under appropriate assumptions).
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Discrete approximation of (u,U)
Since (u,U) ∈ L2

P(Ω;H) ' L2
P(Ω)⊗ (H1(D)⊕ RM

� ), it is naturally
approximated as

u(Y, x) ≈ ũ(Y, x) =

ND∑
j=1

∑
µ∈ΛL(k)

αj,µHµ(Y)ϕj(x),

U(Y) ≈ Ũ(Y) =
M−1∑
i=1

∑
µ∈ΛL(k)

βi,µHµ(Y)vi ,

where
I {αj,µ} and {βi,µ} are to-be-determined coefficients,

I {ϕj}ND
j=1 ⊂ H1(D) is a FEM basis,

I {vi}M−1
i=1 is a basis of RM

� ,
I ΛL(k) ⊂ (NL

0)c is a suitable set of multi-indices.
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Selection of polynomial basis (multi-indices)

Here we employ total degree (TD) polynomial space:

ΛL(k) =
{
µ ∈ NL

0
∣∣ L∑

l=1

µl ≤ k
}
.

The dimension of the corresponding polynomial basis is

#ΛL(k) =

(
L + k

k

)
=: NΩ,

which demonstrates that the size of polynomial chaos explodes
as L and/or k grows.
Thus, the parameters L and k must be restricted to relatively
small values in practical computations.
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sGFEM for the CEM (preprocessing)

The sGFEM-discretized SCEM problem is altogether as follows:

Find {αj,µ} ⊂ R and {βi,µ} ⊂ R such that

E
[
B
(
(ũ, Ũ), (ṽ , Ṽ )

)]
= I · E[Ṽ ], (1)

where ṽ = Hµ′(y)ϕj ′(x) and Ṽ = Hµ′(y)vi ′ , holds for all
µ′ ∈ ΛL(k), j ′ = 1, . . . ,ND, and i ′ = 1, . . . ,M − 1.

This corresponds to a linear system

Ad = J

with a sparse A ∈ RN×N and N = NΩ(ND + M − 1).



A’’ Aalto University
School of Science

sGFEM for Electrical Impedance Tomography
April 8, 2015

16/28

EIT with CEM

I Apply linearly independent current patterns
I1, . . . , IM−1 ∈ RM

� through the electrodes.
I Measure the corresponding noisy potentials

V 1, . . . ,V M−1 ∈ RM on the electrodes.
I Try to reconstruct (usefull information about) the

conductivity.

We denote
I I = [(I1)T, . . . , (IM−1)T]T

I V = [(V 1)T, . . . , (V M−1)T]T,
and suppose the noise process contaminating V is

I an additive and mean-free Gaussian with a (known)
diagonal covariance matrix Γ.
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Bayesian solution of EIT with CEM
The likelihood function can be approximated as

π(V |y) ∝ exp
(
− 1

2
(
V − Ũ(y)

)T
Γ−1(V − Ũ(y)

))
,

where
I Ũ(y) = [Ũ1(y)T, . . . , ŨM−1(y)T]T,
I Ũm(y) is the sGFEM approximation corresponding to the

current pattern I = Im.
Using Bayes’ formula, we obtain the (approximate) posterior
density for y

π(y | V) ∝ π(V |y)π(y),

where
I π(y) ∼ N (0, I) is the prior density for y.
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Postprocessing the posterior

The posterior density can be written as

π(y | V) ∝ exp
(
− 1

2
PV(y)

)
,

where PV(y) is a polynomial in y.
Hence,

I finding the MAP estimate is a semidefinite polynomial
minimization problem (fast to solve?),

I CM estimate can be computed as a high-dimensional
integral with an explicitly known integrand.

In particular, the computational complexities of these tasks are
independent of the discretization of H1(D).
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Numerical experiments
In the numerical experiments, we use

I D = (−1,1)2,
I M = 16 electrodes around D,
I z1, . . . , z16 = 1,
I σ(ω, x) = exp(g(ω, x)) with g defined through,

I Eg [x] ≡ 0,
I Vg(x, x′) = 0.16 exp

(
− |x− x′|2/(2× 0.32)

)
,

I simplistic square meshes for data generation and for the
inverse computations with quadratic spatial elements:
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Numerical experiments

Figure arrangement:

Target conductivity

MAP estimate
k = 1, L = 9
DoF = 7440

MAP estimate
k = 1, L = 200
DoF = 149544

MAP estimate
k = 2, L = 9
DoF = 40920

MAP estimate
k = 2, L = 20
DoF = 171864

MAP estimate
k = 3, L = 9
DoF = 163680
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Example 1: Γ corresponds to 0.1% of noise
Exact k=1, L=200 k=2, L=20

k=1, L=9 k=2, L=9 k=3, L=9

0.95 1 1.05 1.1 1.15 1.2
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Example 2: Γ corresponds to 0.1% of noise
Exact k=1, L=200 k=2, L=20

k=1, L=9 k=2, L=9 k=3, L=9

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Real data

Modifications to increase the sparseness of the sGFEM system
and to account for contact resistances:

I The a priori mutually independent unknown
Y : Ω→ R76+16

+ are
I the a priori uniformly distributed pixel values of the

conductivity, and
I the a priori uniformly distributed contact conductances.

I Multivariate Legendre polynomials replace the Hermite
polynomials.

I An additional smoothness prior is introduced in the
postprocessing stage.
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Real data
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Real data
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Real data
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