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Problem Setting

Let Q=R x [0,H], H>0,X_ =R x {0} and X_ =R x {H}. Let D be
a star-shaped penetrable obstacle with Lipschitz continuous boundary 9D

OD = {(z1, zo) + r(t)(cos t, sint)| 0 < t < 27}.
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Figure: Explicative figure.
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Introduction

Green's Function

Let k, and 0, be given by

) n:07

cos (F7x2), n=1.

The is defined by (see [Bourgeois and Lunéville 08])
eiBnlx1—y1]
G(x,y) = Z 2.79n(><2)9n()/2),
neN I'Bn

where 8, = \/k® — k?, Re 8, > 0, Im 3, > 0.
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Introduction

Dirichlet-to-Neumann map

Let F_ ('4) be given by

L ={(£s,x2), x2 € [0, H]}, where s > rFa2x){\21 + r(t)cost|}.

Qo = [—s,s] x [0, H] is a rectangle containing D, n is the piecewise
constant refractive index such that

in Q\ D
n:{nl’ in Q\ D,

ny, in D,

where n; =1 and Re n, > 0, Im ny > 0. T4 is the DtN map

Tev="> iBn(v,0n)r0n.

neN
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The Scattering Problem

Let u be the total field and u® (u° = u — u') be the scattered field.

AU+ Knu® = k> (1 — )’ in Qo, (1.1)
ou®
Ee =0, on X4, (1.2)
2
S
gu =—T_u°, onfl_, (1.3)
X1
gu =T,u°, onl. (1.4)
X1

The variational form can be written as

_ vus.%+k2/

Q0 Q

nu55+/ T_us$ds+/ T+uS$ds:k2/g$
0 r_ r. D

where g = (1 — m)u’ i iganicen
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Scattering Operator

Let C = (co,c1,...,con) € R?VHL and

2N
r(t) = Z Cn®n,
n=0

where ¢, the trigonometric basis.
For any fixed point (z1,z2) € Qo, define the operator

f: C—r(t)(cost, sint).

Then r € Xy := {f(C), t € [0,27)}. For any given incident field v’
define the operator S
S: Xy — HYQ),
g = U’lq,.
Michiganiech
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Fréchet differentiability

Lemma

The scattering operator S is Fréchet differentiable, and its Fréchet
derivative, denoted by FS, is defined as

FS(g)h = v|q,, whereg,he Xy.

v satisfies the equations (1.1)-(1.4) and the following boundary conditions
on dD, i.e.,

@
ov

_ov
- Ov

where u is the total field of the direct problem.

vl —v]y =0,

L= k2(ny — u(h-v), (1.5)

IMichiganjlech]
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Introduction

Fréchet derivatives of N;

For j = 1,2,3, denoting by P; the trace operators that from H(Q) to
HY/2(T;). We can define the near-field operators
,VJ': R2N+1 SN H1/2(rJ)

C:(Co,Cl,...,CzN) — PjS[f(CO,Cl,...,CzN)].

N; is an operator defined on the finite dimensional space, and the Fréchet
derivatives of N; satisfy

0 0
ETCINJ(C) = P;FS[f(C)] %f(c)

= P;FS[f(C)][¢i(cost, sint)].

IMichiganjlech]

Reconstruction of an inhomogeneity in planar April 9, 2015 11 / 84



The Inverse Problems

e The Inverse Problems
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The Inverse Problems

The Inverse Problem

Denote the measured data by U; := u®|r;. We define

Q/(C) = IN(C) — UillZaqr, -

and
F1(C; v) = Q1(C) + Q1(C) + | C[|3,
F>(C; v) = Qi(C) +7//C||%,
F3(C; v) = Q(C) +7|/C||%,
Fa(C; ) = Q3(C) + 7//C||%,

where «y is the regularization parameter.

Optimization Problem (OP): Find C° € R?N*1, such that

0 __ ; .
© = i O

Reconstruction of an inhomogeneity in planar
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The Inverse Problems

Lemma
The gradient of Q; is defined by

0

5o, (€)= 2Re(MIN/(C) — Uj] - (cost,sint), 1),

where M; = (P;DS[f(C)])* is the adjoint operator of P;FS[f(C)].

Lemma

Suppose w is in the space HY/?(I'1), then (T+)* satisfies

(T:t)*W = (T:t)W.
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The Inverse Problems

Lemma

Let Q1 = [—s0, 50| X [0, H]. The operator My is defined by
Ml(¢) = —k2(n2 — 1)UW|aDl/,

where w satisfies the boundary value problem in {1

Aw+ Knw =0, inQq, (2.6)

ow

— = > 2.7

9% 0, on X, (27)

Tiw — ow _ 0, onl (2.8)

+ 8X]_ — Y, 2 .

