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(A) Introduction ' ﬂ(".
Born Approximation for Helmholtz equation: u = u' + uS total field
Au+k?(1+q)u=0; thatis, Au+ k?u = —k?®qu

AUS + K2uS = —k2qu; thatis, us(x) = k? /Dq(y)u(y) Oy (x, y) dy
Lippmann-Schwinger equation:
u(x) = U'(x) + K [ a(y)uy) @x(x.y)dy, x € D.

This is fixed-point equation wrt u.
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(A) Introduction ' ﬂ(".
Born Approximation for Helmholtz equation: u = u' + uS total field
Au+k?(1+q)u=0; thatis, Au+ k?u = —k?®qu

AUS + K2uS = —k2qu; thatis, us(x) = k? /Dq(y)u(y) Oy (x, y) dy
Lippmann-Schwinger equation:
u(x) = u(x) + K [ q(y)u(y) ®e(x.y)dy. x € D.
This is fixed-point equation wrt u. Born approximation:

ug(x) = u'(x) + k2 /E)q(y)u’(y) O (x,y)dy; i.e., Aug+ kPug = —k2qu’
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(A) Introduction ' ﬂ(“.
Born Approximation for Helmholtz equation: u = u' + uS total field
Au+k?(1+q)u=0; thatis, Au+ k?u = —k?®qu

AUS + K2uS = —k2qu; thatis, us(x) = k? /Dq(y)u(y) Oy (x, y) dy
Lippmann-Schwinger equation:
u(x) = u(x) + K [ q(y)u(y) ®e(x.y)dy. x € D.
This is fixed-point equation wrt u. Born approximation:
u(x) = () + K2 | qUy)u(y) D(xy) dy ; e Aug+KPug = —k2qu
Born series: up = U',  Auj1 + K2uj 1 = —k2qu;, thatis
Gi1(0) = U(x) + K [ q(y)u(y) u(x.y) dy, x € D,
[2—convergence if k* [, [ q(y)2 Pk(x,y)?dydx <1
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Introduction, cont.
(Linearized) wave equation:

leafu(x, t) — V- (;VXU(X, t)) = f(x,t), (x,t)eQx(0,T],
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Introduction, cont.
(Linearized) wave equation:

leafu(x, t) — V- (Z)qu(x, t)) = f(x,t), (x,t)eQx(0,T],

Here: O ¢ R bounded Lipschitz-domain,
v =v(x), 0 = o(x) are wave speed and mass density, respectively.
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Introduction, cont.
(Linearized) wave equation:

leafu(x, t) — V- (;VXU(X, t)) = f(x,t), (x,t)eQx(0,T],

Here: O ¢ R bounded Lipschitz-domain,
v =v(x), 0 = o(x) are wave speed and mass density, respectively.

Seta=1/(ov?)and b= 1/0, thus:
a(x)Zu(x,t) — V- (b(x)Vu(x, 1)) = f(x,t), (x,t) e Qx(0,T].
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Introduction, cont.
(Linearized) wave equation:

1 1
ﬁafu(x, ) — V- (vau(x, t)) = f(x,t), (x,1)eQx(0,T]
Here: O ¢ R bounded Lipschitz-domain,

v =v(x), 0 = o(x) are wave speed and mass density, respectively.
Seta=1/(ov?)and b= 1/0, thus:

a(x)Zu(x,t) — V- (b(x)Vu(x, 1)) = f(x,t), (x,t) e Qx(0,T].

Boundary conditions: u(-, t)lso = 0,

Initial conditions: u(-,0) = ug; dtu(-,0) =usonQ.
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Introduction, cont. ﬂ(“.

(Linearized) wave equation:
1 1
ﬁafu(x, ) — V- (vau(x, t)) = f(x,t), (x,1)eQx(0,T]

Here: O ¢ R bounded Lipschitz-domain,
v =v(x), 0 = o(x) are wave speed and mass density, respectively.
Seta=1/(ov?)and b= 1/0, thus:

a(x)Zu(x,t) — V- (b(x)Vu(x, 1)) = f(x,t), (x,t) e Qx(0,T].

