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Born Approximation for Helmholtz equation: u = ui + us total field

∆u + k2(1 + q)u = 0 ; that is, ∆u + k2u = −k2q u

∆us + k2us = −k2qu ; that is, us(x) = k2
∫

D
q(y)u(y)Φk (x , y) dy

Lippmann-Schwinger equation:

u(x) = ui (x) + k2
∫

D
q(y)u(y)Φk (x , y) dy , x ∈ D .

This is fixed-point equation wrt u. Born approximation:

uB(x) = ui (x)+ k2
∫

D
q(y)ui (y)Φk (x , y) dy ; i.e., ∆uB + k2uB = −k2q ui

Born series: u0 = ui , ∆uj+1 + k2uj+1 = −k2q uj , that is

uj+1(x) = ui (x) + k2
∫

D
q(y)uj (y)Φk (x , y) dy , x ∈ D .

L2−convergence if k4 ∫
D

∫
D q(y)2 Φk (x , y)2 dy dx < 1
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(Linearized) wave equation:

1
$ ν2 ∂2

t u(x , t) − ∇x ·
(1

$
∇xu(x , t)

)
= f (x , t) , (x , t) ∈ Ω× (0,T ] ,

Here: Ω ⊂ Rd bounded Lipschitz-domain,
ν = ν(x), $ = $(x) are wave speed and mass density, respectively.
Set a = 1/($ ν2) and b = 1/$, thus:

a(x) ∂2
t u(x , t) − ∇x ·

(
b(x)∇xu(x , t)

)
= f (x , t) , (x , t) ∈ Ω× (0,T ] .

Boundary conditions: u(·, t)|∂Ω = 0 ,

Initial conditions: u(·,0) = u0; ∂tu(·,0) = u1 on Ω .

Inverse problem studies mapping F : (a,b) 7→ Ψu (for example
Ψu = u|D for some D ⊂ Ω).
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Usually a, b are perturbations of known â, b̂; that is, a = â + εã and
b = b̂ + εb̃. Formally, u = û + εu′ + o(ε) where

â ∂2
t u′ −∇x ·

(
b̂∇xu′

)
= −ã ∂2

t û + ∇x ·
(
b̃∇x û

)
, (x , t) ∈ Ω× (0,T ] ,

where û is solution corresponding to â and b̂.

Goal of talk:
Justify this rigorously as Fréchet derivative in proper function spaces
Clarify why Born-series is not well defined
Show that nonlinear inverse problem is improperly posed (in the sense
of Hofmann 1997)
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Weak formulation (Green’s first formula w.r.t. time and space variable):

T∫
0

∫
Ω

[b(x)∇xu(x , t) · ∇x ψ(x , t)− a(x) ∂tu(x , t) ∂t ψ(x , t)] dx dt

=

T∫
0

∫
Ω

f (x , t)ψ(x , t) dx dt for all ψ ∈ C∞(Ω× [0,T ]) with ψ(·,T ) = 0 .

Identify u : Ω× (0,T )→ R with u : (0,T )→ H1
0 (Ω) and

•
u= ∂tu. Then:

T∫
0

(
b∇u(t),∇ψ(t)

)
L2 −

(
a
•
u (t),

•
ψ (t)

)
L2 dt =

T∫
0

(
f (t),ψ(t)

)
L2 dt

for all ψ ∈ C∞([0,T ],C∞(Ω)) with ψ(0) = ψ(T ) = 0.
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T∫
0

(
b∇u(t),∇ψ(t)

)
L2 −

(
a
•
u (t),

•
ψ (t)

)
L2 dt =

T∫
0

(
f (t),ψ(t)

)
L2 dt

for all ψ ∈ C∞([0,T ],C∞(Ω)) with ψ(0) = ψ(T ) = 0. Solution space:

X = C1([0,T ],L2(Ω)
)
∩ C

(
[0,T ],H1

0 (Ω)
)

with norm ‖u‖X :=
(

max
0≤t≤T

‖u(t)‖2
H1 + max

0≤t≤T
‖
•
u (t)‖2

L2

)1/2
.

Then also test functions ψ ∈ X with ψ(0) = ψ(T ) = 0. In addition, initial
conditions u(0) = u0 and

•
u (0) = u1.

