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Model problem . .

°
Defect Scatterers

.7@-

Goal: Determine defects or defective components in a complex and
unknown medium from multi-static measurements of scattered waves at
a given frequency.

Constraints:

> The background is unknown and cannot be accurately reconstructed.

» The background components diameters are comparable to the wavelength.

But: We have access to differential measures: measures with and
without defects.
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Detection of defects in a concrete like material using ultrasounds

An example of a concrete structure
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The original motivation

Detection of defects in a concrete like material using ultrasounds

A simulation using the Linear Sampling Method (without differential
measurements)

An example of synthetic background
A filtered background + crack
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Reconstructed crack using Reconstructed crack using
the exact background  a homogeneous background: strong perturbation
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Outline

» A model problem (not for cracks)
» The Linear Sampling Method revisited
» Application to the case of differential measurements

» Numerical results and perspectives



A simple model problem

Scalar acoustic equation for inhomogeneous media

The background index ng : ng =1 in R?\ Dy and RY \ Dy is connected.
The modified index n: n=1in R?\ D and R\ D is connected.
(R9) and u € H} _(RY)

loc

The total fields up € H} .
Aug + k*noug = 0 and Au+ k*nu=0in R?
We assume that the field is generated by incident plane waves:
(0, x) = 0 g esit
The scattered fields
u§(0,) = up — u'(,-) and v°(#,-) = u—u'(h,-) in R,

satisfy the Sommerfeld radiation condition.
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A simple model problem

Scalar acoustic equation for inhomogeneous media

The background index ng : ng =1 in R?\ Dy and RY \ Dy is connected.
The modified index n: n=1in R?\ D and R\ D is connected.

Our data is formed by (noisy measurements of) so-called farfield patterns

6°(6, %) and u™(0, %) for all (,%) € S x §7-1

Recall that with X := x/|x]|,

elk\x|

W(Uo (6,%) + O(1/|x]))

ug(0, x) = |

ik\x|

u®(0,x) = W( *(0,%) + O(1/[x]))

as |x| = oo .
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A simple model problem

Scalar acoustic equation for inhomogeneous media

The background index ng : ng =1 in R?\ Dy and RY \ Dy is connected.
The modified index n: n=1in R?\ D and R\ D is connected.

Our data is formed by (noisy measurements of) so-called farfield patterns

ug® (6, %) and u™(0, %) for all (9,%) € S x §7-1

Goal: Assuming that Dy C D and would like to reconstruct (an approxi-
mation of)
Q = supp(n — np)

without knowing (or approximating) n and ng.

Algorithm: introduce a filtered difference between the indicator functions
provided by a modified version of the Linear Sampling Method (LSM)
applied to each set of data separately.



A generalized version of LSM

» A version based on a new exact characterization of the scatterer
geometry in terms of the farfields.

» A version capable of answering the imaging problem for differential
measure: explicit link with solutions of the interior transmission
problem.

» A flexible setting that can be generalized to limited aperture or/and
near-field data (ongoing).

Related reference: L. Audibert - H. Haddar, Inverse Problems, 2014



Outline of LSM

Farfield Operator: F : L2(S?71) — L2(S9~1), defined by
Fe(%) = /S e (0.2)8(0)ds(0).

Let us define for 1 € L2(D), the unique function w € H}

1 (RY) satisfying
Aw + nk*w = k?(1 — n)y) in RY,

. ow - 2 o (1)
’IL"JO\XL oW — ikw|” ds =0.

Remark _
IZ) = ul(aa ) = w= us(av ) = w™ = uoo(ga )

= Fg is nothing but w* for w solution of (1) with ¥ = v, in D, where

Vg(x) == /Sd—l u'(0,x)g(0)ds(0), g € L>(S?71), x € R%.



Outline of LSM

Farfield Operator: F : L2(S771) — L2(S9~1), defined by
Fg(x) = /Sdil u>(6,%)g(0)ds(6).
= Considering the (compact) operator H : L2(SY~1) — L?(D) defined by
Hg := vglp, (2)
and the (compact) operator G : R(H) C L*(D) — L*(S?~1) defined by
G = w,

then clearly:



Main ingredient of LSM

Theorem: Assume that ITP is well posed. With ¢3°(X) = e=*%Z we
have: ¢3° € R(G) if and only if z € D.

