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The inverse source problem

Determine the shape I's of an extended source Q¢ of
homogeneous strength within a conducting medium from one
pair of Cauchy data (ulr,,, du/ov|r,,) of a solution u € H'(Qpm)
to

Au=yxs inQn

with s the characteristic function of the source Q.
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The inverse source problem

Determine the shape I's of an extended source Q¢ of
homogeneous strength within a conducting medium from one
pair of Cauchy data (ulr,,, du/ov|r,,) of a solution u € H'(Qpm)
to

Au=yxs inQn

with s the characteristic function of the source Q.

Model problem for some imaging methods, e.g.
bioluminescence tomography (BLT)

Main idea: Nonlinear integral equation for I's
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The inverse problem

Nonlinear integral equations for inverse boundary value
problems

o
o
© Equivalent boundary value problem with nonlocal
impedance condition

Q

o

Nonlinear integral equation for inverse source problem
Numerical examples
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@ The inverse problem

© Nonlinear integral equations for inverse boundary value
problems

© Equivalent boundary value problem with nonlocal
impedance condition

© Nonlinear integral equation for inverse source problem
© Numerical examples

For simplicity only two dimensions and
AU = Xs.
Immediate extensions to three dimensions and to

AU+ K2u = s.
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Only one Cauchy pair

Ml Q,, éEH:I:Drs

Au=xsinQy,, u=fonly

For a solution u of

the difference v = u — ur where
Aur=0inQ,, u=fonlpy

satisfies
AV =x5inQmn, v=0onTg.
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Only one Cauchy pair

rm Qm éEI:I:I:DrS

Au=xsinQy,, u=fonly

For a solution u of

the difference v = u — ur where
Aur=0inQ,, u=fonlpy

satisfies
AV =x5inQmn, v=0onTg.

Hence, in principle, need only to consider Dirichlet data f = 0.
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Uniqueness

Novikov 7938

I's is uniquely determined by one pair of Cauchy data provided
it is starlike.

For a proof see Isakov 2005
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Some previous work

@ Hettlich, Rundell 1996
Regularized Newton iterations for boundary to data map
F :Ts+— 0u/ov|r, (forfixed f), that is, for the solution of
F(ls)=g.

© Hohage 1997
On the convergence of the above.

© Ring 1995
Derive moment problem for Fourier coefficients of radial
function representing I's from Poisson integral for disk plus
least squares (for the case where I, is a circle).

© Hanke, Rundell 2011
Derive moment problem for Fourier coefficients of radial
function from reciprocity gap principle using trigopnometric
harmonics as trial functions plus Newton iterations.
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Inverse Dirichlet problem

Cm( Qp éEH:D}rS Q:=Qp— Qs

Determine the shape I's of a perfect conductor Qg within a
conducting medium from one pair of Cauchy data
(ulr,,, Ou/ov|r,) of a solution u € H'(Q) to

Au=0 inQ, u=0 onTl,
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Inverse Dirichlet problem

Cm( Qp éEH:D}rS Q:=Qp— Qs

Determine the shape I's of a perfect conductor Qg within a
conducting medium from one pair of Cauchy data
(ulr,,, Ou/ov|r,) of a solution u € H'(Q) to

Au=0 inQ, u=0 onTl,

Main idea: Obtain nonlinear integral equations for I's from
Green’s integral theorem.
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Uniqueness

I's is uniquely determined by one Cauchy paironT , (withf #0)
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Uniqueness

I's is uniquely determined by one Cauchy paironT , (withf #0)

u=fFf=1u

ou_ 0

\ay_ v
rs<_> u
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Uniqueness

I's is uniquely determined by one Cauchy paironT , (withf #0)

u=fFf=1u

_ o
-9= ov
I_s — u
s < U
In shaded domain: Au=0
On boundary: u=0

= u = 0 in shaded domain =u=0o0onTlp
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Boundary integral operators

