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Figure : Standard OCT system based on a Michelson interferometer [Huang
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The FF-OCT system

We consider Maxwell’s equations

divy D(t, x) =0,
divy B(t,x) =0,
10B
curly E(t,x) = _Eﬁ(t’ X),
10D
curly H(t, x) = Eﬁ(t’ X),

for t € R and x € R3, and the material equations

D(t,x) = E(t,x) + /0 (7 X)E(t — 7, x)dr,
B(t, x) = H(t, x),

where y is the electric susceptibility.
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The FF-OCT system

Let Q c R3 be the domain where the sample is located. We set

@ |sotropic medium: x is scalar, i.e. multiple of the identity matrix

x = x1L.
@ Anisotropic medium: y : R x R® — R3*3
@ x(t,x)=0 for t<0,xecR?
@ x(t,x)=0 for teR,xcR3\Q,
Then, the Fourier transform E of E, given by

E(w,x) = / E(t, x)e“tdt,

satisfies
2
curly curly E(w, x) — %(1 + %(w, X)) E(w, x) =0

forw € R, x € R3
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The FF-OCT system
The sample is illuminated by a laser beam described by the electric
field E(® which sstisfies

wZA

curly curly E@(w, x) = EO(w,x)=0.
Moreover, we assume that
supp EQ(t,)nQ =0, for t<O.

Then, the electric field E (generated by this incoming light beam in the
presence of the sample) satisfies the initial condition

E(t,x)=EO(t,x) for t<0, xe RS
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The FF-OCT system

The measurements are obtained by the combination of E

(backscattered field from the sample) and E; (back-reflected field from
the mirror).

The mirror is placed orthogonal to the unit vector e3 = (0,0, 1) through
the point r e3 and we assume that

E.(t,x)=EO(t x) for t<0, xe RS

The intensity
100 = [0+ B 0fat e {1.2.3)
0
is measured at some detector points, located on the plane

D={xcR3|x3=d}

parallel to the mirror at a distance d > 0 from the origin.
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The FF-OCT system
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The FF-OCT system

In this setup, it is easy to acquire besides the intensity /. also the
intensity of the two waves E and E, separately.
Therefore, we consider instead of /, the function

M, j(x) = 5 lrj— A |Ej(t, x)|=dt — A |Ej(t, x)|=dt

forr e (—oo0,R), j € {1,2,3}, and x € D as our measurement data, or
equivalently,

M0 = [ (6~ EO)tx)(E — EV) (e 0t

Jj
—00

- / (B — EO)w, x)(Erj — EO)(w, x)dw.
Isotropic case: M,(x) = Zf:1 M, ;(x).
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The FF-OCT system

If E satisfies the (vector) Helmholtz equation and the material
equations. Then, E solves

2 ~
E(w,x) = E(O)(w,X) + (uéz]l + grady divx) / G(w, x — y)X(w, ¥)E(w, y)dy,
]RS

where ‘
elslxl
 Arx|’

Let the medium be weakly scattering and sufficiently far from the
detector. Then, the solution is given by

G(w, x) x#0,weR.

EM(w, p9) ~ EO(w, p9)

2.i%p R "
/ 9% (9 % (R(w, ) EO(w, y)))e 5 #ay,
RS

w?e'c
47 pCc?

where p > 0and 9 € S2.
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The FF-OCT system

The incident field propagates in the direction —es, orthogonal to the

detector surface D, this means
EO(t,x) = f(t+ %) p,

where p € R3, with p3 = (p, e3) = 0, is the polarisation vector.
The vertical distribution f : R — R satisfies

suppf c (£, 9).

