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Introduction and motivation

General setup

)

©

e 6 ¢ ¢

D bounded open region in R3.

Boundary I consists of a finite number of
disjoint, closed, bounded surfaces belonging to
class C2.

Complement R3\D is connected.

K given wave number.

V denotes normal pointing in the exterior.
n > 1is the index of refraction.
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Introduction and motivation

Scattering by an inhomogeneous media

@ Solve:
Au+k?>u=0 inR3\D ,
Au+k2nu=0 inD
ut=u" onl, %}f }(4
(dyu)* = (8yu)” onT, u’
rlmor(drus—iKus):O, r=|x|. I

@ Total wave is u = u® 4 u' with planar incident
wave u' = exp{ikx-d}.

@ Question: Is there an incident wave that does not
scatter?
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Introduction and motivation

Transmission eigenvalue problem

@ Question is related to the interior transmission problem (ITP).

@ If u' is given such that us = 0, then setting w = u|p and v = u'|p yields
the following problem:

@ Find a solution (v,w) # (0,0) to the ITP given by

Aw+K*nw =0 inD,
Av+k? v=0 inD,
v=w onl,
oyv=aodywonl.

@ Then k € C will be a transmission eigenvalue (TE).
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Introduction and motivation

Transmission eigenvalue problem

@ ITP appears first in Kirsch in 1986 and Colton & Monk in 1988.

@ Factorization Method and Linear Sampling Method do not work for TE,
since the far-field operator is not injective with dense range.

@ Both method are inverse solvers.

Figure 1: Left: Direct problem. Right: Inverse problem.

@ Far-field: us(x) = %u“()@d,K) +0 (r%) r — co. Far-field operator

Fre 1 L2(S?) — L2(S?): (Fxg) (R) = fiou®(%,d,K)g(d) ds(d).
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Introduction and motivation

Transmission eigenvalue problem

@ Discreteness of TE:
Colton-Kirsch-Paivarinta in 1989, Rynne-Sleeman in 1991,
Cakoni-Haddar and Colton-Péivéarinta-Sylvester in 2007, Kirsch,
Cakoni-Haddar in 2009 and Hickmann in 2012.

@ Existence of TE:
Paivarinta-Sylvester and Kirsch in 2009, Cakoni-Gintides-Haddar,
Cakoni-Haddar and Cakoni-Kirsch in 2011, and Bellis-Cakoni-Guzina
and Cossonniere in 2011.

@ And many more.
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Introduction and motivation

Transmission eigenvalue problem

@ TE carry information of material properties
= Can be used to say something about the presence of abnormalities
inside an homogeneous media.
= Can be used to test the integrity of a material (nondestructive testing).
@ Many open questions.
= Can Faber-Krahn type inequalities be established for higher TE?
= What does the first TE tell us about the inhomogeneous media
n(x)?
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Introduction and motivation

Estimating refraction index

@ Method 1: Use Faber-Krahn-type inequality (FKTI)

A1(D)

n>
kf(D)’

where A;(D) is the first Dirichlet eigenvalue.
@ Very coarse estimation.

@ Example unit sphere: A;(D) = 3.141593 and k?(D) = 3.1415932 for
n=24.

@ We get fipgm > 1.
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Introduction and motivation

Estimating refraction index

@ Method 2: Bisection method*
@ Need computation of 10-20 “direct problems” of the form

pp(n) = k1(D).

@ Method 3 (new): Combine boundary integral equation method and
complex-valued contour integrals.?

@ Computational cost: 1-3 “direct problems”.

1J. Sun, Estimation of transmission eigenvalues and the index of refraction from Cauchy
data, Inverse Problems 27 (2011) 015009 (11pp).

2. Kleefeld, A numerical method to compute interior transmission eigenvalues, Inverse
Problems, 29 (2013), 104012 (20pp).
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Solving transmission eigenvalue problem and estimating re fraction index

Solving the ITP

Integral operators:

SL(®)P) = [ @c(P.a)9(a) ds(a). P €.
OL(O)P) = [dua®x(P.a)p(@ds(@),  PeD,
Sc(@)p) = [ Ou(p.)p(@)ds(a). per.
(@®F) = [d@op.ap@ds@.  pel.
@) = [dpdpap@ds@.  pel,

T(9)(p) = 0v(p)/rdv(q)¢x(p7Q)¢(Q)dS(Q)a perl,

and ®x(p,q) = €X" /4 with r = |p —q| and p # q.
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Solving transmission eigenvalue problem and estimating re fraction index

Solving the ITP

@ Use boundary integral equations (see Cossonniere & Haddar).
@ We have using Green’s representation theorem

\% :SLKa—DLKb, |n D,
w=SL, ma—DL, zb, inD,

witha=dyv|r =dyw|randb=v|r =w|r.
@ On the boundary holds

0O=w-—-vVv :SKﬁa—SKa—KKﬁb—i—KKb.
@ Additionally,

OZaVW*aVV = K:(ﬁa—K;(afTKﬁbJrTKb.
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Solving transmission eigenvalue problem and estimating re fraction index

Solving the ITP

@ Leadsto
M(K)(E):(S)OHF

SK n_SK _KK\/ﬁ—i_KK
M(K)_<K’ K ~TemtTe )

Ky/N

with

@ M(K):H™3/2() x H~Y2(I) — H3/2(I") x HY2(T") is Fredholm of
index zero and analytic on C\R™ and M(ik) is coercive for real K.