Boundary conditions: u(-, t)lso = 0,

Initial conditions: u(-,0) = ug; dtu(-,0) =usonQ.

Inverse problem studies mapping F : (a, b) — Yu (for example
Yu = u|p for some D C Q).
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Introduction, cont.

Usually a, b are perturbations of known &, b; thatis, a= &+ ¢aand
b= b+ ¢b. Formally, u = &+ et/ + o(e) where

a02u' — V- (b)) = —ad20 + Vi (WD), (x,t) € Qx (0, T],

where { is solution corresponding to & and b.
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Introduction, cont. ﬂ(“.

Usually a, b are perturbations of known &, b; thatis, a= &+ ¢aand
b= b+ ¢b. Formally, u = &+ et/ + o(e) where

a02u' — V- (b)) = —ad20 + Vi (WD), (x,t) € Qx (0, T],
where { is solution corresponding to & and b.

Goal of talk:
m Justify this rigorously as Fréchet derivative in proper function spaces
a Clarify why Born-series is not well defined

m Show that nonlinear inverse problem is improperly posed (in the sense
of Hofmann 1997)
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(B) The Initial Boundary Value Problem ﬂ(“.

Weak formulation (Green’s first formula w.r.t. time and space variable):

.
/ / [b(X)Su(x, t) - Sp(x, t) — a(x) du(x, £) dp(x, t)] dx dit

0 QO

.
//fxt (x.t)dxdt forallp e C®(Q x [0, T]) with (-, T) = 0.
0 Q
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(B) The Initial Boundary Value Problem ﬂ(“.

Weak formulation (Green’s first formula w.r.t. time and space variable):

.
/ / [b(X)Su(x, t) - Sp(x, t) — a(x) du(x, £) dp(x, t)] dx dit
0 Q

.
//f X, ) y(x, ) dxdt forallyp € C®(@Q x [0, T]) with ¢(-, T) = 0.
0 Q

Identify u: Q x (0, T) — Rwith u: (0, T) — H}(Q) and U= 9;u. Then:
T . T
/ (bVu(t), V(1) o — (@ & (1), (1) dt = /(f(t),¢(t))L2 ot
0 0

forall y € C2([0, T], C=(QY)) with (0) = ¢(T) = 0.
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The Initial Boundary Value Problem

T T
[(6Vut).99(0) 2~ (@ b (0.9 () oot = [(F(0).9() 2
0 0

forall y € C*([0, T], C®(Q))) with ¢(0) = ¢(T) = 0.
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The Initial Boundary Value Problem

T T
[ ©Vu®), V9(0) 2= (a T (0.9 () pat = [(F(0),9(1)) 2 c
0 0

forally € C*([0, T], C*(Q))) with ¥(0) = ¢(T) = 0. Solution space:
X = C'([0,T).L3(00) n ¢([0, T], H ()

1/2
with norm ullx == ( max |lu(?)|? max_|| U ()||2 .
lullx = ( max lu(olZ: + max & (0]

Then also test functions ¢ € X with ¢(0) = (T) = 0. In addition, initial
conditions u(0) = up and u (0) = uy.
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The Initial Boundary Value Problem ﬂ(".

T T
/(bVU(t),th(t))Lz — (@l (0,9 (1) pd = /(f(t),¢(t))L2 ot
0 0

forally € C*([0, T], C*(Q))) with ¥(0) = ¢(T) = 0. Solution space:
X = C'([0,T).L3(00) n ¢([0, T], H ()

1/2
with norm ullx = [ max |lu(t)|? max || U (1)||2 .
|ullx <0<t<TH Ml + ogth” (D7

Then also test functions ¢ € X with ¢(0) = (T) = 0. In addition, initial
conditions u(0) = up and u (0) = uy.

Assumptions: a, b € L®(Q) with ¢ < a(x), b(x) <y~ a.e. on Q,
fel2((0,T)xQ) =L2((0,T), L2(Q)), up € H{(Q), uy € L2(Q).
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The Spectral Method ﬂ(“.
Under these assumptions there exists a unique solution. Approaches:
Dautray-Lions, Vol. 4, PhD-thesis Stolk, 2000: Galerkin-method,
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The Spectral Method ﬂ(“.

