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Connection to waves

A more general name for this talk could be, e.g.,

Utilizing solution techniques designed for parameter-dependent
PDEs in inverse boundary value problems.

EIT is just one example.
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Complete electrode model (CEM)

We assume that

» D c R?is a bounded domain with a smooth enough
boundary,

» JD is partially covered with M € N\ {1} well-separated
connected electrodes {En}Y_.,

» o € L(D) models the conductivity of D,

> Zy,...,2Zm > ¢ > 0 are the contact resistances between the
electrodes and the domain, and

> | =[Im]M_, and U = [Un]¥_, of RY represent the net
current and voltage patterns on the electrodes.
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Complete electrode model (CEM)

Deterministic forward problem: Find

(u,U) e H:= H' (D) RM

such that the following equations hold:

(V-(cVu)=0 in D,
ou S
% :0 on 8D\UmEm,
ou
U+2zmo— =Un onEn, m=1,.... M,
ov
/ U@dS:/m, m:1,...,M,
\ Em 81/

for a given electrode current pattern / ¢ RY.

99 Aalto Universi ity SGFEM for Electrical Impedance Tomography
School of Science

April 8, 2015
5/28



Stochastic complete electrode model (SCEM)

Modified assumptions:
» (2, X, P) is a probability space,
» 0:Q x D— Ris arandom conductivity field in L>(Q2 x D),
» o is uniformly strictly positive.
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Stochastic complete electrode model (SCEM)
Stochastic forward problem: Find

(u,U) e LB H) ~ LB(Q) @ H, H:=H'(D)aRM,

such that the following equations hold P-almost surely:

(V- (cVu)=0 in D,
ou —
u+zmag =Un onEn, m=1,.... M,
/ U@ds Im, m:1,...,M,

L ov

for a given (deterministic) electrode current pattern / € RM.
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Variational formulation for SCEM

Find (u, U) € L%(Q; ) such that
E[B((u, U),(v,V))] = I-E[V]  forall (v, V) € L3(QH),

where

B((u,U), (v, V)) = /

M
oVu-Vvdx+) 1/ (Un—u)(Vim—v)dS.
b m=1 Zm J Em

The unique solvability of this stochastic CEM forward problem
follows from the same line of reasoning as its deterministic
counterpart under the above assumptions on ¢ and zy, ..., 2Zy

(cf. [Somersal092]).
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Log-normal random field (not the best choice?)

Conductivity o is assumed to be a log-normal random field
> o(w,x) = exp(g(w, x)),
» g(-,x) is Gaussian for all x € D.
The random field o can be characterized by defining
» the mean field Eg4, and
» the covariance function Vj
of the underlying Gaussian random field g.

Remark

The requirement for o to be uniformly strictly positive and
bounded does not hold for a log-normal random field. See
[Charrier12, Gittelson10] for suitable relaxations.
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The Karhunen-Loéve expansion

According to the Karhunen—Loéve theorem, the Gaussian
random field g allows the expansion

9(w,x) = Eg[x] + D> VA Yi(w)ei(x).
=1

where
» {Y},>1 follow standard normal distribution and are
mutually independent,

» {N\}i>1 and {¢;}/>1 are the eigenvalues and eigenfunctions
of the covariance operator defined by Vj, respectively.
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The exponential Karhunen-Loéve expansion

For numerical computations o is approximated as

L
0w, X) ~ 01w, %) = exp (Egld] + Y- VA Yi(w)oi(x)).

=1

The behaviour of the random coefficients {Y;}5_; is

parametrized using a vectory = (y1,...,y.) € R, with the
(prior) probability distribution

L
dPy = [ p(yi)dy =: = (y)dy,

i=1

where p : R — R denotes the standard normal density.
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Wiener polynomial chaos expansion

» The mth univariate Hermite polynomial:

m

() = (1) exp(x/2) S exp(—x/2).

» Each p € (N3°). determines a multivariate Hermite
polynomial (Chaos polynomial) via

= H hum(ym) = H h#m(Ym)’
m=1

mesupp i

where Y : Q — R is an (infinite) vector consisting of
independent standard normals.

