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Aims of Structural Health Monitoring (SHM)

Idea: Monitoring of construction elements in carbon fibre
reinforced composites by analyzing guided waves emitted by
integrated piezo-ceramic actors

~~ Structural Health Monitoring system (SHM) to detect defects
in carbon fibre reinforced composites

detection of defects

localization of defects

°
°

\ @ categorization of defects
°

Sketch of experimental setup for an SHM sys- expa nsion Of defects

tem
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Relevance of SHM in industry

@ early detection of
delaminations and cracks

@ safety enhancement

@ reduction of maintenance
intervals

@ cost saving by optimal
assembly of sensors and
actuators
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Idea of SHM for anistropic plates

Y

@ Signal emitted at piezo-ceramic actuator
@ Defects lead to reflection, attenuation and mode conversion
@ Signals measured at piezo-ceramic sensors

@ Inverse problem of damage localization from signal
measurements
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Identification of material parameters

Idea: Reconstruction of (spatial varying) material parameters to
get information on defects and to visualize them

Some references:

@ NAKAMURA, UHLMANN, 1994: Global uniqueness for an inverse boundary problem arising in elasticity

@ NAKAMURA, UHLMANN, 1995: Inverse problems at the boundary for an elastic medium

@ HAHNER, 2002: Inverse reconstruction of mass density

@ BONNET, CONSTANTINESCU, 2005: Inverse problems in elasticity

@ KALTENBACHER, LORENZI, 2007: Reconstruction of material tensor under certain requirements

@ SEDIPKOV, 2011: Inverse problems in inhomogeneous, elastic media

@ BOURGEOIS ET AL., 2011: Linear sampling for elastic waveguides

@ IMANUVILOV, YAMAMOTO, 2011: Reconstruction of Lamé coefficients in 2D

@ IMANUVILOV, UHLMANN, YAMAMOTO, 2013: Uniquenes of Lamé coefficients from partial Cauchy
data in 3D

@ SCHUSTER, WOSTEHOFF, 2014: On the identifiability of the stored energy function of hyperelastic
materials from sensor data at the boundary

@ BAL, MONARD, UHLMANN, 2015: Reconstruction of a fully anisotropic elasticity tensor from knowledge

of displacement fields
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Conservation and constitutive law

Conservation of mass:
/ @(t,x)dx = —/ pu - ndA
Uy

Conservation of momentum:
d n n n
— | piudx = / T(t, ¢, n)dA+ | f(t,x)dx
dt B U[ B ()Uf - UT

Conservation of angular momentum:

— | x X pudx = / W X 7(t, 1, n)dA + / x x f(t,x)dx
dt Ju, Jou, J U,

Constitutive law:

P(t,x) = P(x, Vu(t,x))
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Wave propagation in anisotropic materials

Wave propagation in a domain Q C R3 is governed by the equation

p(x)u(t, x) — divP(x, Vu(t, x)) = f(t, x)

with
u: [0,T]xQ—R? displacement field
f:0,T]xQ—R? volume force
p: Q=R mass density
P: [0, T] xQ— R33 Piola-Kirchhoff stress tensor
P: QxR o RS response function

J. Piontkowski



Motivation and mathematical setup
Motivation
Mathematical foundations of elasticity

Hyperelasticity

A material is called hyperelastic, if there is a stored energy function
C: QxR¥3 - R with

P(x,Y)=VyC(x,Y) = (y,C(x, Y));
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Hyperelasticity

A material is called hyperelastic, if there is a stored energy function
C: QxR¥3 - R with

P(x,Y)=VyC(x,Y) = (y,C(x, Y));

Physical requirements:
O C(x,0) =0 for almost all x € Q
@ VyC(C(x,0) =0 for almost all x € Q
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Stored energy function as conic combination

Assumption: The function C(x, Y) has a representation

N

C(x,Y)= Z ak Ck(x,Y)
K=1

with ax > 0 and fixed Cx : Q x R3*3 5 R

Compare:
KALTENBACHER, LORENZI, 2007

SCHUSTER, WOSTEHOFF, 2014
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IBVP for waves in hyperelastic, anisotropic materials

From all these assumptions we obtain the

Hyperelastic wave equation

N
Z akdiv[Vy Ck(x, Vu(t, x))] = f(t,x)
K=1

u(0,%) = wo(x), x €0

(0,%) = i (x), x€Q

u(t,x) =0, (t,x) € (0,T) xR
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Measurements