Introduce single- and double-layer potential operators

Sik: HV2(r)) — HV2(T) and Ky : H'/2(T;) — H'/2(T)

by

(Ske)(0 =2 [ o(xp)ply) ds(y). x€ T,

j

and

(Kike)( e(y)ds(y), xeTg,

l
forj,k =m,s.
o(x,y) = 1 n——, X#
7.y - 27{' ‘X o y’ b y7

v is unit normal directed into R? \ Q, and R? \ Qs, respectively.
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Nonlinear integral equations

Apply Green’s integral formula for

u=0 and go::gs onTlg

u(x) = _/r d(x,-)pds

+/ {cb(x, g — 8(1)8(;(,.) f} ds, xeq.

w(x)/2 =
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Nonlinear integral equations

Apply Green’s integral formula for

u=0 and go::gs onTlg

u(x) = _/r d(x,-)pds

+/ {cb(x, g — 8(1)(;;(,.) f} ds, xeq.

w(x)/2 =
'/rsq;(xv.)@ds — '/m {cb(x,-)g a¢(§j") f} as — % f(x), xelm.

| otxgeds = [ fowg- 0 rhds xer.
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Nonlinear integral equations

Apply Green’s integral formula for
ou

u=0 and ¢:= ey

onlg

u(x) = _/r d(x,-)pds

+/ {cb(x, g — 8(1)8(;(,.) f} ds, xeq.

w(x)/2 =
Ssmp = Wr,+
Sssp = Wrg

Linearization with respectto I's and ¢
(plus iteration and regularization).
K., Rundell 2005



Parametrized operators

i={z(t):te[0,2r]}, j=m,s

Introduce parameterized single-layer potential operators

Sex : C?[0,27] x H1/2[0,27] — H'/2|0, 2]
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Parametrized operators

i={z(t):te[0,2r]}, j=m,s

Introduce parameterized single-layer potential operators

Sex : C?[0,27] x H1/2[0,27] — H'/2|0, 2]

by
Sek(2s, 0)(t) = 1/2ﬁln1z/1(7)d7 k—s,m
ST T w o Tzs(0) — z(7)] T
Need to solve _
Ssm(zsﬂ/)) = Wozpy
éss(zsﬂﬁ) = WoZg

where ¢ = |Zf|p o Zs.
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Fréchet derivatives

" 2
Ssk(2s, P)(t) = 1/0 In M Y(r)dr

™

Fréchet derivatives are given explicitly by

= an — Zs(7)] - — (7
oSulenvidl) = o [ e e
= am — Zs(7)] - C(7
dSenlzo v Cl(t) = 1 [ DA EADLED yiryor
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Simultaneous linearization

Need to solve _
Ssm(Zs,v) = wozpy

éss(zsﬂf)) = Wozs

Given an approximate solution zs, 1) solve the linear system
d§sm[zs,¢: ]+ gsm(zsﬂ7) = WoZm— gsm(237 V)

dgss[zs7 ; ¢l + §ss(zs: n) —¢-(gradw)ozs = wozs — éss(zs, )

for {,n to update zg, v into zs + (, v +n

Rainer Kress Inverse Source Problem



Nonlinear integral equations

SsmiP = Smmg — Kmmf — f
Sssp = Smsg — Knsf

Linearization both equations with respectto I's and ¢

(plus regularized iteration).

K., Rundell 2005 Dirichlet condition

Ivanyshyn, K. 2006, ... Neumann cond. and inverse scattering
Cakoni, K., Schuft 2010 Impedance condition

Cakoni, Hu, K. 2014 Generalized impedance condition
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Nonlinear integral equations

SsmiP = Smmg — Kmmf — f
Sssp = Smsg — Knsf

Linearization both equations with respectto I's and ¢

(plus regularized iteration).

