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Scattering with random Robin boundary

We study acoustic scattering in
x3 half-space

(A+K)u = &y, x3>0,

V 0
\ <8X3+)\> = 0, x3=0,

> where X\ is a Gaussian random field

\/~J 7
A € CO(R2) R?  and the full wave u = u(x; y, k)
satisfies the Sommerfeld radiation
condition.

Here, A\ is assumed to have a bounded support D and to be real
which indicates that the boundary is non-absorbing.
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Scattering with random Robin boundary

el Consider backscattering, that is,

%, ux v k) x =y, in a bounded subset

\@N UcCRS.

Measurement = backscattered

A A amplitude |us(x; x, k)|? averaged
\e E%T,é(]l\gg) R?  over frequency.

What information can we recover from the statistics of the Robin
coefficient A\?

T.H., M. Lassas and L.Paivarinta, Inverse acoustic scattering problem in
half-space with anisotropic random impedance, arXiv:1407.2481
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Some background in literature

Lassas, Paivarinta and Saksman (2009): time-harmonic
Schrodinger (A —q+ k2) u=4d, in R?

» g microlocally isotropic Gaussian random field

» averaged backscattering data

» recover principal symbol of (g

Deterministic direct problem in half-space geometry has been
studied by Chandler-Wilde, Nédélec, Karamyan and others.

Deterministic inverse problem?

The stochastic inverse problem has been considered by e.g. Bal
and Jing (2011) in homogenization framework.
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Classical symbols and the principal symbol

If the symbol o € 87, has an asymptotic expansion

o(x,€) ~ Y 0,-j(x,€)
j=0

for smooth o,,, homogeneous in { of degree p —j for { > 1 and

N
o(x,8) = opj(x,€) € LN

j=0

for all N then we say that o is classical and o, is its principal
symbol.
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Stochastic model: isotropic

We assume that A is a zero-centered generalized Gaussian random
field on R? with covariance operator Cy such that supp(\) C D,
where D C R? is bounded.

Moreover, X is microlocally isotropic, if the principal symbol of Cy

satisfies b(x)
X
UP(X,f) = ‘5’264_2

for some € > 0 and some bounded function b € C>®(R?) supported
on D.

It follows that A € C%%(R?) almost surely for any a < e.
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Example: fractional Brownian field

Top: Fractional Brownian field
with Hurst index H = 0.8
Right: The isotropic strength b(x).
In this case ¢ = H.
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Stochastic model: anisotropic

We call A microlocally anisotropic, if the principal symbol of C,
satisfies

(€)= ) ()

|§|26+2

for some ¢ > 0 and some bounded function b € C®(R? x St)

Likewise, here it follows that A € C%*(IR?) almost surely for any
a < €.
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Stochastic model: some assumptions

Regarding the local strength b € C®(R? x S!):
> b(x,%) :b<x,—%) for any £ € R? and ¢ # 0 and

» for some s > 0, b = b(x, &) can be extended to a function in
R? x R? which is s-homogeneous and real-analytic w.r.t. &.

The key example of anisotropy is the case

b(x,£) = (& AX)E),

where A : R? — R?*? is smooth and symmetric.
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Stochastic model: Gaussian potential field

Define a Gaussian random process Y on R? by EY = 0 and

_ z2|2+e

cy(z1,22) = |z + r(z1, 20)

for € > 0, where r is smooth. Then write
g=D,Y = (v(x)- V)Y

for a vector field v € C§°(R2,R?) such that supp(v) C D. Now
Cq = D;CyD, : D(R?) — D'(R?). We obtain
o(Cy) € Sig*E(Rz x R?) and the principal symbol of g satisfies

p o (v(x) - 2)¢|—4—€ _ £ 2— e
oP(Cy) o (v(x) - )¢ <|§‘ (>|§,>|a

where A(x) = v(x)v(x)".
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Measurement

Denote u = uj, + us, where

expliklx — y])  explik|s — yl)

(xv. k) =
s )= "an ] anz oy

The measurement is defined by

K
m KAATEEP) | ug(x; y, ky w) [ dk

sy = i e |

One of the main results is to show that m is statistically stable,
that is, there exists mg = mg(x, y) such that

m(X7y7w) = mO(X’y)

almost surely.

T. Helin Inverse scattering with random boundary conditions



Main result

The Robin parameter satisfies A(x, k) = A(x)k™P, p > € + 3.
Without this assumption, all results hold for Born approximation.

Theorem
Under some technical assumptions, the backscattering data
mo(x, x), x € U, uniquely determines values

Fo) (6) e o9 (s % )

for all ¢ € R?, where F = Fy_¢ and &+ = (&, —&1). In particular,
in the isotropic case if b(x,{) = b(x), the data uniquely
determines b everywhere.
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Main result continued

Theorem

Suppose that b(x,&') = (&', A(x){') as earlier. Given the
backscattering data m(x, x), x € U, the trace tr(A) can be
uniquely determined everywhere. Moreover, suppose that one of
the three coefficient functions a; from

) = (260 0

as(x)  ax(x)

is known, then the data uniquely determines the other two
everywhere.
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Direct problem - uniqueness

Consider the homogeneous direct problem
2 3
(A+k%)u = 0, inR3,

o +Au = 0 onR}
where u satisfies the Sommerfeld radiation condition and
A € C%9(D) for some a > 0.