Under these assumptions there exists a unique solution. Approaches:
Dautray-Lions, Vol. 4, PhD-thesis Stolk, 2000: Galerkin-method,
simpler: expansion method; that is:

sa. EVP: —V-(bVv,) = A2av,inQ, v,=00ndQ, thatis,

vn € HI(Q /va,, Vydx = AZ/ avapdx Yy € HH(Q).

—_—
= (Vn¥)1b = (vn¥)o,a
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The Spectral Method ﬂ(“.

Under these assumptions there exists a unique solution. Approaches:
Dautray-Lions, Vol. 4, PhD-thesis Stolk, 2000: Galerkin-method,

simpler: expansion method; that is:
sa. EVP: —V-(bVv,) = A2av,inQ, v,=00ndQ, thatis,

vn € HI(Q / bVv,-Vipdx = AZ/ avapdx Yy € HH(Q).
—_—
= (n¥)1p = (n.¥)o.a

Set V = (H}(Q), (.*)1,5). Normalize v, € V such that ||vp/1 p = 1.
Then: {v,:n €N} ONSin V and {Anv,: n € N} ONSin L2(Q, adx).
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The Spectral Method ﬂ(“.

Under these assumptions there exists a unique solution. Approaches:
Dautray-Lions, Vol. 4, PhD-thesis Stolk, 2000: Galerkin-method,

simpler: expansion method; that is:
sa. EVP: —V-(bVv,) = A2av,inQ, v,=00ndQ, thatis,

vn € HI(Q / bVv,-Vipdx = Az/ avapdx Yy € HH(Q).
—_—
= (n¥)1p = (n.¥)o.a

Set V = (H}(Q), (.*)1,5). Normalize v, € V such that ||vp/1 p = 1.

Then: {v,:n €N} ONSin V and {Anv,: n € N} ONSin L2(Q, adx).

Also (because yb < 1 and b > ) with Poincaré’s constant cq:

14+¢c3
Y

TG, < IVl < A+ cd)IVviE < VI5s,
1
Mviga < IIvIZ < §IIV||3,a-
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The Spectral Method, cont. ﬂ(“.
Let ug=YanvpinV and uy =Y BnAnvnin L2(Q,adx) and
n n

= %fn(t) AnVnin [2(Q), adx).
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The Spectral Method, cont. ﬂ(“.
Let ug=YanvpinV and uy =Y BnAnvnin L2(Q,adx) and
n n

Lat) =Y fo(t) Apvp in L2(Q, adx).
Define nn(t) = /Otsin()\n(t— s))fa(s)ds, te€[0,T], neN.
Then u(t) = Y [ancos(Ant) + Bnsin(Ant) + 1n(t)] va

is the unique weak solution of ad?u— V- (bVu) = fin Q x (0, T) with
u0) =upinQ, 9w(0)=uyinQ, andu=00n9Q x (0, T)
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The Spectral Method, cont. ﬂ(“.
Let ug=YanvpinV and uy =Y BnAnvnin L2(Q,adx) and
n n

= ;fn(f) AnVn in L2(0), adx).
t
Define nn(t) = /o sin(An(t—s))fa(s)ds, te[0,T], neN.

Then u(t) = Y [ancos(Ant) + Bnsin(Ant) + 1n(t)] va

is the unique weak solution of ad?u— V- (bVu) = fin Q x (0, T) with
u(0) =upinQ, dw(0) =uinQ, andu=00ndQ x (0, T) and

lu@IRo+1 0 0)5a < 2-3%, [63+ B2+ TllfallZ2(0 7|
< 6[lwllf o+ urll§ o+ (/N2 00,77

A\
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The Spectral Method, cont. ﬂ(“.
Let ug=YanvpinV and uy =Y BnAnvnin L2(Q,adx) and
n n

= ;fn(f) AnVn in L2(0), adx).
t
Define nn(t) = /o sin(An(t—s))fa(s)ds, te[0,T], neN.