Kleefeld, Andreas Estimation of refraction index 13/33



Solving transmission eigenvalue problem and estimating re fraction index

Solving the ITP

@ Discretize M(k)X = 0.
@ Compute eigenvalues of M(k) € C™™ and look for k for which the
smallest eigenvalue is close to zero.

@ Problem: Eigenvalues cluster around zero.
@ Workaround: Solve generalized eigenvalue problem

M(K)X = AM(iK)X.

@ Has to be calculated for a lot of wave numbers, say N = 200 (at least).
@ Generalized eigenvalue has to be solved for large m.
= Method is expensive if one wants many highly accurate TE values.
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Solving transmission eigenvalue problem and estimating re fraction index

Solving the ITP

(a) Cossonniere’s method for the peanut-shaped obstacle £2. (b) Peanut £.
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Solving transmission eigenvalue problem and estimating re fraction index

Discretizing the integral equation

@ Triangulation of
lNis 7, =
{A1,.... A},

@ Right picture
shows
triangulation of
an acorn.
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Solving transmission eigenvalue problem and estimating re fraction index

Discretizing the integral equation

@ Integral equation

/FKK(P7Q)U(Q)dS(Q):f(P), Per

can be written as
Kk (P,Q)u(Q) ds(Q) =f(P).
kEl/k (P,Q)u(Q) ds(Q) =1(P)

@ Using the map my : 0 — Ay, we have

i/KK(P,mk(s,t))u(mk(s,t))|(dsmkxz?tmk)(s,t)| do =f(P).
k=170
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Solving transmission eigenvalue problem and estimating re fraction index

Discretizing the integral equation

@ With the approximation of u(my(s,t)) via constant interpolation
u(mi(s,1)) ~ u(mi(1/3,1/3))-1
and the requirement that we have equality at the nodes

P=m(1/3,1/3) =v;,i =1,...,n, leads to solving the following linear
system of equations:

n
z / Kk (Vi, Mk (s,1))[(Fsmk x dimy) (s,t)| dou(vk) =F(vi).
k=170
@ Abstractly, leads to .
M(K)d =f.

@ Entries of the matrix are 2D integrals that have to be approximated.
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Solving transmission eigenvalue problem and estimating re fraction index

Solving the ITP

o

Consider the nonlinear eigenvalue problem of the form

M(k)lv=0, veC", v#0, keQcC.

(]

Assume large scale problem k < m (k is number of eigenvalues
including multiplicities).

(4

Problem can be reduced to eigenvalue problem of dimension k
(Keldysh’s theorem).

(]

One has to use complex-valued contour integrals.
See Beyn 2011.

©
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Solving transmission eigenvalue problem and estimating re fraction index

Solving the ITP

@ ¥ CQ,compactand A\, € €, n=1,...,k.

@ Keldysh Theorem: There exist a neighborhood % C Q of ¢ and a
holomorphic function R : %7 — C™*™ such that
e 1 H
M(z) ' = z L +R(2)

n=1 n

forz € U\{A1,..., A}

@ Contour ' C Qwith TN a(M) =0, f : Q — C holomorphic function, k is
number of eigenvalues in the interior of ', then

%/rf(z)M( Ldz = Zf n)Vaw/?
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Solving transmission eigenvalue problem and estimating re fraction index

Solving the ITP

@ Choose a contour 012 in C which might contain eigenvalues.

@ For example an ellipse Y(t) = (1 +acos(t) +bsin(t)i. Then
Y (t) = —asin(t) + bcos(t)i

@ Algorithm:

1. Choose an index | < m and V € C™*! randomly.

2. Evaluate the contour integrals

1 ~ 1 ~
=—— [ Mz)'Wdz and B= —/ zM(z) 7'V dz
21 Joa 21 Joq

numerically with the trapezoidal rule. With tj = ZW”' ,j=0,...,N

(@(to) = Y(Tn)) we have
N—1

A= 3 W)W, By - z M) 0w W ().

@ N =50 is more than enough.
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Solving transmission eigenvalue problem and estimating re fraction index

Solving the ITP

3. Compute SVD Ay = VIWH,
4. Perform a rank test for ¥, find 0 < k <1 such that

01> ...2 0k > t0lank > Ok11 =0~ 0 =~ 0.

If k =1, then increase | and go to step 1. Otherwise let
Vo :V(l:m,l:k),W0:W(l:I,l:k),and Z():dieg(o'l,...,o'k).