Then, the electric field E, reflected by the mirror is given by

EL(t.x) = (ft+2)—f(t+2+2528))p ifxz>r,
ne 0 if x3 <r.
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The FF-OCT system

For E() as above, then
EO(w,x) = ( / h f(t+ X—g)eiwfdt) p = Fw)e e %p,
and the measurements are given by
M: j(x) = —p;j /oo (B — EN)(t.x)f(t + 25%)dt,
— -2 [ (B - B 0wt

forallj e {1,2,3}, r € (—o0, R), and x € D.
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The FF-OCT system

To summarize,

E OB (),

where

wzei%PA

(LV)(w, p¥) = _Wf(w)/ﬁs 9 x (9 x (V(w, y) p))e—i%<19+es,y>dy7

e = (-5 [ ue x>?(—w>ei“é<2'—X3>dw)2

j=1

Thus, combining £, M, the forward operator 7 : yx — M, F = ML
models the direct problem.

The inverse problem is then formulated as an operator equation

F{=M.
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The Inverse Scattering Problem

Let the initial illumination be of the form £(©)(w, x) = f(w)e'c"p,
satisfying

suppfc (8,8 +2)c (8 9) forsome §>0.

Then,

forallje {1,2,3},we R,and x € D.
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The Inverse Scattering Problem

In addition, for every w € R \ {0} with f(w) # 0, the formula
P[0 x (9 x R(w, $(9 + €3))p)]

R
= j;}pj\z | Wpgezerstos gy
w w —00

holds for all j € {1,2}, 9 € S2 := {ne 8% |n3 >0},and p = %
(asymptotically for y — 0 and p — o0).

Here { denotes the Fourier transform of x with respect to time and
space,

)2({;)’ k) = / / X(ta X)e*i<k,X>eiwthdt — / X(w,x)efﬂk’){)dx.
—oo JR3 R3
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The Inverse Scattering Problem (Isotropic case)

Then, from the sum of M, 1 and M, > we obtain

$w, 20+ e3)) (p. 0 x (9 x p)) = Fw, 2(9 + €3))((9. p)° — |pI?).

Since (9, p)? < |p|? for every combination of p € R? x {0} and ¥ € S2,
we have direct access to

R(w, 2V +e3)), weR\{0}, ¥e Sk,

of x in a subset of R x R3.

Remark

Here, the problem is to reconstruct the 4D susceptibility from the 3D
measurement data.
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The Inverse Scattering Problem (Isotropic case)
Recall that

M:Rx S5 —C, Mwd)=x(w 20+ es)).

Lemma
The inverse Fourier transform m : R x S2 — C of m with respect to w
is given by

m(t, ) )dr,

C o0
" V201 + Ua) /_oo /ET_W x(ry)asly

forte R, 1,0 e Randd € Si, where E, y denotes the plane

Evo={y €R®| (V + €3,y) = co}.
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The Inverse Scattering Problem (Isotropic case)

Thus, the measurements provide the Radon transform of x(r, -),

m(t, ) 9)dr.

_ /“_(._t
T 20109 )T

Discretisation
We assume, for some T > 0:

supp x(-,x) € [0, T] forall x e R3.

Thus, the function ¥(7; -,9) is discretised for every 7 € R and ¥ € S
and the step size depends on the size of the support of x(-, x).
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The Inverse Scattering Problem (Isotropic case)
Then, we consider the following discretisation

Tn(r ) = / X(my)s(y), nem, re(0,T), de S,
Entv

of the Radon transform of the functions x(r, -) and we extend it over

the planes Epr.c 9,

Wr)x [ Arysy), forall ce -1}
EnT+e19
Then,
S 9)d
~ —H\T, T
)~ g b W)
where N(o) = | + % | denotes the integer closest to ¢

This approximation can now be iteratively solved for y.
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Figure : Discretisation of x with respect to the detection points.
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The Inverse Scattering Problem (Isotropic case)

Theorem

Let

m(t,9) =
for some constant T > 0 with the integer valued function
N(o) = |§ +3].

Then, x fulfils the recursion relation

2(1 19
ol 9) = T () + Y2 £ 0 O

c _(n_‘_%)T?ﬂ)v

for neZ, re(0,T), e S2.

;

(o _ 2
—_— XN(r—n(T,9)dr, 9 € ST, teR,
v2(1 +193)/0 M t)( ) *
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The Inverse Scattering Problem (Anisotropic case)
The problem is to reconstruct x : R x R3 — R3*3 from
Xo,p,i(w, ) = pj[0 x (9 x X(w, 5(9 + &3))p)];, j=1.2,

where we assume that measurements for every p € R? x {0} are
available.