K., Rundell 2005 Dirichlet condition

Ivanyshyn, K. 2006, ... Neumann cond. and inverse scattering
Cakoni, K., Schuft 2010 Impedance condition

Cakoni, Hu, K. 2014 Generalized impedance condition

Linearize only one equation (in inverse scattering).
Johansson, Sleeman 2007 Linearize data equation
K., Serranho 2003, ... Linearize field equation
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Nonlinear integral equations

SsmiP = Smmg — Kmmf — f
Sssp = Smsg — Knsf

Linearization both equations with respectto I's and ¢

(plus regularized iteration).

K., Rundell 2005 Dirichlet condition

Ivanyshyn, K. 2006, ... Neumann cond. and inverse scattering
Cakoni, K., Schuft 2010 Impedance condition

Cakoni, Hu, K. 2014 Generalized impedance condition

Linearize only one equation (in inverse scattering).
Johansson, Sleeman 2007 Linearize data equation
K., Serranho 2003, ... Linearize field equation

Related to, but different from regularized Gauss—Newton
iterations for data to boundary map F : I's — du/ov|r,,
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Equivalent nonlocal impedance condition

; Qm@ﬂ])rs Q= - 0%

1 .
Uo(X) =4 |x|? solves Auy=1 inR?

For the solution u € H'(Q,) of the source problem the
difference u — up is harmonic in Qg and therefore

a(u— uw)

By . = AS(U — Uo)’rs.

As : H'/2(I's) — H~1/2(T s) Dirichlet-to-Neumann map for Qs
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Equivalent nonlocal impedance condition

. Qm&g:I:I:DFS Q= Qp -0

Theorem
Solving

Au=xsinQm, u=fonly
is equivalent to solving

0
Au=0inQ, u=fonlpy, @—Asuhs = ﬂ—Asuo|rS onlg
ov ov

v
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Nonlinear integral equation

For 9
u
— —\Uu= nr
ey u=0 onTlg
we have the two equations

Ksmp — Ssmde =+ Knmf — Smmg

—0+ Kssp — SssAp = Kmsf — Smsg

for the unknowns I's and ¢ = u|r, .
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Nonlinear integral equation

For 5
ou_ AU=0 onlg
ov

we have the two equations

Ksmp — Ssmde =+ Knmf — Smmg

—0+ Kssp — SssAp = Kmsf — Smsg

for the unknowns I's and ¢ = u|r, .
For nonlocal and inhomogeneous impedance condition we
have

Ksmgﬁ — SsmAsﬁp — f+ Kmmf - Smmg + SsmU

—p + Kssp — SssAsp = Kmsf — Smsg + Sssn

, ou,
for the unknowns I's and ¢ := u|r, with  := 871/0 o Aslp|r

s
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Nonlinear integral equation

Green’s integral formula yields the two equations
Ksmp — SsmAsp = [+ Kpmf — Smm@ + Ssmn

—p+ Kssp — SssAsp = Kmsf — Smsg + Sss

. ou
for the unknowns I's and ¢ := u|r, with n := a—yo o AsUo|r,
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Nonlinear integral equation

Green’s integral formula yields the two equations
Ksmp — SsmAsp = [+ Kpmf — Smm@ + Ssmn

—p+ Kssp — SssAsp = Kmsf — Smsg + Sss

. ou
for the unknowns I's and ¢ := u|r, with n := a—yo o AsUo|r,

Eliminate the slip variable:

Av=0 inQs, v=¢p onlg

v(x) = /r {d)(x, VAsp — (%8(); ) <p} ds, xeQs

= @ = SssAsp — Kssp
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Nonlinear integral equation

The inverse source problem is equivalent to solving the
nonlinear integral equation

1
5 (Ksm — SsmAs) (Kmsf — Smsg

ou
+Sssaiyo . KssUo|rs — UO‘Fs)
ouy
—Ssm<871/0 - — AsUO|I'S) = f+ Knmf — Smmg

for the unknown T s.
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Nonlinear integral equation

The inverse source problem is equivalent to solving the
nonlinear integral equation

1
5 (Ksm — SsmAs) (Kmsf — Smsg

ou
+Sssaiyo . KssUo|rs — UO‘Fs)
ouy
—Ssm<871/0 - — AsUO|I'S) = f+ Knmf — Smmg

for the unknown T s.

