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Introduction

Composite materials are at the foundation of many
contemporary engineering designs. Typically such materials
have periodic structure.
Non-destructive testing

Important question: What kind of information about the
microstructure can we detect from scattering data?



Introduction

1 Mathematical understanding of wave propagation through
periodic media of bounded support.
Joint work with B. Guzina and S. Moskow

2 Transmission eigenvalues for a periodic medium and their use to
obtain information about the effective material properties of the
medium.
Joint work with H. Haddar and I. Harris



Scattering by a Periodic Media

Y := [0, 1]d , ε > 0 small compared to ka. The wave number k is
fixed. x ∈ D is referred to as the slow variable and x/ε ∈ Y as the fast
variable. Let A(y) = (aij (y)) be a symmetric matrix and n(y) s.th.

aij (y) and n(y) are periodic functions with period Y

inf
y∈Y

inf
|ξ|=1

ξ · A(y)ξ = Amin > 0, sup
y∈Y

sup
|ξ|=1

ξ · A(y)ξ = Amax <∞

infy∈Y n(y) = nmin > 0 and supy∈Y n(y) = nmax <∞

The material properties of the inhomogeneity D are represented by

Aε := A(x/ε) and nε := n(x/ε) for x ∈ D.



Scattering by an Inhomogeneous Media

The scattering problem for a given incident wave ui by the periodic
media D reads:

∇x · A(x/ε)∇xwε + k2n(x/ε)wε = 0 in D
∆xuε + k2uε = 0 in Rd \ D

uε − wε = f on ∂D
ν · ∇xuε − ν · A(x/ε)∇xwε = g on ∂D

where the scattered field uε satisfies the Sommerfeld radiation
condition

lim
r→∞

r
d−1

2

(
∂uε
∂r
− ikuε

)
= 0, r = |x | → ∞

f := −ui and g := −ν · ∇xui on the interface ∂D.



Homogenization Approach
BENSOUSSAN-LIONS-PAPANICOLAOU (1978), KESAVAN (1979),
MOSKOW-VOGELIUS (1993), ALLAIR (2002), KENIG-LIN-SHEN,
(2012)-(2013) . . .

Start with the ansatz

wε(x) ≈ w0(x , y) + εw1(x , y) + ε2w2(x , y) + · · ·

uε(x) ≈ u0(x , y) + εu1(x , y) + ε2u2(x , y) + · · ·

Use the multi-scale differentiation

∇ = ∇x +
1
ε
∇y

Compare the powers of ε

Note: For an arbitrary function φ(x , y), x ∈ D and y ∈ Y ,
φ̄(x) denotes the mean value

φ̄(x) :=

∫
Y
φ(x , y) dy .



Homogenization Approach

uε = u0(x) in the exterior of D

w0 depends only on x

the homogenized (formal) limiting problem is

∇ · Ah∇w0 + k2nhw0 = 0 in D
∆u0 + k2u0 = 0 in Rd \ D

u0 − w0 = f on ∂D
ν · ∇u0 − ν · Ah∇w0 = g on ∂D.

where nh = n and (Ah)ij =

∫
Y

(
aij (y)− aik (y)

∂χj

∂yk
(y)

)
dy

and the cell functions χj (y) are H1(Y ) periodic solutions to

∇y · A(y)∇yχ
j (y) = ∇y · A(y)yj =

∂

∂yi
aij (y)

with zero-mean. (We use the Einstein summation notation).



Homogenization Approach

Furthermore

w1(x , y) = −χj (y)
∂w0

∂xj
+ w1(x) referred to as bulk correction

It can be shown that w1(x) satisfies

∇·Ah∇w1+k2nhw1 =

(
akiχj − akl

∂χij

∂yl

)
∂3w0

∂xi∂xj∂xk
−k2

(
aki

∂β

∂yi
− nχk

)
∂w0

∂xk

where β is the unique zero-mean Y -periodic solution to

∇y · Ah∇yβ(y) = n − n(y)

The source term can be shown to be zero! Hence it suffices to
take w1 = 0, in D.

w0 + εw1 and u0 do not satisfy the transmission conditions (even
approximately to the correct order). Hence we need to correct
for the boundary.