T_W-i-g;: =¢, onl. (2.9)/

MichiganiTech
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Numerical Algorithm

© Numerical Algorithm
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Numerical Algorithm

Finite Element Method

The finite element method of the direct problem can be written in the
matrix form

(A+B)U=F.

Y

=3

s

y 11 |
0 Xo Xl

Michiganiiech
Figure: Finite Element Mesh for Reconstruction.
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Numerical Algorithm

Initial Guess

LSM: consider the integral equation
/ u®(z, 20)g2(20, z:)dzo = G(z,z.), zon [y, (3.10)
2

For any € > 0, find the approximate solution h§(-, z.) satisfy

’ / u®(z,z0)h5(20, z)dzo — G(z, z,) <e
r2 L2(F2)
We define the indicator function
Es(z) = |5( 2) 32,
[Xu et.al. 2000, Bourgeois and Lunéville 2008]
[Michiganjiech]

Reconstruction of an inhomogeneity in planar April 9, 2015 18 / 84



Quasi-Newton Method

Let kj,j = 1,2,..., K be different wave numbers, z,/ =1,2,...,7Z be
different locations, corresponding to the four cases. The incident fields are
given by '

u;+(j—1)K = ij(',Z/).

L. Initialization: for the wave number ko, find a center (29, 29) and

radius rg using the linear sampling method. Set the initial guess
Co = (r0,0,...,0). Choose a parameter 0 <7 <1 .

2. lteration: for jo =1: KZ. Set | = 1. Start iteration with uJ’-'O.
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Numerical Algorithm

Quasi-Newton Method (continued)

(2.a) If I =1, obtain the numerical approximation of VF;(Co; 7). If | > 2,
VF;(Cj—1;7) is obtained in the / — 1-th step.

(2.b) Set a search direction {; = —H;_1VF;(C/—1;7), where VF;(C/—1;7)
is obtained in the /-th step, H,_1 = | is obtained in the / — 1-th step,
H_1=1ifl=1.

(2.c) Foraf =2°,s € {—5,—4,...,5}, define the function h} = oj¢;. Find
the largest number sy € {—5,—4,...,5} and define hy = h® such
that the Wolfe's condition is satisfied:

Fi(Ci—1+ hi;y) < Fi(Ci—1;v) +nhy - VF(Ci—1; 7).
(2.d) The new coefficients in the /-th step is given by C; = Cj_1 + h;.
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Quasi-Newton Method (continued)

(2.e) Compute VF;(Cj;). Set ¢ = VF;j(C;v) — VFj(fc—1;7) and use the
BFGS method to update the approximate inverse Hessian matrix H;.

(2.f) Check that if the following conditions are satisfied:

o the maximum number of iterations (20 in our algorithm) is reached,;
o |Fi(C1;7) = F(Civ)| < 107%;
o [[hll 2,y < 1077

@ Stop if any of the conditions is satisfied;
@ Go to (2.a) if none of the four conditions is satisfied.

Set (o = ().
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Examples

Examples
(%) p
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Examples

Measurements

@ The point sources are located on both I'; and I'», and data are measured on
F1 and I'2.

@ The point sources are located on 1, and data are also measured on ;.
© The point sources are located on I';, and data are also measured on I';.

@ The point sources are located on 4, and data are measured on [3.

r
3 by

by
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Settings

N, =N, =200,5s=04, H=1,p=09, M, =M, =40, N=8, ¢ =107,

The regularization parameter is chosen as v = 10~*. When using the linear
sampling method to obtain the initial guess, we fix kg = 1, and place 40 point
sources uniformly located on each edge. During the iteration scheme, we use
seven wave numbers kK =1,7,13,19,25, 31,37, and use 2 point sources located
on 1 or [, and 4 point sources on [4:

(0.25,—-0.4), (0.75,—0.4) on Iy,
(0.25,0.4), (0.75,0.4) on Iy,
(—0.3,0.9), (—0.1,0.9), (0.1,0.9), (0.3,0.9) on 4.

The data are measured on 1,5 and 4.
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Example 1: Case 1

Let n, = 0.5. The obstacle is an ellipse defined by

40
3x2 4+ 100(y — 0.5)> = 1.

0.6 0.6
0.55 0.55
0.5 @ 0.5
0.45 0.45
0.4 0.4
-0.1 0 0.1 -0.1 0 0.1
Figure: Case (1) with 5% noise.
IMichiganjlech]
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Example 1: Case 2

Let n, = 0.5. The obstacle is an ellipse defined by

40
—x%4+100(y — 0.5)> = 1.