Solve by regularized Newton iterations
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Linearization

Fréchet derivatives of double-layer operators Ky are analogous
to those of single-layer operators Si.

Recall

Invertibility of single-layer operator Sgs requires a geometric
assumption.
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Relation with boundary-to-data map

Newton iterations for the nonlinear integral equation are
equivalent to Newton iterations for

W(FTs—g)=0

where ’
W = Smm + E [Ksm - SsmAs] Sms
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Numerical examples

Approximations starlike with radial function a trigonometric
polynomial of degree m = 6.
Initial guess is a circle with radius

m?= | gds,
m

/ Xs OX = gdas.
Qm m

Same regularization parameter in all examples.
64 quadrature points for discretization of integral operators.

since
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Numerical example with exact data

T T
= reconstructed ||

0.8 s i w exact

data curve

06 ]
04l

0.2F
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Numerical example with exact data

T T
g — reconstructed
08 P  exact I
data curve
06 ]
04l -

0.2F
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Numerical example with exact data

T T
= reconstructed ||

0.8 s i w exact

data curve

06 ]
0.4} J

021 ) 1
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Numerical example with exact data
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= reconstructed ||
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Numerical example with exact data

T T
= reconstructed ||

0.8 s i w exact

data curve

06 ]
0.4} J

021 ) 1
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Numerical example with exact data

T T
— reconstructed ||

o exact
data curve

08} T

06 d .
04l 1

0.2F ! % ll

02f A ‘ E

-0.4+ .
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Numerical example with noisy data

T T
= reconstructed ||

0.8 s i w exact

data curve

06 ]
04l

0.2F
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Numerical example with noisy data

T T
g — reconstructed
08 P  exact I
data curve
06 ]
04l -

0.2F
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Numerical example with noisy data
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Numerical example with noisy data

T T
= reconstructed ||

0.8 s i w exact

data curve
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Numerical example with noisy data

T T
g — reconstructed
08 P  exact I
data curve
06 ]
04l -

0.2F
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Numerical example with noisy data

T T
— reconstructed ||

0.8 - A w exact
data curve
06l o .

04l 1

0.2

-0.2F

-0.4+ .
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Numerical example with exact data

T T

— reconstructed | |
v exact

Vi data curve

0.8

0.6 75 g
04t

0.2+
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Numerical example with exact data
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Numerical example with exact data
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Numerical example with exact data
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Numerical example with exact data
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Numerical example with exact data
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= reconstructed ||
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Numerical example with exact data

T T
= reconstructed ||

0.8 s i w exact

data curve

06 ]
04l

0.2F
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Numerical example with exact data

T T

— reconstructed | |
v exact

Vi data curve

0.8

06 A o
0.4+

02+

-0.2-

-0.41
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Numerical example with noisy data

T T

— reconstructed | |
v exact

Vi data curve

0.8

0.6 75 g
04t

0.2+
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Numerical example with noisy data
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Numerical example with noisy data
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Numerical example with noisy data
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Numerical example with noisy data

T T
— reconstructed ||

o exact
data curve
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Numerical example with exact data
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Numerical example with exact data

T T
= reconstructed ||

0.8 s i w exact

data curve

06 ]
04l

0.2F

Rainer Kress Inverse Source Problem



Numerical example with exact data
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Numerical example with exact data
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Numerical example with noisy data
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Numerical example with noisy data
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Numerical example with noisy data
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Numerical example with noisy data

T T
— reconstructed ||

o exact
data curve

08} T

06 d .
04l

0.2

-0.2F
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@ Numerics in three dimensions and for Helmholtz equation
© Numerics for multiple inclusions
© Uniqueness for arbitrary shape
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