Uniqueness follows from bounded support of A: A symmetrized
solution (X', x3) = u(x’,|x3]), x = (x’,x3) € R3, can be shown to
satisfy limp_, o0 fgg(R |]2dS(x) = 0 and the Rellich theorem yields
i = 0 outside a neig%bourhood of D. Finally, UCP yields the
uniqueness.
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Direct problem - Incoming and outgoing

The total wave is divided into an incoming and outcoming waves
U= Ujn + Us:

(A + K)ujp = 0, (A + k*)us =0
0 %)
87)(31";” =0 <8X3 + )\> = *)\U,‘n

The homogeneous Helmholtz equation on the right can be solved
by any solution generated by the single-layer potential

exp(2mi|x — y|)

d R3
47T|X | (b(.y) .y7 X € —+

us(x;y, k) =S¢ = /

for ¢ € CO¥(RY).
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Direct problem - the solution as a Born series

A solution can be found by utilizing single-layer potential
u= S;rqb + u;,, where ¢ is the unique solution to the problem

(; — ASE) b = A\uijp

in L2(D) for almost every realization of .

Set up an iterative scheme: ¢1 = 2\u;, and for each n > 1 define
Gni1 = 22SE(6n) and  u, = S n.
Then the Born series
u(x;y, k) = uin(x; y, k) + u1(x; y, k) + wa(x; y, k) + ...

converges pointwise for any x,y € U.
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Connection of scattered field and the Robin parameter

The effect of the Robin parameter is visible in the Born
approximation by

u(x;iy, k) = 25 (Acuin(-iy, k))(x)
o [ ewlikx—zl =z
w l x—zlly—z]

Notice that vy is a Gaussian random variable since it is obtained
from X by a linear operator.
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Inverse problem - correlation

Correlation between Born approximations satisfies

E (ul(x,y, kl)m)

o(/ exp(i (k1p(z1; x,y) — k(225 x, y)))
RIxR: X — 21l 21 = y|[x — 2|z — y]

C)\(Z]_,ZQ) d21d22
< Cnlki — ko| ™V

for any N > 0, where ¢(z; x,y) = |x — z| + |z — y|. For
= ki = ko we can show that

E (Ul(X,y7 k)m) = R(X7y)k72—2€72p + O(k*3f2p)7

where R is a known smooth function in U x U.
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Ergodicity of the measurement

From ergodicity theory it's known that if X;, t > 0 is a real-valued
stochastic process such that [EX;X:4,| < C(1+ r)~€ for all
t,r > 0 with some € > 0 then

1 K

It follows that

1
lim ——

K
k2(1+6+P) . k de
Jm e | (v, K)

; 1 : 2(1+e+p) 2
_}Jinoom . k Elui(x;y, k)|“dk
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Measurement data in backscattering

The measurement can be approximated by

1 K
mo(x,x) = Klinoo K=1l/. K2A+HP)E|ug(x; x, k,w)|?dk
~ R(x,x),

which is obtained since HSEHL2(D)_>L2(D) < Ck™Y/2 In fact,
R(x, x) has explicit formula

R(x,x) = C b(z"z_x'>d
N

for any x € U.
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Anisotropic spherical Radon transform

Denote a transformation
(Sb)(X',r) _/ b(x" + r6,0)d|0|
St

for any x’ € Rg and r > 0. Then we can write

1

1 [ ,
R(xx) o 5 /0 (SH ) sz

Trick: apply X—iﬁx_,, repeatedly to recover any integral of type
[y (1),
0 r r
where Q(t) = Zf:o ajt/, p>0.
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Anisotropic spherical Radon transform continued

Trick: apply 8X3 repeatedly to recover any integral of type

[0 )

where Q(t) = 37 ajt/, p > 0.

The support of r — Sb(x’, r) lies in a finite interval [a, b] with
a, b > 0. Since functions of the form Q(1/r?) are dense in
C([a, b]), we can uniquely determine Sb(x’, r) for all r > 0 and
any x’ € U', where U’ is the projection of U to R}.

Analyticity assumptions on b(x’,-) give Sb everywhere.
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How to invert S7?

» Anisotropic spherical Radon transform
(Sb)(x, r) = / b(x' + 16, 6)d|6|
Si

has a null-space and thus full inversion is impossible
» However, one can find b modulo N/(S)
» Any function f € N(S) satisfies

(Fx—ef) (57 é,) = (Fxoef) (é, %) 0

for any £ # 0.
» In consequence, F,_,¢b is known at same locations
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» Method for reconstructing statistical properties of random
Robin coefficient in half-space from backscattering data

» Stability under measurement noise

» Anisotropic models can be recovered

T.H., M. Lassas and L.Paivarinta, Inverse acoustic scattering problem in
half-space with anisotropic random impedance, arXiv:1407.2481
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