Homogenization Approach
Our boundary corrector is the radiating solution to

∇ · A(x/ε)∇θε + k2n(x/ε)θε = 0 in D
∆θε + k2θε = 0 in Rd \ D

θ+
ε − θ−ε = −χj (y)

∂w0

∂xj
on ∂D

(∇θε · ν)+ − (A(x/ε)∇θε · ν)− =
(
rot(q) + k2Ah∇yβ(y)w0

)
· ν on ∂D

where q(x , y) is the Y -periodic solution to (note that v0 − Ah∇w0 has
Y -average zero and zero divergence)

roty (q) = v0 − Ah∇w0 with

(v0(x , y))i =

(
aij (y)− aik (y)

∂χj

∂yk
(y)

)
∂w0

∂xj
.

Alternatively, the Neumann transmission condition read(
v0 − v0

ε
+ rotx (q) + k2Ah∇yβ(y)w0

)
· ν



Homogenization Approach

Let Uε ∈ H1
loc(Rd ) is such Uε = uε in Rd \D and Uε = wε in D for ε ≥ 0.

Lemma
For any ball BR containing D,

‖Uε − (U0 + εU1 + εθε)‖H1(BR) ≤ Cε‖w0‖H2(D)

where the constant C is independent of ε and w0.

The proof is done by a duality argument to bound∫
BR

(Uε − U0 − εU1 − εθε)φdx

by ‖φ‖H−1(BR) independently of ε.



Homogenization Approach

The analysis of the boundary corrector function θε

‖θε‖H1(D) + ‖θε‖H1(BR\D) ≤ CRε
−1/2‖w0‖H2(D)

‖θε‖L2(BR) ≤ CR‖w0‖H2(D).

Note The L2-estimate is proven only for the corrector θε using duality
argument and the previous lemma. L2-L2 general estimates for the
transmission problem are not available (see AVELLANEDA-LIN and
KENIG-LIN-SHEN for the Dirichlet case.)

Unfortunately, finding the limit of the boundary corrector θε as ε→ 0 is
a very hard problem in general

There is a vast literature in the case of the Dirichlet or Neumann
boundary value problems (BENSOUSSAN-LIONS-PAPANICOLAOU,
ALLAIR, MOSKOW-VOGELIUS, GÉRARD VARET-MASMOUDI . . . )
For the boundary corrector at a straight interface between a periodic
and a homogeneous half space (CLAY-FLISS-VINOLES)



Homogenization Approach

Theorem
Let uε,wε be the solution to the original problem, u0,w0 the solution to
the homogenized problem, and w1 = −χj (y)∂w0

∂xj
the bulk correction.

Then

‖uε − u0‖H1(BR\D) + ‖wε − (w0 + εw1)‖H1(D) ≤ Cε1/2‖w0‖H2(D)

‖uε − u0‖L2(BR\D) + ‖wε − w0‖L2(D) ≤ Cε‖w0‖H2(D).

Theorem
In addition let θε be the boundary corrector. Then

‖wε − (w0 + εw1 + εθε)‖L2(BR) ≤ Cε2‖w0‖H4(D)

‖wε−(w0 +εw1 +εθε)‖H1(D) +‖uε−(u0 +εθε)‖H1(BR\D) ≤ Cε3/2‖w0‖H4(D)



Homogenization Approach

Remarks

While the bulk correction is necessary for H1 convergence, it
does not in general improve upon the L2 estimate. Unless the
boundary correction goes to zero (in general not the case)

Our convergence approach can be iteratively used to obtain
higher order estimates.The boundary correctors have the same
structure.