Main ingredients of the proof:

» R(H) = {v € L3(D); Av + kv =0 in D}.
> $° is the farfield of ®(-, z), radiating solution of A® + k?® = —4,.

Interior Transmission Problem (ITP): (u,v) € L?(D) x L?(D) such
that u — v € H(D) and

Au+k?nu=0 inD,

Av+Kk*v=0 inD, 3
(u—v)=f ondD, (3)
a%(ufv):g on 0D,

for given f € H3(8D) and g € H2(dD).
Remark: A well posed ITP requires n # 1 in any neighborhood of 9D.



Main theorem of LSM
Farfield Operator: F : L2(S?71) — L2(S9~1), defined by

Fg(x) = /Sdi1 u>(0,%)g(0)ds(6).

Theorem: Assume that ITP is well posed. Then the operator F is
injective with dense range. Moreover, the following holds.

> If z € D then there exists g5 such that [|Fgs — ¢.||;2s¢-1) < € and
lim S(L)Jp |Hgz |l 2(py < oo
€—>

> If z ¢ D then for all g5 such that ||Fg; — ¢, ;2se-1) < ¢,
lim || Hgz || 2y = o0



Main theorem of LSM
Farfield Operator: F : L2(S?71) — L2(S9~1), defined by

Fg(x) = /Sdil u>(0,%)g(0)ds(6).
Theorem: Assume that ITP is well posed. Then the operator F is
injective with dense range. Moreover, the following holds.
> If z € D then there exists g5 such that ||Fg; — ¢,[|;2(se-1) < € and
lim S(L)Jp ||Hg§||Lz(D) < 00.

> If z ¢ D then for all g5 such that ||Fg; — ¢, ;2se-1) < ¢,
lim || Hgz || 2y = o0
= Gives a “characterization” of D in terms of a nearby solutions of
Fg; =~ ¢..
Problems: This is not constructive...

» We do not know how to construct g5. In practice we use a
regularization scheme.

> We cannot compute [|Hgg||2(p). In practice we use ||g5||2(se-1)-



A robust formulation of LSM

Idea: Reconstruct a nearby solution of the LSM by using a least squares
misfit functional with a penalty term that controls HngHfz(D).



A robust formulation of LSM

Idea: Reconstruct a nearby solution of the LSM by using a least squares
misfit functional with a penalty term that controls \|Hg§||f2(D).

We exploit the (second) Factorization:
W) = = [ 1= MR 0) + W)y,

= G = H* T4 where H* : [2(D) — L?(S9"1) is the adjoint of H given
by
H* (%) r=/ e " %p(y)dy, ¢ € L*(D), x €S,
D

and where T: L2(D) — L?(D) is defined by
Ty = —k* (1 — n)(¢ + w), (4)

|[F=H*oToH|




A robust formulation of LSM

Idea: Reconstruct a nearby solution of the LSM by using a least squares
misfit functional with a penalty term that controls || Hgg |2

[F=HoToH|

Theorem: Assume that (ITP) is well posed and there exists ny > 0 and
o > 0 such that

1 —R(n(x)) + aS(n(x)) > no for a.e. x € D

;%r(n(x)) — 14 aS(n(x)) > ng for a.e. x € D.

Then: (T 0)ixcoy] = cllbliagoy for all 6 € R(H)
= |(Fg. &)z = cllHgll7py

= [(Fg,&)2(s+—1)| is equivalent to ||Hg||%2(D)



Abstract setting for a Generalized LSM (GLSM)

We consider two bounded linear operators F : X — X* and B : X — X*

|[F=GH and B=H"TH]

H:X—=Y, T:Y—Y*and G:R(H) C Y — X* are bounded.
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Abstract setting for a Generalized LSM (GLSM)

We consider two bounded linear operators F : X — X* and B : X — X*

|[F=GH and B=H"TH]

H:X—=Y, T:Y—Y*and G:R(H)CY — X* are bounded.
For a > 0 be a given parameter and ¢ € X* we consider:

Jo(#:8) := al(Bg. g)| + |IFg — ¢I> Vg € X.
Remark This functional has not a minimizer in general!