We assume to have N piezo sensors measurements of (weighted
stresses on parts of the boundary

mechanical)
oy = o1 (x)TP(x, Vu(TL,x)) - v(x)do(x)
o
N
— Y ax /6 0100 9y il Vu( Te )] - v(x)dor(x)
K=1
L=1,...N with

oL € L2(09,R?) weight functions
T, €(0,T) instants of time
v: 00 — R3 outer unit normal field of 00
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Unique solvability and stability of the IBVP

Admissible solutions and coefficient vectors

E(M(Ja Mla M27 M37 (H[a])a:1,2a (,u'[b])b:L...J) =
{wayew=(o 1 xa.m) w0, 1) @R <R

[10x,0x tll o< (0, 7),L2(2.83)) < Mo, [|0x Ul o< (0, T) L0 (@.3)) < M,
[0 O Ul Lo (0, T, Lo (,83)) < M2, [|0x, Ol o< (0, T), Lo (@,R3)) < M,

N N
> awrdd = WS apenld < i a =126 =1, 7}
K=1 K=1
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Unique solvability and stability of the IBVP

Continuous dependence on data

Theorem (Wastehoff, Schuster, 2013)

With Q bounded and having a C?-boundary, let u, i be two solutions to
the IVBP corresponding to (a, ug, uy, f), (&, o, U1, ?), respectively,
(u, ), (&, &) € E(Mo, My, My, M3, (k&) =1 5, (ul?))p—1. 7) and certain
restrictions especially to Cx we have for all t € (0, T)

(o — B)(t, ) 3aqzsy + KIS = JT)(2, )2z
ol — B)(, ) 2apey + 5@l (I — JE)(E, gy
(= B)(E ) Rrqamey)

< Co[u(@)lI(o — o) (t, ) 2mqemsy + (e — B1)(E, Moz
+Gi||f - ?||W1=1((O,T),L2(Q,R3)) + Gl — & oo-

1/2
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Admissible data

D(m,r) = {(f,u,u) € WH((0, T), L2(Q,R?)) x
(H*(Q,R®) N H3(Q,R?)) x HY(Q,R?) :
[ fllwrago, 7y, 22 + ol re) + urllm@rs) <1,
IW (o)~ [oo < 1/m}

with

W(up) = ( [ 1) Iy Gl V) u(x)da(x))

K,L=1,...,N

J. Piontkowski
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Uniqueness and continuous dependency

Let .
(f, up, Lll)7 (f, LNIO7 '[11) € D(m./ r)

be two sets of data and let
be two solutions of the identification problem corresponding to
(f, up, U1,5) and (f, Elo, fll, 5)

respectively. Let _
T :=max{Ty,..., Tn}

be sufficiently small.
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The inverse identification problem S
Ongoing research

Uniqueness and continuous dependency

T sufficiently small:

K(T):= C(r, My) Jmax [olliz(oa g Z A

K=1
and
C(T) = A&— max HSDLHL2 (0Q.R3) ZCYKM QT4 <1
K(T) L= K=1
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The inverse identification problem S
Ongoing research

Uniqueness and continuous dependency

Theorem (Woéstehoff, Schuster, 2013)

Then, there are constants ffo,ffl > 0 such that

. 1
o=l < {15= Bl +
(m— R(T)(1— &(T))
2 ~ ~ 1/2
+ Collluo — ollZeaze) + llur — B lZnqmn) ™/ +
+ Gf - ?||W1»1((0,T),L2(Q,IR3))}
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Linearization: linear, hyperelastic materials

We have: A
P(t,x) = P(x,Y)=VyC(x,Y)

with Y = Vu(t, x).
Linearization around Y = / provides:

C(x) = VyP(x, 1) = VyVyC(x, )

the elasticity tensor.
The stored energy function of a linear, hyperelastic material is:

C(Y)=2e(Y):C:¢(Y)
with e(Y) = 1(Y + YT).

J. Piontkowski
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The inverse identification problem

Linearized model

Wave propagation in a domain Q C R3 of anisotropic, linear
hyperelastic material is governed by the equation:

p(x)i(t, x) = > akL"Cr(x)Lu(t,x) = f(t,x)
K=1

50 0
08 0
L:= 8 (%gz matrix differential operator
03 0 01
o0 01 0
N
Z axCy € RO*® spd. elasticity tensor
K=1
u displacement field
f volume force
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Set of admissible parameters

Take
X3:={Mec PY3MT = M} with

P3 C €(2) a 3-dimensional subspace

and the subset of admissible parameters

M2 = {M e Xsly " M(x)y > ey'y,
y M(x)y <sy'yVy e R3VxeQ}

Convexity, closedness and boundedness, i.e. compactness, of
Mgs C Xz are easy to see with respect to the norm

™
(Ml = sup 1Y e
yeR:\{0} Y'Y
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Decomposition of polynomial elasticity tensor

Theorem

Let 0 < < € < s. Then, there is a finite number of elements

Hi,...,Hn € I\/Ig’ere,n, such that

l\/lg5 C conv{Hy, ..., Hy}.