Then u(t) = Y [ancos(Ant) + Bnsin(Ant) + 1n(t)] va

is the unique weak solution of ad?u— V- (bVu) = fin Q x (0, T) with
u(0) =upinQ, dw(0) =uinQ, andu=00ndQ x (0, T) and

lu@IRo+1 0 0)5a < 2-3%, [63+ B2+ TllfallZ2(0 7|
< 6[|lwlfp+ lluillf o+ (T/DIAIE 0 0,1)))-
Furthermore, a Ue L2((0,T),H'(Q)) and

(bVu(t), V)2 + (@t (1),9) = (F(t),9),2 forallp € H}(Q), ae.
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Regularity
From this approach one gets easily regularity. Recall:

u(t) = Y [wncos(Ant) + Bnsin(Ant) +7n(t)] vn  with

n

t
nn(t) = /Osin(/\,,(t—s))f,,(s)ds
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Regularity
From this approach one gets easily regularity. Recall:

u(t) = Y [wncos(Ant) + Bnsin(Ant) +7n(t)] vn  with

n

t
nn(t) = /0 sin(An(t —8)) fa(s) ds
Differentiation and partial integration:

Tn (1) = £(0) sin(/\,,t)+/0tsin()\n(t—s)) f, (s)ds
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Regularity
From this approach one gets easily regularity. Recall:

u(t) = Y [wncos(Ant) + Bnsin(Ant) +7n(t)] vn  with

n
t
nn(t) = /Osin(/\,,(t—s))f,,(s)ds
Differentiation and partial integration:
t .
Tn (1) = £(0) sin(/\,,t)+/o Sin(An(t — 5)) £y (s) ds

Theorem
(@) If V- (bVup) € L2(Q), uy € H{(Q), f € H'((0, T), L3(Q)) then

ue C'([o, T], H{(Q) N C3([0, T, L3(QY)) .
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Regularity
From this approach one gets easily regularity. Recall:

u(t) = Y [wncos(Ant) + Bnsin(Ant) +7n(t)] vn  with

n

t
Hn(t) = /O sin(An(t — 5)) fols) ds
Differentiation and partial integration:

Mn (t) = f,(0) sin(/\,,t)+/otsin()\,,(t—s)) fn (8) ds

Theorem
(@) If V- (bVup) € L2(Q), uy € H{(Q), f € H'((0, T), L3(Q)) then

ue C'([o, T], H{(Q) N C3([0, T, L3(QY)) .

(b) If L[V - (bVug) — £(0)] € H(Q), V- (bVuy) € L3(Q2),
f€ H?2((0, T),L2(Q)) then

ue C3([0, T}, H{ () N C3([o, T, L3(Q)) .
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Example

T

L 09u). V9(0) 0~ (@ 50,5 ) pdt = [ (100).9(0) et
for all p € X with (0) = ¢(T) = 0.
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Example

T T
/O(bVU() ()~ (al ())detz/o (F(8), 9 (1)) o ot

—(au
for all p € X with (0) = (T):
Remark: f € L?((0, T), H~'(Q)) not sufficient for u € X!
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Example

T T
/O(qu(t),le(t)) aul(t),y ())det=/0 (). (1)) o ot

—(a il
for all p € X with (0) = (T) =0.
Remark: f € L?((0, T), H~'(Q)) not sufficient for u € X!
Example: Q) = (0, n) x (0,7),a=b=1. Then

Vn(Xq, X2) = sin(nyxq) sin(mxs), n=(ny,n) € N2,

\ |
is ONS in H} (Q) wrt (Vu, Vv),2 and {|n|v, : n € N2} is ONS in L2(Q)).
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Example

T T
/O(qu(t),le(t)) aul(t),y ())det=/0 (). (1)) o ot

—(a il
for all p € X with (0) = (T) =0.
Remark: f € L?((0, T), H~'(Q)) not sufficient for u € X!
Example: Q) = (0, n) x (0,7),a=b=1. Then