Assumptions: a,b ∈ L∞(Ω) with γ ≤ a(x),b(x) ≤ γ−1 a.e. on Ω,
f ∈ L2((0,T )×Ω

)
= L2((0,T ),L2(Ω)

)
, u0 ∈ H1

0 (Ω), u1 ∈ L2(Ω).
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Under these assumptions there exists a unique solution. Approaches:
Dautray–Lions, Vol. 4, PhD-thesis Stolk, 2000: Galerkin-method,
simpler: expansion method; that is:

s.a. EVP: −∇ · (b∇vn) = λ2
n a vn in Ω , vn = 0 on ∂Ω , that is,

vn ∈ H1
0 (Ω) ,

∫
Ω

b∇vn · ∇ψ dx︸ ︷︷ ︸
= (vn,ψ)1,b

= λ2
n

∫
Ω

a vn ψ dx︸ ︷︷ ︸
= (vn,ψ)0,a

∀ψ ∈ H1
0 (Ω) .

Set V =
(
H1

0 (Ω), (·, ·)1,b
)
. Normalize vn ∈ V such that ‖vn‖1,b = 1.

Then: {vn : n ∈N} ONS in V and {λnvn : n ∈N} ONS in L2(Ω,a dx).
Also (because γb ≤ 1 and b ≥ γ) with Poincaré’s constant cΩ:

γ‖v‖2
1,b ≤ ‖v‖2

H1 ≤ (1 + c2
Ω)‖∇v‖2

L2 ≤
1 + c2

Ω
γ

‖v‖2
1,b ,

γ‖v‖2
0,a ≤ ‖v‖2

L2 ≤
1
γ
‖v‖2

0,a .
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Let u0 = ∑
n

αnvn in V and u1 = ∑
n

βn λnvn in L2(Ω,a dx) and

f (t)
a = ∑

n
fn(t) λnvn in L2(Ω,a dx).

Define ηn(t) =
∫ t

0
sin(λn(t − s)) fn(s) ds , t ∈ [0,T ] , n ∈N .

Then u(t) = ∑n

[
αn cos(λnt) + βn sin(λnt) + ηn(t)

]
vn

is the unique weak solution of a ∂2
t u −∇ · (b∇u) = f in Ω× (0,T ) with

u(0) = u0 in Ω, ∂tu(0) = u1 in Ω, and u = 0 on ∂Ω× (0,T ) and

‖u(t)‖2
1,b + ‖

•
u (t)‖2

0,a ≤ 2 · 3 ∑n

[
α2

n + β2
n + T‖fn‖2

L2(0,T )

]
≤ 6

[
‖u0‖2

1,b + ‖u1‖2
0,a + (T /γ)‖f‖2

L2(Ω×(0,T ))

]
.

Furthermore, a
••
u∈ L2((0,T ),H−1(Ω)

)
and

(b∇u(t),∇ψ)L2 + 〈a
••
u (t),ψ〉 = (f (t),ψ)L2 for all ψ ∈ H1

0 (Ω) , a.e.
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From this approach one gets easily regularity. Recall:

u(t) = ∑
n

[
αn cos(λnt) + βn sin(λnt) + ηn(t)

]
vn with

ηn(t) =
∫ t

0
sin(λn(t − s)) fn(s) ds

Differentiation and partial integration:
•
ηn (t) = fn(0) sin(λnt) +

∫ t

0
sin(λn(t − s))

•
fn (s) ds

Theorem
(a) If ∇ · (b∇u0) ∈ L2(Ω), u1 ∈ H1

0 (Ω), f ∈ H1((0,T ),L2(Ω)) then

u ∈ C1([0,T ],H1
0 (Ω)

)
∩C2([0,T ],L2(Ω)

)
.