9
0.6 0.6
0.55 0.55
0.5 0.5
0.45 0.45
0.4 0.4
-0.1 0 0.1 -0.1 0 0.1

Figure: Case (2) with 5% noise.
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Example 1: Case 3

Let n, = 0.5. The obstacle is an ellipse defined by

4
30x2 +100(y — 0.5)? = 1.

0.6 0.6
0.55 0.55
05 05
0.45 0.45
0.4 0.4
-0.1 0 0.1 -0.1 0 0.1

Figure: Case (3) with 5% noise.
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Example 1: Case 4

Let n, = 0.5. The obstacle is an ellipse defined by

40
—x*+100(y — 0.5)% = 1.

9
0.6 0.6
0.55 0.55
0.5 @ 0.5
0.45 0.45
0.4 0.4
-0.1 0 0.1 -0.1 0 0.1

Figure: Case (4) with 5% noise.
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Example 2: Case 1

Let n, = 0.5. The obstacle is a rectangle defined by vertices (—0.05, 0.35),
(0.15,0.35), (0.15,0.55) and (—0.05,0.55).

0.55 0.55
0.5 0.5
0.45 0.45
0.4 0.4
0.35 0.35
-0.05 0 0.05 0.1 0.15 -0.05 0 0.05 0.1 0.15

Figure: Case (1) with 5% noise.
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Example 2: Case 2

Let n, = 0.5. The obstacle is a rectangle defined by vertices (—0.05, 0.35),
(0.15,0.35), (0.15,0.55) and (—0.05,0.55).

0.55 0.55
0.5 0.5
0.45 0.45
0.4 0.4
0.35 0.35
-0.05 0 0.05 0.1 0.15 -0.05 0 0.05 0.1 0.15

Figure: Case (2) with 5% noise.
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Example 2: Case 3

Let np, = 0.5. The obstacle is a rectangle defined by vertices (—0.05, 0.35),
(0.15,0.35), (0.15,0.55) and (—0.05,0.55).

0.55 0.55
0.5 0.5
0.45 0.45
0.4 0.4
0.35 0.35
-0.05 0 0.05 0.1 0.15 -0.05 0 0.05 0.1 0.15

Figure: Case (3) with 5% noise.
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Example 2: Case 4

Let np = 0.5. The obstacle is a rectangle defined by vertices (—0.05, 0.35),
(0.15,0.35), (0.15,0.55) and (—0.05, 0.55).

0.55 0.55
0.5 0.5
0.45 @ 0.45
0.4 0.4
0.35 0.35
-0.05 0 0.5 0.1 0.5 -0.05 0 0.5 0.1 0.5

Figure: Case (4) with 5% noise.

Reconstruction of an inhomogeneity in planar April 9, 2015 32 /84



Example 3: Case 1

Let np = 2. The obstacle is a triangle defined by vertices (—0.1,0.35),
(0.1,0.35), and (0, 0.55).

0.55 0.55
0.5 0.5
0.45 0.45
0.4 @ 0.4
0.35 0.35
-0.1 -0.056 0 0.05 0.1 -0.1-0.05 0 0.05 0.1

Figure: Case (1) with 5% noise.
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Example 3: Case 2

Let np = 2. The obstacle is a triangle defined by vertices (—0.1,0.35),
(0.1,0.35), and (0, 0.55).

0.55 0.55
0.5 0.5
0.45 0.45
0.4 0.4
0.35 0.35
-0.1 -0.056 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1

Figure: Case (2) with 5% noise.
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Example 3: Case 3

Let np = 2. The obstacle is a triangle defined by vertices (—0.1,0.35),
(0.1,0.35), and (0,0.55).

0.55 0.55
0.5 0.5
0.45 0.45
0.4 0.4
0.35 0.35
-0.1 -0.056 0 0.05 0.1 -0.1-0.05 0 0.05 0.1

Figure: Case (3) with 5% noise.
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Example 3: Case 4

Let np = 2. The obstacle is a triangle defined by vertices (—0.1,0.35),
(0.1,0.35), and (0,0.55).

0.55 0.55
0.5 0.5
0.45 0.45
0.4 0.4
0.35 0.35
-0.1 -0.056 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1

Figure: Case (4) with 5% noise.
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Example 4: Case 1

Let np = 2. The obstacle is a kite and its boundary is given by
(0.075cos t + 0.04875 cos 2t — 0.05, 0.1sin t + 0.5).

0.6 0.6
0.55 0.55
0.5 0.5
0.45 0.45
0.4 0.4
-0.1 =005 0 0.05 0.1 -0.1 -005 0 005 O0.1
Figure: Case (1) with 5% noise. Michiganitech
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Example 4: Case 2

Let np = 2. The obstacle is a kite and its boundary is given by
(0.075 cos t + 0.04875 cos 2t — 0.05, 0.1sin t + 0.5).