As before, a reconstruction formula holds for the functions

iriod) = [ xops(r.y)is(y)
o,
forallpc R?2 x {0}, 7 € R,0 € R, ¥ € $2, and j € {1,2}, where
W)= [ x(ry)s(y)

Eo‘,19

denotes the Radon transform data of x(, -).
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The Inverse Scattering Problem (Anisotropic case)

Theorem

Lett,0 € R and v € S2, be fixed, and Py € R3*® denote the
orthogonal projection in direction ¥. Then, using that
¥ x (9 x Xp) = —PyXp, the data

Pl x (0 x x(7: 0, 9))];

forj = 1,2 and the three different polarisation vectors p = ey, e> and
p = €4 + es uniquely determine the projection

(Pox(: 0, 8))c = / (Pox(7,¥))keds(y) for k.te{1,2}.

EU,’(9

Moreover, measurements for additional polarisations p do not provide
further information.
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The Inverse Scattering Problem (Anisotropic case)

Let R € SO(3) describe the rotation of the sample. Then, the
transformed susceptibility x g is given by

XR(t7 y) = RX(t7 RTy)RT

If there exist for every R € {Ry, Ry, R} constants ag > 0 and ¥g € S%
satisfying
Yp + €3 = quf:f(’lsl + 63),

then, the data corresponding to the measurements of the rotated
sample at the detector in direction 9z satisfy

XH,p,j(T; Oz,qU,Q?R) = pj[ﬁR X (19,‘? X R)_((T; 0719)RT]1'

forall 7,0 € R, pe R? x {0},j=1,2.
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The Inverse Scattering Problem (Anisotropic case)

Theorem

The measurements obtained at the detectors g for the polarisations
p = eq, e, ey + e and rotations R = Ry, Ry, R», so that every proper
subset of { R} e3, Rl e3, Ry 3,9 + e3} is linearly independent and such
that 9g + e3 = agR(VY + e3), provide sufficient information to
reconstruct uniquely the Radon data x(t; o, 1).

Then, it is possible via an inversion of a limited angle Radon transform
to recover the susceptibility x.
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Photoacoustic Tomography (PAT)

=
@:>

@ The object is irradiated by a short-pulsed laser beam.

@ Some of the light is absorbed and partially converted into heat.

@ The heat is converted to a pressure rise via thermoelastic
expansion.

@ The pressure rise propagates as an ultrasonic wave - the
photoacoustic wave.
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PAT-OCT system

@ The laser beam operates around 1000nm for both systems.

@ PAT and OCT use full field illumination.

@ PAT detection points and the OCT beam are being co-axially
aligned in order the images from each modality to be inherently
co-registered.

@ PAT and OCT scans are performed consecutively and the data
acquisition times differ considerably.

L. Mindrinos (CSC, Vienna) Inverse scattering problem in tomography 07.04.2015 27/39



The multi-modal system

Inverse Problem
Recover the optical properties of the sample from internal data
(absorbed radiation) and modified far-field data (OCT measurements).

We assume

@ The reconstruction of the absorbed energy from the PAT
measurements is solved (inverse source problem) [Kuchment and
Kunyansky 08].

@ The laser beam initialization is short enough such that the
pressure is generated instantaneously at t = 0.

@ The initial pressure p(®) is proportional to the absorbed energy wa.
The proportionality factor is the Grliineisen parameter ~.

@ Uniqueness results for non-dispersive medium and boundary data
[Bal and Zhou 14].

L. Mindrinos (CSC, Vienna) Inverse scattering problem in tomography 07.04.2015 28/39



The multi-modal system (Isotopic case)

Given the Maxwell’s equations and the Poynting vector S = Z(E x H),
considering the conservation of energy for dielectric media, we obtain

wA(X) = 5 /]R 0 3M (. )] E(w, x)[2dw,

for all x € R3. Then,
PO (x) = y(x)wa(x).