(b) If 1
a
[
∇ · (b∇u0)− f (0)

]
∈ H1

0 (Ω), ∇ · (b∇u1) ∈ L2(Ω),
f ∈ H2((0,T ),L2(Ω)) then

u ∈ C2([0,T ],H1
0 (Ω)

)
∩C3([0,T ],L2(Ω)

)
.
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∫ T

0

(
b∇u(t),∇ψ(t)

)
L2 −

(
a
•
u (t),

•
ψ (t)

)
L2 dt =

∫ T

0

(
f (t),ψ(t)

)
L2 dt

for all ψ ∈ X with ψ(0) = ψ(T ) = 0.
Remark: f ∈ L2((0,T ),H−1(Ω)) not sufficient for u ∈ X !
Example: Ω = (0,π)× (0,π), a = b = 1. Then

vn(x1, x2) =
2

π|n| sin(n1x1) sin(n2x2) , n = (n1,n2) ∈N2 ,

is ONS in H1
0 (Ω) wrt (∇u,∇v)L2 and {|n|vn : n ∈N2} is ONS in L2(Ω).

Define f (x , t) = ∑
n∈N2

ρn|n|2 cos(|n|t) vn(x) with ∑
n

ρ2
n < ∞ .

Then f ∈ L2((0,T ),H−1(Ω)) and

u(t) = −1
2 ∑

n∈N2

ρn|n| t sin(|n|t) vn ∈ L2(Ω) .
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aj
••
u j (t) − ∇ ·

(
bj ∇uj (t)

)
= f (t) , j = 1,2 . Set u := u1 − u2 :

a2
••
u (t)−∇ ·

(
b2∇u(t)

)
= (a2 − a1)

••
u 1 (t)−∇ ·

(
(b2 − b1)∇u1(t)

)
= (a2 − a1)

••
u 1 (t)−∇ ·

(
b2∇w(t)

)
where w(t) ∈ H1

0 (Ω) solves ∇ ·
(
b2∇w(t)

)
= ∇ ·

(
(b2 − b1)∇u1(t)

)
.

Assumption: ∇ · (b1∇u0) ∈ L2(Ω), u1 ∈ H1
0 (Ω), f ∈ H1((0,T ),L2(Ω)).

Then u1 ∈ C1([0,T ],H1
0 (Ω)

)
∩C2([0,T ],L2(Ω)

)
. Thus:

(a2 − a1)
••
u 1∈ L2((0,T )×Ω) and also w ∈ C1([0,T ],H1

0 (Ω)
)

and
‖w(t)‖1,b2 ≤

1
γ ‖b2 − b1‖∞‖u1(t)‖1,b2 . Thus:

‖u1 − u2‖X ≤ c̃
[
‖(a2 − a1)

••
u 1 ‖L2((0,T )×Ω) + ‖w‖H1((0,T ),H1(Ω))

]
≤ c

[
‖a2 − a1‖∞ + ‖b2 − b1‖∞

]
where c depends only on T , Ω, γ, u0, u1, and f .
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Theorem: Let f ∈ H2((0,T ),L2(Ω)). Set

U = {v ∈ L∞(Ω) : γ ≤ v ≤ γ−1 a.e. on Ω} .

Furthermore, let (â, b̂) ∈ int(U)× int(U) and the initial data satisfy
1
â

[
∇ · (b̂∇u0)− f (0)

]
∈ H1

0 (Ω) and ∇ · (b̂∇u1) ∈ L2(Ω). Then the
mapping F : (a,b) 7→ u is Fréchet-differentiable at (â, b̂) and
F ′(â, b̂)(a,b) = u′ for a,b ∈ L∞(Ω) where u′ ∈ X solves

â ∂2
t u′ −∇ · (b̂∇u′) = −a ∂2

t û +∇ · (b∇û) in Ω× (0,T ] ,

and u′(0) = ∂tu′(0) = 0. Here, û = F (â, b̂).
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Let, for simplicity, u0 = u1 = 0. Recall: a =̂ â + a and b =̂ b̂ + b and
u ∈ X satisfies

(â + a) ∂2
t u −∇x ·

(
(b̂ + b)∇xu

)
= f ; that is,

â ∂2
t u −∇x ·

(
b̂∇xu

)
= f − a ∂2

t u + ∇x ·
(
b∇xu

)
.

Introduce linear solution operator L : g 7→ û where û ∈ X solves

â ∂2
t û −∇x ·

(
b̂∇x û

)
= g .