Vn(Xq, X2) = ‘ | sin(nyxy)sin(nax2), n=(ny,n2) e N?,

is ONS in H} (Q) wrt (Vu, Vv),2 and {|n|v, : n € N2} is ONS in L2(Q)).
Define f(x.t) = Y pnlnf?cos(|n|t) va(x) with }_ p3 < co.
n

neN2
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Example

T T
/O(qu(t),le(t)) aul(t),y ())det=/0 (). (1)) o ot

—(a il
for all p € X with (0) = (T) =0.
Remark: f € L?((0, T), H~'(Q)) not sufficient for u € X!
Example: Q) = (0, n) x (0,7),a=b=1. Then

Vn(Xq, X2) = ‘ | sin(nyxy)sin(nax2), n=(ny,n2) e N?,

is ONS in H} (Q) wrt (Vu, Vv),2 and {|n|v, : n € N2} is ONS in L2(Q)).
Define f(x.t) = Y pnlnf?cos(|n|t) va(x) with }_ p3 < co.
n

neN2
Then f € L2((0, T), H™! (Q)) and
u(t) = —= Z pnln| tsin(|n|t) v, € L2(Q).
neIN2
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(C) Lipschitz-Continuity and Differentiability

a/- .U.j(t) —V~(b/-Vu/-(t)) = f(t), j=1,2. SetUZ=U1—U21
a U(t)=V-(bVu(t)) = (a—ai) Uy ()= V- ((ba—b)Vui(h)
= (ap—ay) Uy (1) =V (bVw(t))
where w(t) € H](Q) solves V- (bo Vw(t)) = V- ((bp — by) Vuy (t)).
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(C) Lipschitz-Continuity and Differentiability

a/- .U.j (t) - V- (ijUj(l’)) = f(t), j= 1,2. Setu:= uy — U :

a U(t)=V-(bVu(t)) = (a—ai) Uy ()= V- ((ba—b)Vui(h)
) Uy (t) = V- (b2 Vw(t))

where w(t) € H](Q) solves V- (bo Vw(t)) = V- ((bp — by) Vuy (t)).

Assumption: V - (b1Vup) € L2(Q), uy € HI(Q), f € H'((0, T), L2(Q)).

Then uy € C'([0, T, H{ (Q2)) N C3([0, T, L3(Q)).

= (a2—a

April 10,2015 - The Born Approximation for the Wave Equation



(C) Lipschitz-Continuity and Differentiability ﬂ(“.

a/- .U.j(f) —V~(ijUj(l’)) = f(t), j=1,2. SetUZ=U1—U21
a U(t)=V-(bVu(t)) = (a—ai) Uy ()= V- ((ba—b)Vui(h)
= (@—a) Uy ()= V- (bVw(1))

where w(t) € H](Q) solves V- (bo Vw(t)) = V- ((bp — by) Vuy (t)).
Assumption: V - (b1Vup) € L2(Q), uy € HI(Q), f € H'((0, T), L2(Q)).
Then uy € C'([0, T, H{ (Q2)) N C?([0, T, L3(Q)). Thus:

(ap—ay) Us€ L2((0,T) x Q) and also w € C' ([0, T], H} (Q2)) and
IW(B)ll1,6, < T 162 = br [|eo|us (1) 11,6, Thus:

i —wallx < €ll(@2—a1) u1llzo,mxa) + Wk o.1).4 )]
< clllaz — ailleo + |12 — b1 lo]
where ¢ depends only on T, Q), v, Uy, Uy, and f.
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Differentiability

Theorem: Let f € H?((0, T), L2(Q))). Set
U= {vel®Q):y<v<q'ae onQ}.

Furthermore let (
f(

b) € int(U) x int(U) and the initial data satisfy
[V (bVU() — }

a,
0)] € H{(Q) and V - (bVuy) € L2(Q).
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Differentiability

Theorem: Let f € H?((0, T), L2(Q))). Set
U= {vel®Q):y<v<qylae onQ}.
Furthermore let (& b) € int(U) x int(U) and the initial data satisfy
L[V (bVuwp) — f(0)] € H{(Q) and V - (bVuy) € L2(Q). Then the
mapping F :(a b) — u is Fréchet-differentiable at (&, b) and
F'(&,b)(a b) = u for a b e L®(0) where u' € X solves
a9y — v - (bVu') = —ad?u+ V- (bVa) inQx(0,T],

and v/ (0) = 9;u/(0) = 0. Here, &t = F(&,b).
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(D) Remarks on the Born-Approximation ﬂ(“.
Let, for simplicity, ug = uy = 0. Recall: a=a+aand b=b+ b and
u € X satisfies