Assume that F has dense range. Then for all ¢ € X*,

Joc((z)) = g'gi Ja(<25;g) —0asa—0.

= Nearby solutions (of the farfield equation) are given by g, € X such
that
Jo (1 8a) < Ja(9) + p(ev).

where p(a) > 0 is such that p(a) - 0as o« — 0



Main theorem of GLSM (for noise free)
F:X—X",B:X—X"and F=GH and B=H'TH

Jo(0:8) = 0ol(Bg, g)| + | Fg — 6> Vg€ X.
Theorem: We assume in addition that
» G is compact and F = GH has dense range.

> T satisfies: |(To, o) > pllell® Ve € R(H).
Consider for « > 0 and ¢ € X*, g, € X such that

[ Jo(#:8a) < ja(9) + p() and p(a) < Cor |

> ¢ € R(G) = limsup|(Bga, ga)| < .
a—0

> ¢ & R(G) = lim [(Bga, ga)| = oo
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Application: R(G) characterizes the inclusion D = F and B uniquely
determine D.



Main theorem of GLSM (for noise free)
F:X—X",B:X—X"and F=GH and B=H'TH

Jo(0:8) = 0ol(Bg, g)| + | Fg — 6> Vg€ X.
Theorem: We assume in addition that
» G is compact and F = GH has dense range.

> T satisfies: |(To, o) > pllell® Ve € R(H).
Consider for « > 0 and ¢ € X*, g, € X such that

[ Jo(#:8a) < ja(9) + p() and p(a) < Cor |

> ¢ € R(G) = limsup [(Bga, 8a)| < .
a—0
> 0 ¢ R(G) = lim |(Bga, &) = oo.
Similar asymptotic characterizations: Inf-Criterion (Nachman-P3ivarinta-

Teirild (2007), Kirsch-Grinberg (2008)), Probe Method (lkehata (2005),
Erhard-Potthast (2006)).



Application with the natural choice: B = F

For z € R? we consider gZ € 2(S971) such that

| Ja(62°: 82) < Ja(93°) + p(a) and p(a) < Ca.|

0 () = e
Theorem: Assume that there exists n, > 0 and « > 0 such that

1 —R(n(x)) + aS(n(x)) > n, for a.e. x € D or
R(n(x)) — 1+ aS(n(x)) > n, for a.e. x € D.

Then, except for a countable set of k (without finite accumulation points),

> z€ D = limsup |(FgZ, g2)| < cc.
a—)O

> z¢ D= lim |(FgZ, g2)| = oo.



Application with the natural choice: B = F

For z € R? we consider gZ € 2(S971) such that

[ Jo (01 82) < Jo(9°) + p(a) and p(a) < Cor |

0 () = e
Theorem: Assume that there exists n, > 0 and « > 0 such that

1 —R(n(x)) + aS(n(x)) > n, for a.e. x € D or
R(n(x)) — 1+ aS(n(x)) > n, for a.e. x € D.

Then, except for a countable set of k (without finite accumulation points),
> ze€ D = limsup|(FgZ, g2)| < cc.
a—0
> 2¢ D= lim |(FgZ, g2)] = oo.
oa—
= An indicator of some approximation of D is given by

z — 1/|(Fgz, &2)l-



Application with the natural choice: B = F

= An indicator of some approximation of D is given by

z — 1/|(Fgz, g2)l-

Remarks

» In this case

lim [(Fe3, g2)| = lim [(6°, g2)| = lim |vz (2)]

= We obtain a similar indicator function as the one proposed by
Arens (2004), Arens-Lechleiter (2009), to justify LSM using the
(F*F)/* of Kirsch (1997) in the case In = 0.

» However this turns out to be a bad indicator function for noisy
measurements.