Interesting is that starting at the order ε2, the mean of the
scattered field outside D is affected not only by the boundary
layer but also by the mean of the bulk correction. This is referred
to as "dispersion effect" ALLAIRE-AMAR 1999,
WAUTIER-GUZINA 2014.
Such an effect could be important for the inverse problem of
detecting microstructure effects in the measured (mean)
scattered field outside the periodic media.



The Limit of the Boundary Layer

Example of a Boundary Corrector Limit

Consider D := [0, 1]× [0, 1] (more generally it can be a convex
polygonal domain with sides of rational or infinite slope) and by
linearity compute limε→0 θε with non-zero transmission data only
on one side at a time. Let us fix the side x1 = 1, where

θ+
ε − θ−ε = χ1(x/ε)

∂w0

∂x1
on ∂D ∩ {x1 = 1}

(∇θε · ν)+− (a(x/ε)∇θε · ν)− =
1
ε

g1(x/ε)
∂w0

∂x1
on ∂D ∩{x1 = 1}

where

g1(x/ε) = a11(x/ε)− a1k (x/ε)
∂χ1

∂yk
(x/ε)− A11



The Limit of the Boundary Layer
Example of a Boundary Corrector Limit

The above transmission data depends on the choice of ε. If, for
example εk = 1/k for k an integer, the boundary layer problem would
see only the boundary slice of the periodic functions

χ1(y) and g1(y).

Hence one can expect different limits of θε for different sequences of ε
going to zero.

We assume that εk is a sequence going to zero for which the
boundary cutoff is fixed, i.e. the fractional part of 1/εk is constant, i.e.

1
εk
− b 1

εk
c = δ, for all k

and the boundary data are now

χ1(δ, y2) and g1(δ, y2).



The Limit of the Boundary Layer
Need the solution of a strip problem

G+ = {y1 > 0; y2 ∈ [0,1]} and G− = {y1 < 0; y2 ∈ [0,1]}
∇y · a(y1, y2)∇w− = 0 y1 < 0, −∞ < y2 < +∞

∆y w+ = 0 y1 > 0, −∞ < y2 < +∞
w+(0, y2)− w−(0, y2) = χ1(δ, y2) −∞ < y2 < +∞

∂y1w
+(0, y2)− a1i (δ, y2)∂yi w

−(0, y2) = g1(δ, y2) −∞ < y2 < +∞
such that w+, w− are periodic in y2 and e−γy1∇w− ∈ L2(G−) and
eγy1∇w+ ∈ L2(G+) for some γ > 0.

This problem has a unique solution up to an arbitrary constant (the
proof adapts the approach in J.L. LIONS (1981))

Set d+ = lim
y1→∞

w and d− = lim
y1→−∞

w and define

χ∗1 = d+ − d−



The Limit of the Boundary Layer

We can prove that θεk → θ∗ strongly in L2
loc(R2) where θ∗ solves

∇ · A∇θ∗ + k2nθ∗ = 0 in D
∆θ∗ + k2θ∗ = 0 in R2 \ D

(θ∗)+ − (θ∗)− = χ∗1
∂w0

∂x1
on ∂D ∩ {x1 = 1}

(θ∗)+ − (θ∗)− = 0 on ∂D \ {x1 = 1}

(∇θ∗ · ν)+ − (A∇θ∗ · ν)− = a12(δ, y2)w(0, y2)−
∂2w0

∂x1∂x2
on ∂D ∩ {x1 = 1}

(∇θ∗ · ν)+ − (A∇θ∗ · ν)− = 0 on ∂D \ {x1 = 1}

where A is the homogenized matrix, and a12(δ, y2)w(0, y2)− denotes
the average in the y2 direction of a12w at y1 = 0 coming from the left
side of the strip.



Transmission Eigenvalues

Values of kε ∈ C for which the transmission eigenvalue problem

∆v + k2v = 0 in D
∇ · Aε∇w + k2nεw = 0 in D

w = v on ∂D
ν · Aε∇w = ν · ∇v on ∂D

has a non trivial solution are called transmission eigenvalues.