Proof by covering Mgs with sets M + P, where M € Mgs and P is
an analogue to a polytope.
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Isotropic elasticity tensor

A+2u A A
A A+2u A
A A A+ 2pu

L
with Lamé parameters A\, p with g > 0 and 3\ 4+ 24 > 0.

pil—L"Clu="f = pii— pAu— (\+ p)grad divu = f

(Lamé-Navier-equation)

J. Piontkowski
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Theorem
Let C be isotropic and € < 3\ +2u, u < s. Then

C=a1C(es)+ axC(s,¢€)

with

_ 3sA+ (25 —€)u

2 _ (2 =

aq

and
s/3+2 s/3—€ s/3—c¢
s/3—¢ s/3+e¢ s/3

Cle,s) = s/3—¢ s/3  s/3+e€

J. Piontkowski
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The inverse identification problem .
Ongoing research

Identifiability for isotropic, hyperelastic materials

Main result for isotropic, hyperelastic materials:

The elasticity tensor C may be written as a conical combination of
two matrices that are elements of M, gs, so that C and hence Cis
uniquely determined by two measurements of piezo sensors, given
an appropriate excitation signal.

J. Piontkowski
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Ongoing research: Approach

Given: finite dictionary {Cy, ..., Cy}
Approach:

min Jr() := min {;|Q7’(a) — |3 + BR(O()}./

aeRY aeRY

where 7 maps a to u(C(a)) with C(a) = S R_; axCk and R is a
penalty term. Examples for R:

R(e) =12 aiGllG/2 or R(a) = [lalk
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Ongoing research: Approach

Given: finite dictionary {Cy, ..., Cy}
Approach:

min Jr() := min {;|Q7’(a) — |3 + BR(O()}./

aeRY aeRY

where 7 maps a to u(C(a)) with C(a) = S R_; axCk and R is a
penalty term. Examples for R:

R(e) =12 aiGllG/2 or R(a) = [lalk

The optimality conditions are:

0 T (o) Q (QT () — %) + BOR(cvs.).
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. . e Recovering the stored energy function as a conic combination
The inverse identification problem 5 = 8y
Ongoing research

Fréchet derivative of T

The Fréchet derivative of T (with respect to ) T'(«) is defined
by 7'(a)h = v, where v solves

pv(t, x) — div[Vy Vy Ca(x, Ju(t, x)) : Jv(t,x)] = div[Vy Ch(x, Ju(t, x))]
v(0,x) = v(0,x) =0 for x € Q
v(t,x) =0 for x € 9Q

with

N N
C, = ZaKCK and Cy = Z hk Ck.
K=1 K=1
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Fréchet derivative of T

Lemma (P., Schuster, 2015)

The GAateaux derivative of T exists and is continuous in h for all
h e RY, ie. there is a constant L; > 0 with

1T (a)hll 20, 7;H1(0,R3)) < L1llhlloo-

J. Piontkowski
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The inverse identification problem

Uniform convergence

Theorem (P., Schuster, 2015)

T is Fréchet differentiable, i.e. there are constants L, > 0 and
£ > 1 with

17 (a + h) = T (@) = T'(@)hll 20, 71183y < LollhllS

for ||h||oc — O.
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The inverse identification problem 5 = 8y
Ongoing research

Fréchet derivative of T

The Fréchet derivative of 7T is very useful for

@ optimality conditions
e linearization of 7: T(a) = T (o) + T' () (o — )
@ iterative solution methods (for example Landweber)
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Conclusions

@ Uniqueness and continuous dependency of data of the direct
problem, when the stored energy function is a conic combination

@ Uniqueness and continuous dependency of (piezo) measurement
data of the inverse problem, i.e. identification of stored energy
function in linear case if it can be represented as conical
combination (also includes spatially variable energy functions)

@ Conditions for conic representations of (spatially variable) elasticity
tensors

@ Two piezo measurements are sufficient to identify isotropic materials

@ Fréchet derivative (useful for linearization, iterativ solving, optimal
conditions)
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Conclusions

At the end

Thank you for your attention!
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