(a+a)d?u—Vi- ((b+b)Vu) = f; thatis,

a02u— V- (bWu) = f — ad?u + Vi (bVu).
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(D) Remarks on the Born-Approximation ﬂ(“.
Let, for simplicity, ug = uy = 0. Recall: a=a+aand b=b+ b and
u € X satisfies

(a+a)d?u—Vi- ((b+b)Vu) = f; thatis,
a02u— V- (bWu) = f — ad?u + Vi (bVu).
Introduce linear solution operator L : g — & where {1 € X solves
a0zt — Vi (bWa) = g.
Then u solves fixed point equation

u= L[f-ad?u+ V- (b%u)] = Lf — L[ad?u— V- (bVu)] .
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(D) Remarks on the Born-Approximation ﬂ(“.
Let, for simplicity, ug = uy = 0. Recall: a=a+aand b=b+ b and
u € X satisfies

(a+a)d?u—Vi- ((b+b)Vu) = f; thatis,
a02u— V- (bWu) = f — ad?u + Vi (bVu).
Introduce linear solution operator L : g — & where & € X solves
a0zt — Vi (bWa) = g.
Then u solves fixed point equation
u= L[f-ad?u+ V- (b%u)] = Lf — L[ad?u— V- (bVu)] .
Born series is the same as fixed point iteration; that is, ug = Lf = & and

U1 = O — Lladfux — V- (bVuk)], k=0,1,2,...

April 10,2015 - The Born Approximation for the Wave Equation



Karlsruhe Institute of Technology

Remarks on the Born-Approximation, cont.

Recall:
Uq = O — Llad?ug — V- (bVuk)], k=0,1,2,...
First step k = 0:
up = 0 — L[adfug — V- (b%up)] = & + U';

that is, first Born approximation coincides with Fréchet-linearization.
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Remarks on the Born-Approximation, cont.

Recall:
U1 = O — L[ad?ug — V- (bV%uk)], k=0,12,...
First step k = 0:
up = 0 — L[adfug — V- (bVup)] = U + U;
that is, first Born approximation coincides with Fréchet-linearization.

Note that L is bounded from L2((0, T) x Q) into
X =C'([0,T],L2(Q2)) n C([0, T], H}(€2)) but

aofu, — Vi - (bVuk) ¢ L2((0,T) x Q) foruy € X!
Therefore, Born series is not even well-defined!
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(E) lll-Posedness of the Inverse Problem ﬂ(“.

Definition (Hofmann 1997) An equation Fy = u is called locally ill-posed
in y* € D(F) with Fy* = u if in any neighborhood of y* there is a
sequence y; € D(F) with F(y;) — F(y*) but y; = y*.
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(E) lll-Posedness of the Inverse Problem ﬂ(“.
Definition (Hofmann 1997) An equation Fy = u is called locally ill-posed
in y* € D(F) with Fy* = u if in any neighborhood of y* there is a
sequence y; € D(F) with F(y;) — F(y*) but y; = y*.

Inour case F : Y* — Z with Y* = L®(Q) x L®(Q); that is,

Y =L'Q) xL'(Q),and Z = L2((0, 1) x Q).
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(E) lll-Posedness of the Inverse Problem ﬂ(“.
Definition (Hofmann 1997) An equation Fy = u is called locally ill-posed
in y* € D(F) with Fy* = u if in any neighborhood of y* there is a
sequence y; € D(F) with F(y;) — F(y*) but y; = y*.

Inour case F : Y* — Z with Y* = L®(Q) x L®(Q); that is,

Y =L'Q) xL'(Q),and Z = L2((0, 1) x Q).