On other possible choices for B
Under more restrictive assumptions on the refractive index

» If Sn > ng > 0 in D then we can use

1

B =S(F) =
I

(F=F)

> If Re(e(n—1)) > ng|n—1] > n; > 0 in D for some t
B=Fy:=|e"F+e "F*|+3(F)
(Using the Factorization theorem of Kirsch-Grinberg)

Remarks
» For these cases the functional J, is convex.

> In these cases we also have (Kirsch-Grinberg)

z € D iff ¢, € R(BY?).



Main theorem of GLSM for noisy operators

B? and F?® compact operators corresponding with noisy measurements
|F°—F|| <8|IF°| and ||B° - BJ|| < ||B°|
for some § > 0.

Remark: ,
|(Bg, g)| < |(B’g, g)| +3|1B°| gl
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Main theorem of GLSM for noisy operators

B? and F?® compact operators corresponding with noisy measurements
|F°—F|| <8|IF°| and ||B° - BJ|| < ||B°|

for some § > 0.

J(¢:8) = a(|(B'g, &) +5|1B|| lel®) + | Fe — o] Ve eX,

Theorem: Let g’ be the minimizer of J%(¢;-) for a > 0, § > 0 and
¢ € X*. Then

> 6 € R(G) = limsup limsup (KB‘sga, g2+ 4|8 Hgg||2) < 0

a—0

> 6 ¢ R(G) = lim liminf (|(B%g3, &2)| + 88| &2]|") = o<



Main theorem of GLSM for noisy operators

B? and F?® compact operators corresponding with noisy measurements
|F°—F|| <8|IF°| and ||B° - BJ|| < ||B°|
for some § > 0.

Theorem: Let g° be the minimizer of JJ(¢;-) for « > 0, § > 0 and
¢ € X*. Then

> ¢ € R(G) = lim supI|m sup (‘(B‘sga, g2>| +(5||B‘5|| HggHQ) < o0
a—0

> 6 ¢ R(G) = lim liminf (|(B%g2, £2)] + ol|B°Il[2]|*) = oo

= From the numerical perspective this theorem indicates that a criterion
to localize the object would be

1/ (1(B%?. g8)1+18°| [1&2]°)

for small values of «.



On the numerical implementation

L(¢:8) = a(|(Bg, &)+ 3l|B’|| |g]®) + || Fog — ¢|°

For each z in the sampling grid, compute
g: = arg min Jg(62°; g),

then plot:
2
21/ (B, &) + 3118l lg: )

Initialization: we use the Tikhonov-Morozov regularized solution
(n(6) + (F°) F°)gd = (F°) o2

We choose: a = n(8)/(||F°|| + 6).



Numerical results
Without optimization, Noise § = 0%

1/|(B%g?2, g2)| 1/11g2|1?

1/ (1(B%2, 82)1 +ol1B° |12 °) F; method



Numerical results
Without optimization, Noise 6 = 1%

-

1/|({B°g?, g2) 1/]182117

o

1/ (| 82, &2) |+6||B<5|| le2]*) F, method




Numerical results
Without optimization, Noise § = 5%

-

1/|({B°g?, g2) 1/]182117

ox [l o

1/ (I(B%82, &2)1+9118° [ &2I°) F, method




Numerical results Optim GLSM

E -

GLSM without optim, § = 1% GLSM without optim, § = 5%
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GLSM with optim, § = 1% GLSM with optim, § = 5%




Towards applications to differential measurements

Main ingredient: exploit the link between GLSM and ITP.



Towards applications to differential measurements

Main ingredient: exploit the link between GLSM and ITP.
F:X—X*"and B: X — X*
F=GH and B=H'TH

Jo(0:8) = al(Bg, g)| + ||[Fg — ¢|I° Vg€ X. (5)

Theorem: We assume in addition that

¢ = |(Te, ¢)| is uniformly convex

Ja(9: 8a) < ja(9) + p(a) with @ —0asa— 0. (6)

If $ € R(G) then Hg, — ¢ such that G(¢) = ¢.

This is a consequence of Tikhonov applied to G(¢) = ¢.



Towards application to differential measurements
Main ingredient: exploit the link between GLSM and ITP.

Corollary: with F = F and B = Fy

Jo (077 85°) < Jal927) + p(a) with p(;) —0asa—0.