If either Amin − 1 > 0 or Amax − 1 < 0 or A ≡ I and either
nmin − 1 > 0 or nmax − 1 < 0 or n ≡ 1, there exists infinitely many
real transmission eigenvalues (PÄIVÄRINTA-SYLVESTER (2008),
CAKONI-GINTIDES-HADDAR (2010), CAKONI-KIRSCH (2010)).

At a transmission eigenvalue, there is an incident wave that
produces an arbitrarily small scattered wave.



Transmission Eigenvalues
First step is to study asymptotic of the resolvent: For f ,g ∈ L2(D)

∆vε + k2vε = f in D
∇ · Aε∇wε + k2nεwε = g in D

wε = vε on ∂D
ν · Aε∇wε − ν · ∇vε on ∂D

The limiting problem is

∆v0 + k2v0 = f in D
∇ · Ah∇w0 + k2nhw0 = g in D

w0 = v0 on ∂D
ν · Ah∇w0 − ν · ∇v0 on ∂D

Recall the bulk correction given by

w1(x , y) = −χj (y)
∂w0

∂xj

with χj the solution of same cell problem as for the forward problem.



Transmission Eigenvalues

To present the idea assume that Amin > 1. We introduce

X (D) := {(w , v) : w , v ∈ H1(D) |w − v ∈ H1
0 (D)}.

aε
(
(wε, vε); (ϕ1, ϕ2)

)
=

∫
D

Aε∇wε · ∇ϕ1 + Aminwεϕ1 dx −
∫
D

∇vε · ∇ϕ2 + vεϕ2 dx

bε
(
(wε, vε); (ϕ1, ϕ2)

)
:=−

∫
D

(k2nε + Amin)wεϕ1 − (k2 + 1)vεϕ2 dx

Define the isomorphism T : X (D)→ X (D) such that
(w , v) 7→ (w ,−v + 2w) and the operators Aε,Bε : X (D)→ X (D) by(

Aε(wε, vε);T(wε, vε)
)

:= aε
(
(wε, vε);T(wε, vε)

)
, coercive(

Bε,k (wε, vε); (wε, vε)
)

:= bε
(
(wε, vε); (wε, vε)

)
, compact

For ε = 0, Aε, nε are replaced by Ah, nh.



Transmission Eigenvalues
The interior transmission problem reads:

(Aε + Bε,k ) (wε, vε) = ` in X (D)

or (
I + A−1

ε Cε + k2A−1
ε Kε

)
(wε, vε) = `

with Cε and Kε compact operators independent of k2

Theorem

If k2 is not a transmission eigenvalue then

(wε, vε) converge to (w0, v0) weakly in X (D) (strongly in
L2(D)× L2(D))

If in addition w0 ∈ H2(D) then

(wε − w0 − εw1(x , x/ε), vε − v0)→ (0,0)

strongly in X (D). The rate of convergence is in general ε1/2.



Transmission Eigenvalues

The monotonicity result for a sequence of real transmission
eigenvalues

k j (Amax ,nmin,D) ≤ k j
ε < k j (amin,nmax ,D)

if Amin > 1 and 0 < nmax < 1, implies that each of these real
eigenvalues is bounded with respect to ε.

Then the above analysis allow us to prove that each k j
ε

converges to an eigenvalue of the homogenized problem. In
particular this is true for the first transmission eigenvalue.

It is possible to actually obtain the convergence rates as well as
the correction term for simple eigenvalues. The approach is
based on the non-linear version of a result by OSBORN,
SPECTRAL APPROXIMATIONS FOR COMPACT OPERATORS,
(1975).

Numerical implementations support the theory on the rate of
convergence which is ε2 if χj = 0 and of order ε in general.



Determination of Transmission Eigenvalues

Real transmission eigenvalues can be determined from the scattered
data

We consider the far field operator Fε : L2(Ω)→ L2(Ω) defined by

(Fεg)(x̂) :=

∫
Ω

u∞ε (x̂ ,d , k)g(d)dsd

where u∞ε (x̂ ,d , k) is the far field pattern due to an incident plane
wave ui := eikx·d , d ∈ Ω a unit vector.