Proposition Let F : Y* — Z be compact and weak-x-to-weak continuous.
Further, let y* € D(F) satisfy Fy* = u and assume the existence of a
sequence e; € Y* with | ||y~ = 1 and ¢; — 0 weakly-+ and

y* +rej € D(F) forevery r € [0,1] and j € IN. Then the equation

Fy = uis locally ill-posed.
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(E) lll-Posedness of the Inverse Problem ﬂ(“.
Definition (Hofmann 1997) An equation Fy = u is called locally ill-posed
in y* € D(F) with Fy* = u if in any neighborhood of y* there is a
sequence y; € D(F) with F(y;) — F(y*) but y; = y*.
Inour case F : Y* — Z with Y* = L®(Q) x L®(Q); that is,
Y =L'Q) xL'(Q),and Z = L2((0, 1) x Q).
Proposition Let F : Y* — Z be compact and weak-x-to-weak continuous.
Further, let y* € D(F) satisfy Fy* = u and assume the existence of a
sequence e; € Y* with | ||y~ = 1 and ¢; — 0 weakly-+ and
y* +rej € D(F) forevery r € [0,1] and j € IN. Then the equation
Fy = uis locally ill-posed.
Assumptions are satisfied in this case! Compactness of F by Theorem of
Arzela-Ascoli:

oo

Ju(t) —u(ty)ll e = sup (u(t) —u(tr), ) = sup (u(s). ). ds
9l 2=1 [pll,2=1"4
< |-t G o .20
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llI-Posedness of the Inverse Problem, cont.

Weak-x-to-weak continuity by variational formulation of differential
equation.
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llI-Posedness of the Inverse Problem, cont.

Weak-x-to-weak continuity by variational formulation of differential

equation.

Construction of g; € L*(Q) with ||g;||.~ = 1 and &; — 0 weakly-* and

y*+rej € D(F):

Let z € Q and let B; = B(z, 1/j) be ball centered at z with radius 1/j.

Set e; = xg characteristic function of B;. Then |/gj|;~ = 1and ¢; — 0
1

weakly-x.
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llI-Posedness of the Inverse Problem, cont.

Weak-x-to-weak continuity by variational formulation of differential
equation.

Construction of g; € L*(Q) with ||g;||.~ = 1 and &; — 0 weakly-* and
y*+rej € D(F):

Let z € Q and let B; = B(z, 1/j) be ball centered at z with radius 1/j.
Set e; = xg, characteristic function of B;. Then |||~ = 1 and g — 0
weakly-x.

Theorem Let the measurement operator ¥ : L2(Q)) — L?(D) be linear

and bounded. Then the problem to determine the parameters
a, b e L*(Q) from Yu is ill-posed.
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(F) Final Remarks ﬂ(“.

References:

a On the Linearization of Operators Related to the Full Waveform
Inversion in Seismology. MMAS 2014

m Seismic Tomography is Locally Ill-Posed. IP 2014

@ Bao, Symes 1996, Bao 1998, Stolk (thesis) 2000, Blasek, Stolk,
Symes 2013
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References:

a On the Linearization of Operators Related to the Full Waveform
Inversion in Seismology. MMAS 2014

m Seismic Tomography is Locally Ill-Posed. IP 2014

@ Bao, Symes 1996, Bao 1998, Stolk (thesis) 2000, Blasek, Stolk,
Symes 2013

Extensions

m Maxwell’'s equations analogously, data-to-solution operator
F : (&, 1) — (E, H) not compact because H(curl, () not compactly
imbedded in L2(Q).

m Elasticity problem recently by John Schlasche (student of Armin).

17 April 10,2015 - The Born Approximation for the Wave Equation



(F) Final Remarks ﬂ(“.

References:

a On the Linearization of Operators Related to the Full Waveform
Inversion in Seismology. MMAS 2014

m Seismic Tomography is Locally Ill-Posed. IP 2014

@ Bao, Symes 1996, Bao 1998, Stolk (thesis) 2000, Blasek, Stolk,
Symes 2013

Extensions

m Maxwell’'s equations analogously, data-to-solution operator
F : (&, 1) — (E, H) not compact because H(curl, () not compactly
imbedded in L2(Q).

m Elasticity problem recently by John Schlasche (student of Armin).

Thank you for your attention and, in particular,

thank you, Armin, for this phantastic workshop!
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