Then u solves fixed point equation

u = L
[
f − a ∂2

t u +∇x · (b∇xu)
]
= Lf − L

[
a ∂2

t u −∇x · (b∇xu)
]
.

Born series is the same as fixed point iteration; that is, u0 = Lf = û and

uk+1 = û − L
[
a ∂2

t uk −∇x · (b∇xuk )
]
, k = 0,1,2, . . .
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â ∂2
t û −∇x ·

(
b̂∇x û

)
= g .

Then u solves fixed point equation

u = L
[
f − a ∂2

t u +∇x · (b∇xu)
]
= Lf − L

[
a ∂2

t u −∇x · (b∇xu)
]
.

Born series is the same as fixed point iteration; that is, u0 = Lf = û and

uk+1 = û − L
[
a ∂2

t uk −∇x · (b∇xuk )
]
, k = 0,1,2, . . .
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Recall:

uk+1 = û − L
[
a ∂2

t uk −∇x · (b∇xuk )
]
, k = 0,1,2, . . .

First step k = 0:

u1 = û − L
[
a ∂2

t u0 −∇x · (b∇xu0)
]
= û + u′ ;

that is, first Born approximation coincides with Fréchet-linearization.

Note that L is bounded from L2((0,T )×Ω
)

into
X = C1([0,T ],L2(Ω)

)
∩ C

(
[0,T ],H1

0 (Ω)
)

but

a ∂2
t uk −∇x ·

(
b∇xuk

)
/∈ L2((0,T )×Ω

)
for uk ∈ X !

Therefore, Born series is not even well-defined!
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Definition (Hofmann 1997) An equation Fy = u is called locally ill-posed
in y∗ ∈ D(F ) with Fy∗ = u if in any neighborhood of y∗ there is a
sequence yj ∈ D(F ) with F (yj )→ F (y∗) but yj 9 y∗.
In our case F : Y ∗ → Z with Y ∗ = L∞(Ω)× L∞(Ω); that is,
Y = L1(Ω)× L1(Ω), and Z = L2((0, t)×Ω).
Proposition Let F : Y ∗ → Z be compact and weak-∗-to-weak continuous.
Further, let y∗ ∈ D(F ) satisfy Fy∗ = u and assume the existence of a
sequence ej ∈ Y ∗ with ‖ej‖Y ∗ = 1 and ej → 0 weakly-∗ and
y∗ + rej ∈ D(F ) for every r ∈ [0,1] and j ∈N. Then the equation
Fy = u is locally ill-posed.
Assumptions are satisfied in this case! Compactness of F by Theorem of
Arzela-Ascoli:

‖u(t2)−u(t1)‖L2 = sup
‖ψ‖L2=1

(
u(t2)−u(t1),ψ

)
L2 = sup

‖ψ‖L2=1

∫ t2

t1

( •
u (s),ψ

)
L2 ds

≤ |t2 − t1| ‖
•
u ‖C([0,T ],L2(Ω))
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Weak-∗-to-weak continuity by variational formulation of differential
equation.
Construction of ej ∈ L∞(Ω) with ‖ej‖L∞ = 1 and ej → 0 weakly-∗ and
y∗ + rej ∈ D(F ):
Let z ∈ Ω and let Bj = B(z,1/j) be ball centered at z with radius 1/j .
Set ej = χBj

characteristic function of Bj . Then ‖ej‖L∞ = 1 and ej → 0
weakly-∗.

Theorem Let the measurement operator Ψ : L2(Ω)→ L2(D) be linear
and bounded. Then the problem to determine the parameters
a,b ∈ L∞(Ω) from Ψu is ill-posed.
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On the Linearization of Operators Related to the Full Waveform
Inversion in Seismology. MMAS 2014
Seismic Tomography is Locally Ill-Posed. IP 2014
Bao, Symes 1996, Bao 1998, Stolk (thesis) 2000, Blasek, Stolk,
Symes 2013

Extensions
Maxwell’s equations analogously, data-to-solution operator
F : (ε, µ) 7→ (E ,H) not compact because H(curl,Ω) not compactly
imbedded in L2(Ω).
Elasticity problem recently by John Schlasche (student of Armin).

Thank you for your attention and, in particular,

thank you, Armin, for this phantastic workshop!
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