We look for the regularized solution gz,k,ε of the far field equation

(Fεg)(x̂) = Φ∞(x̂ , z, k), for g ∈ L2(Ω), x̂ ∈ Ω, z ∈ D

where Φ∞(x̂ , z, k) is the far field pattern of the free space
fundamental solution Φ(x , z, k) of the Helmholtz equation.



Solution of Far-Field Equation

If vg(x) :=

∫
Ω

g(d)eikx·ddsd then

For k not a transmission eigenvalue, the regularized solution
g := gz,k,ε of the far field equation is such that

lim
δ→0
‖vg‖H(D) exists

For k a transmission eigenvalue, the regularized solution
g := gz,k,δ of the far field equation is such that

lim
δ→0
‖vg‖H(D) =∞

ARENS-LECHLEITER (2006), CAKONI-COLTON-HADDAR (2010)

Remark: Under restrictive conditions on A and n,
KIRSCH-LECHLEITER (2010), LECHLEITER-PETERS (2015) have
characterized the first few real transmission eigenvalues in terms of
the behavior of the eigenvalues of the normal far field operator.



Computation of Real TE

nε = sin2(2πx1/ε) + 2 and Aε =
1
3

(
sin2(x2/ε) + 1 0

0 cos2(x1/ε) + 1

)
.

D is the ball of radius r = 2. The effective material properties are
Ah = 1

2 I and nh = 3
2 and the corresponding first transmission

eigenvalue is k1
h = 2.5340, for ε = 0.5 and ε = 0.1

Thanks to JIGUANG SUN for providing the code to compute the
transmission eigenvalues.



Determination of Effective Material Properties
The measured first transmission eigenvalue k1

ε ≈ k1
h can be used to

obtain information about the effective material properties Ah and nh.

If Aε = I, it is known that k1
h uniquely determines nh.

Example for D the ball of radius 2, nε = n(x/ε) = sin2(2πx1/ε) + 2.

ε kε,1 nh reconstructed nh

0.1 5.046 2.5 2.5188

If nε = 1, k1
h uniquely determines ah where Ah = ahI.

Example D the ball of radius 2 and

Aε =
1
3

(
sin2(2πx2/ε) + 1 0

0 cos2(2πx1/ε) + 1

)
.

ε k1
ε Ah reconstructed Ah

0.1 7.349 0.5I 0.4851I



Determination of Effective Material Properties

k1(n(y)) k1(nh) k1(A(y)) k1(Ah) k1(n(y),A(y)) k1(nh,Ah)

1.0930 1.0757 1.9027 1.896 0.7673 0.7139

A(y) = I, n(y) reconstructed nh = 3.4123 (exact nh = 3.5)
A(y), n(y) = 1 reconstructed ah = 0.4472

A(y), n(y) reconstructed nh/ah = 7.4704 (gives ah = 0.4685)



Determination of Effective Material Properties

An example with voids (which is not covered by our theory)

Y = [0,1]2 and the is domain D = [−3,3]2 and

n(y) =

{
1 if (y1 − 0.5)2 + (y2 − 0.5)2 < 0.252

5 if (y1 − 0.5)2 + (y2 − 0.5)2 ≥ 0.252

which gives that nh = 5− π
4 and

A(y) =

{
I if (y1 − 0.5)2 + (y2 − 0.5)2 < 0.252

0.5I if (y1 − 0.5)2 + (y2 − 0.5)2 ≥ 0.252

Ah = ahI, where ah can only be computed numerically.



Determination of Effective Material Properties

An example with voids

The computed first transmission eigenvalue using far field data.

k1(n(y)) k1(n(y),A(y))

0.8745 0.7599

The estimated effective material properties.

A(y) = I, n(y) reconstructed nh = 4.2678 (exact nh = 4.2146)
A(y), n(y) reconstructed nh/ah = 5.0550 (hence ah = 0.8337)