If z € D then Hg® — v, strongly in L2(D) where v, is such that there
exists u, € L%(D) for which (u, v;) is a solution of ITP with
(f, g) = (¢(Z> ')7 aVcD(Z’ ))

Notation for ITP(D, n, f,g): (u,v) € L2(D) x L?(D) such that
u—v € H*(D) and

Au+k?*nu=0 inD,
Av+k’v»=0 inD,
(u—v)=f ondD,
Z(u—v)=g ondD.



Application to differential measurements

Assumptions on the geometry:

DocD D=QUDy andn=ngin Dy\Q

Dy = U D(L,' U U D07,'.

Do,i, i =1,..., M the components of Dy that intersect with €.



Application to differential measurements
Assumptions on the geometry:

DocD D=QUDy andn=ngin Dy\Q

Dy = U D(L,' @] U Do’,'.
i i
Do,i, i =1,..., M the components of Dy that intersect with €.

Comparison of ITP solutions:

Theorem: Assume that R(n) > R(ng) > 1 or R(n) < R(np) < 1 in Q.
Let z € D and consider (u, v) € L2(D) x L?(D) (resp. (uo, vo) € L?(Dp) x
L?(Dy)) solutions of ITP(D,n,®,, 5%=) (resp. ITP(Dy, ng, ®,, 5z )).

Then, except for a countable set of values of k,

> If z € Dy, then v = vq in Dy.

> If z€ Dy, then v # vy in Dy j and v = v in Dy \ Do ;.



Application to differential measurements

Assumptions on the geometry:

DocD D=QUDy andn=ngin Dy\Q

Dy = U D(L,' @] U Do’,'.
i i
Do,i, i =1,..., M the components of Dy that intersect with €.

We use this to obtain characterizations of Q and Qp = Q U; Do,

(o @ 2



Characterization of {0y in terms of F and Fy

F farfield associated with D and n. B = Fy
Fo farfield associated with Dy and ng. By = Fo .

We introduce
D(g, &) := [{Bo(g — &0); & — &0)|-
Corollary: Under previous assumptions on D, Dy, n, nyg and k and for g2

and gg', the minimizing sequences associated resp with (F, B) and (Fo,
Bo)

> If z € |J; Do, then lim D(g?', g5,) = 0.
> If z € Q then IimOD(gza,gélz) = 0.
a— ’

> If z e |, Do, then IimOD(gf,g(?z) < 0.
oa— ’



Characterization of {0y in terms of F and Fy

The noise free case:

Z(g, &) := |(Bg, )| (1L + |(Bg, g)|/|(Bo(g — £0), & — &0)) -

Corollary: Under previous assumptions on D, Dy, n, ny and k. For g
and gg', the minimizing sequences associated resp with (F, B) and (Fo,
Bo)

If z ¢ Qp then  lim T(g7", gg',) = oo.
If z € Qg then IimOI(gf‘7g6)fz) < 0.

Therefore, the limit as o« — 0 of

z+— 1/1(g;, go:,) is an indicator for Qg = Qu U Dy,



Characterization of {0y in terms of F and Fy

The noisy case:
For a fixed parameter n € (0,1), we define

g = argmina ((BJe. g) + a8 B]|l lg|) + [|Fde — o2

. _ 2 2
g2 = argmina ((B%. g) +a "3 B) lg|) + [|F’g — 6|
We then consider

. . 0 0
D(a,2) = liminf (B (g5’ — %), g5 — 82°)

Ao 2) = liminf (B2, g27) + a"58°) [ g2"|")
(e, z) == Ala, 2) (1 + A(a, 2)/ D(cv, 2)) .

Theorem: Under previous assumptions on D, Dy, n, ng and k,

z € Qq iff IimOI(a,z) < 400.



Some numerical results
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Some numerical results
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Some numerical results for scattered background

Two defects of type inhomogeneities




Some numerical results for scattered background

One defect of type internal crack




Some numerical results for scattered background

A medium size external crack Differential GLSM

Reconstructed crack using Reconstructed crack using
the exact background a homogeneous background
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