» The set P(Y) := {H.(Y) | » € (N§°)c} is an orthogonal
basis of L2,(£2) (under appropriate assumptions).
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Discrete approximation of (u, U)
Since (u, U) € L3(Q;H) ~ L3(Q) ® (H'(D) @ RM), it is naturally
approximated as

u(Y,x) = O(Y,x) = ZZ%# 0i(X),

j= 1u€AL(k)
U(Y - Z Z BI N7 ,LL(Y
i=1 pent(k)
where
» {oj,}and {3} are to-be-determined coefficients,
> {go,}ND C H'(D) is a FEM basis,
» {vi}M-1is a basis of RY,
» AL(k) c (N§)c is a suitable set of multi-indices.
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Selection of polynomial basis (multi-indices)

Here we employ total degree (TD) polynomial space:

AL(k) = {M e N§ | iu, < k}.

I=1
The dimension of the corresponding polynomial basis is

HAL(K) = (L: k) — N,

which demonstrates that the size of polynomial chaos explodes
as L and/or k grows.

Thus, the parameters L and k must be restricted to relatively
small values in practical computations.
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sGFEM for the CEM (preprocessing)

The sGFEM-discretized SCEM problem is altogether as follows:

Find {a;,} C Rand {3;,} C R such that

E[B((T, U), (v, V)] = 1-E[V], (1)

where ¥ = H,/(y)p;(x) and V = H,(y)v', holds for all
M’EAL(k)/ 1,.. ,Np,and /' =1 ,...,M—1.

This corresponds to a linear system
Ad=J

with a sparse A ¢ RV*N and N = No(Np + M — 1).
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EIT with CEM

» Apply linearly independent current patterns
I',...,IM=1 ¢ RM through the electrodes.

» Measure the corresponding noisy potentials
V1, ..., VM=1 c RM on the electrodes.

» Try to reconstruct (usefull information about) the
conductivity.
We denote
> T — [(/1)T7 B .,(/M—1)T]T
> ) = [(\/1)T7 el (VM—1)T]T’
and suppose the noise process contaminating V is

» an additive and mean-free Gaussian with a (known)
diagonal covariance matrix I'.
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Bayesian solution of EIT with CEM

The likelihood function can be approximated as

w(V1y) o< exp(— S(v—dy) T (v~ (y) ).

where

> U(y) =0T O )T

» UM(y) is the sGFEM approximation corresponding to the

current pattern / = ™.
Using Bayes’ formula, we obtain the (approximate) posterior
density fory
m(y[V) o e (V]y)(y),

where

» 7(y) ~ N(0,1) is the prior density fory.
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Postprocessing the posterior

The posterior density can be written as

w(y V) o exp(~ 2 Pu(y).

where Py(y) is a polynomial in y.
Hence,
» finding the MAP estimate is a semidefinite polynomial
minimization problem (fast to solve?),
» CM estimate can be computed as a high-dimensional
integral with an explicitly known integrand.

In particular, the computational complexities of these tasks are
independent of the discretization of H'(D).
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Numerical experiments
In the numerical experiments, we use
» D= (-1,1)?

M = 16 electrodes around D,
Z1,...,216 = 1,
o(w,x) = exp(g(w, x)) with g defined through,

» Eg[x] =0,

> Vglx,x') = 0.16exp (— [x — X'/(2 x 0.82) ),
simplistic square meshes for data generation and for the
inverse computations with quadratic spatial elements:

v

v

v

v
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Numerical experiments

Figure arrangement:

MAP estimate MAP estimate

Target conductivity k=1, L=200 k=2 L=20
DoF = 149544 DoF = 171864

MAP estimate MAP estimate MAP estimate
k=1, L=9 k=2, L=9 k=3, L=9
DoF = 7440 DoF = 40920 DoF = 163680
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Example 1: I corresponds to 0.1% of noise

Exact k=1, L=200 k=2, L=20
—

R~

T
0.95 1 1.05 1.1 1.15 1.2

k=1,L=9 k=2, L=9 k=3, L=9

A d [N — [N .
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Example 2: I' corresponds to 0.1% of noise

Exact k=1, L=200 k=2, L=20

k=3, L=9
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Real data

Modifications to increase the sparseness of the sGFEM system
and to account for contact resistances:

» The a priori mutually independent unknown
Y:Q— R are
» the a priori uniformly distributed pixel values of the
conductivity, and
» the a priori uniformly distributed contact conductances.
» Multivariate Legendre polynomials replace the Hermite
polynomials.

» An additional smoothness prior is introduced in the
postprocessing stage.
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Real data
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Real data
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Real data
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