Remark

If we assume non-dispersive medium or monochromatic source
illumination, then

Wa(x) = o(x) /]R E(t, %) 2t

where o is the conductivity. This formula is commonly used in TAT.

4
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The multi-modal system

We recall E©)(w, x) = f(w)e"¢%p, and we consider the limiting case
[f2 =0(- — w) + 6(- + w).

Then, the Inverse Problem is equivalent to the integral equation

1 @
fel0+esy) gy — m(w, ),
/MUWMw) y = m(w, 9)

forallw € Rand 9 € S2, where

mWJ%4H+ﬂN@%mWD

7'('2 2&]
m(w,’ﬁ): M% (r 19)6 2r+p(1 193))

and H stands for the Hilbert transform. Moreover, { and ~ are related
through

YR (w; X) = pr(w; X).
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The Fredholm integral equation

Let
Z gi(w)hj(x),

for some smooth functions g;, h;. Then, if supp Gi = R, and
supp Hy O U,,cr Supp X(w, -), where G; = Hg; + ig;, H; = vh;, the
function I = £ fulfils

F(v)+ [ K(v, k) (k)dk = m(v),
R3

for v = %(J + e3), where

K d = (27r)3Z a0 oy

and
m(w, )

m(5(V + es)) :=

Gi(w)

L. Mindrinos (CSC, Vienna) Inverse scattering problem in tomography 07.04.2015

31/39



Numerical Examples

Focused illumination

We illuminate a small region inside the object. Thus, the unknowns are
simplified to,

X(w, x) = 0(x1)0(x2)k(w, X3),  v(X) = 0(x1)d(x2)7(X3)-

We set ¥ = e5 and

H(x) = ﬁno € [2(R).

Then, the reduced integral equation reads

/R w(y)ou(w,y)e “Hdy = m(w).
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Numerical Examples

To solve the integral equation, we consider the Galerkin method and

the hermite functions as an orthonormal basis of L2(IR). We set

N
= xhi(2x)
k=0

and

Z Pr.1thk(w)hy(2x),
K,/=0

where the coefficients are given by,

Ik = /]Ru(x)hk(Zx)d(Zx), k=0,1,...N

and
pk,//p X)he(@)h(2x)dwd(2x), k1 =0,1,..,N
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Numerical Examples

Then, we end up with the linear system
Ap = m,
where A e C3N*N 1, ¢ RN and m e ¢V,
We solve it, using Tikhonov regularization
min { 1Ap — m|3 + \2||Lull3 |

where ) is the regularization parameter and L is the regularization
matrix.

L. Mindrinos (CSC, Vienna) Inverse scattering problem in tomography 07.04.2015 34/39



Numerical Examples

15t example: Let D = [-4,4] and W = [-3, 3], we consider

05x5+x*+x2)e ™, xeD
u(X)={ f) )

x € R\D.
and
. (h1(w) + h(2w))(x), (w,X) €W x D
gfeex(w,)():{Q1 1 8 (w,x) e W x (R\ D)
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Numerical Examples

for N =25, A\ = 0.001 and 3% noise.

Figure : Exact (left) and reconstructed (right) Sm . The results are presented
L. Mindrinos (CSC, Vienna)
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Numerical Examples
2"d example: Let D = [-2,2] and W = [-3, 3], we consider

J(x) = { g?(x) + ho(2x) + h1(3x), i 2 E\D

2

oo

o
003 o
00,
0 ° ° oog,gggﬁooooooooooom-

°

Figure : Reconstruction of the coefficients 1, (left) and of x(x) (right).
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Numerical Examples

Figure : Exact (left) and reconstructed (right) Sm §. The results are presented
for N =30, A = 0.001 and 3% noise.
L. Mindrinos (CSC, Vienna)
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@ P. Elbau, L. Mindrinos, and O. Scherzer. Mathematical modeling of
optical coherence tomography. Springer (in press).

@ P. Elbau, L. Mindrinos, and O. Scherzer. Reconstruction of optical
parameters for the multi-modal PAT-OCT system (in progress).

Thank you for your attention.
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