5. Compute C = V{TByWoX,t € Ck.
6. Solve the eigenvalue problem for C.
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Solving transmission eigenvalue problem and estimating re fraction index

Estimating refraction index

*]
]
]
*]
*]
]
]

Assume that k? is an interior transmission eigenvalue.
Consider M(n)X = 0 instead of M(k)X = 0.

That is, replace K with K1 (n is the unknown).

Solve the nonlinear eigenvalue problem as before.
For simplicity replace v/n with fi.

Problem: Result might not be unique.

Remedy: Use more interior transmission eigenvalues.
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Numerical results

Numerical results — Sphere

@ We choose n=4.
@ Unit sphere S? (centered at zero) has eigenvalues (EV)

jm(K —im(2K
det( 1 A ) =0
@ Thus,

Ky 2.4 ~ 3.14159(3]

Ky 52 4 ~ 3.69245(5]

Ky s2.4 ~ 4.26168]7]

Ky g2 4 ~ 4.83186[9]
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Numerical results

Numerical results — Sphere

@ Using a circle as contour with center (1.85,0) and radius 1/2 gives

1.999986[3],  2.000000[1],  2.306060[2],
2.3060813].

@ Result is not unique. Using second eigenvalue yields

1.801241[3],  1.937814[1],  1.999893[2],
1.999910[3],  2.278325[3],  2.279122[3],
2.279518[1].

@ “Unique” element is i = 2.00 — n = 4.00.
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Numerical results

Numerical results — Sphere

@ Using the third eigenvalue gives

1.721816[3],  1.780663[1],  1.783978[5],
1.999187[3],  1.999881[3],  2.000219[1],
2.244925[2],  2.245649[1],  2.246163[3],
2.247330[3].
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Numerical results

Numerical results — Peanut

Peanut is given parametrically by

x =psin(@)cos(0),
y =psin(¢)sin(6),
z =pcos(¢),
p* =9{cos?(@)+sin’*(@)/4} /4.

EV calculated EV
K24 | 2.825465[1]
Ko a4 | 3.044714[1]
K3 »a4 | 3.515142[2]
Ks 4 | 3.574896 [2]

Dirichlet eigenvalue is 3.189591[1].

Kleefeld, Andreas Estimation of refraction index 27133



Numerical results

Numerical results — Peanut

@ Using first eigenvalue gives
1.999828[1],2.124571[1],2.201110[1].

@ Using second eigenvalue yields
1.916773[1],2.000124[1],2.176 429[1]

2.227661[1],2.254307[2],2.260086[2] .
@ N=2.00 — n=4.00.
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Numerical results

Numerical results — Cushion

Cushion is given parametrically by

x =psin(@)cos(6),

y =psin(¢)sin(6),
z =pcos(¢),
p =1—cos(2¢)/2.

EV

calculated EV

K1z .4
K¢ .4
x K3 %4
Ka¢ 4

1 1
15 15

2.941084 2]
2.962924 [2]
3.192652 [2]
3.234727 [1]

Dirichlet eigenvalue is 2.950220[1].
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Numerical results

Numerical results — Cushion

@ Using first eigenvalue gives
1.999334[2],2.006331[2],2.148752[1],2.148908[1],2.151459[1].
@ Using second eigenvalue yields
1.987971[2],1.999188[2] ,2.134612[1],2.134766[1],

2.138575[1],2.335564[2] , 2.348646[2] .

@ Using third eigenvalue gives
1.881800[2],1.937152[2],1.999386[1],1.999511[1],

2.016798[1] ,2.178440[2] ,2.233806[2] , 2.341157[2] .
@ fi=2.00— n=4.00.
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Numerical results

Numerical results — Acorn

Acorn is given parametrically by

x =psin(@)cos(0),
y =psin(@)sin(6),
z =pcos(9),
p? =9{17/4+2cos(3¢)} /25.

EV

calculated EV

K1 o7 .4
K2, o7 4

Tigast LC
Y Ka.o7 4

2.706295 [1]
2.718191[2]
2.940516 [1]
2.994077 [2]

Dirichlet eigenvalue is 2.714524][1].
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Numerical results

Numerical results — Acorn

@ Using first eigenvalue gives
1.995548[1],2.002731[2],2.098831[1],2.174251[2].
@ Using second eigenvalue yields
1.990991[1],1.996762[2] ,2.092468[1],2.165971[2].
@ Using third eigenvalue gives
1.900786[2],1.904686[1],1.987280[1],2.025899[2],

2.225917[2],2.228727[1],2.238 764[1] , 2.243261[1].
@ i =2.00 - n=4.00.
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Summary and outlook

Summary and outlook

(]

Reviewed how to calculate numerically transmission eigenvalues.

Presented an alternative method to calculate refraction index for
various surfaces.

(]

@ Results are very accurate.

(]

Further investigation is needed for the “intersection” method.

©

Can the use of more eigenvalues be better combined?
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