0.6 0.6
0.55 0.55
0.5 0.5
0.45 0.45
0.4 0.4
-0.1 -0.05 0 0.05 01 -0.1 -0.05 0 0.05 01

Figure: Case (2) with 5% noise.
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Example 4: Case 3

Let np = 2. The obstacle is a kite and its boundary is given by

(0.075 cos t + 0.04875 cos 2t — 0.05, 0.1sin t + 0.5).

0.6 0.6
0.55 0.55
0.5 0.5
0.45 0.45
0.4 0.4
-0.1 -0.05 0 0.05 01 -0.1 -0.05 0 0.05 0.1

Figure: Case (3) with 5% noise.
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Example 4: Case 4

Let np = 2. The obstacle is a kite and its boundary is given by

(0.075 cos t + 0.04875 cos 2t — 0.05, 0.1sin t + 0.5).

0.6 0.6
0.55 0.55
0.5 0.5
0.45 0.45
0.4 0.4
-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 01

Figure: Case (4) with 5% noise.
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Examples

Thank you!
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Examples

1. Introduction

N
L
AN

r

Figure: The physical configuration of the scattering problem.

Given the incident wave u’, we have the scattered field in Q. and the

transmitted field v in Q_.
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1. Introduction

Let X be the set of piecewise continuous 2m-periodic functions in R. The
grating profile I' is defined by

M= {(X, f(x)): xe R}
For a fixed a € R, a-quasi-periodic function is defined by
g(x + 2m) = exp(i2ma)g(x)

If u' is a-quasi-periodic, then uv® and u are all a-quasi-periodic.
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Examples

1. Introduction

Notations & spaces:

Q= {(xy):y>f(x)}

Q. = {loy):y <f(x)}

Mv = {(¢he): by > maxf(t)}

- = {(x,h2): h-< rtneilg f(t)}

D = [0,27] x [h_, h4]

Hper(D) = {u(,y) is 2m-periodic: ulp € H™(D)}
H'(D) = {u(:,y) is a-quasi-periodic: u|p € H™(D)}
Lper(D) = Hper(D), L3(D) = Ho(D)

Hm (M), HT(T1), 2o (T+), L3(T+) are defined similarly.
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Examples

1. Introduction

n(x, y) is the piecewise constant refractive index defined in R2.

m (X,}/) € Q+
n  (x,y) e Q-

n(x,y) =
Let n; = 1 in Q4, and ny satisfies
Rno >0, S >0 inQ_

Problem: The measured data are defined by:

umeas — US|

My

How to reconstruct the grating profile I' (or f) from the measurement of
the near-field scattered field u™#7?
Michiganiiect]
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Previous Works

@ The factorization method in inverse scattering from periodic
structures
Arens and Kirsch '03

Finite element method, for optimal design problem of binary gratings.
J. Elschner & G. Schmidt '98

Two-step optimization method based on Tikhonov regulation.
G. Bruckner & J. Elschner '05

Factorization method.
A. Lechleiter '10

@ Linear sampling method.
J. Yang, B. Zhang & R. Zhang '13
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2. Direct Scattering Problem

Incident angle: @, define a = ksin6, B = kcos#@. Incident wave:
u'(x,y) = exp(iax — ify)
Then the total field u (u = v’ + u® in Q) is a-quasi-periodic:
u(x +2m,y) = exp(i2ma)u(x, y)
and satisfies the Helmholtz equation:

Au+ kK?nu=0
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2. Direct Scattering Problem

The scattered field v® in 4 and transmitted field v in Q_ satisfies the
Rayleigh expansion radiation conditions:

s _ + H - 2(1)
u(x,y) = Z uy exp(ianx +ifr’y), y > rpeaﬁ({f(t)}

nez
. _ . a2 .
sci5) = 32 vy erplian—i87).» < ()

where a, = a + n and ,6’,(,j) is the square root of (k?n; — a2) such that
RAY >0, 38 >0, forj=1,2.
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2. Direct Scattering Problem

For ¢%(x,he) = ,cs dEef@nx defined on Iy, define Dirichlet to
Neumann maps T+

THe") = S_igéfe ™, onry,

nez

T=(67) = D B4 e, onT_.

nez

Then v® and v satisfy the following boundary conditions

a S
i Ttu®, onTly,
dy
0
S —T u, onl_.
dy
Rayleigh expansions <= boundary conditions above. [Michiganjlech]
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S . 0
2. Direct Scattering Problem

Choose a proper smooth cutoff function X'(x,y) and define:

vx ):{mwmy+mgdya&m in Q,,
7 U(va) in Q_.

such that for max;er{f(t)} < h1 < h» < hy,

u(x,y), y <,
Vxry) = {00
u (X>}/)7 y > h2
v satisfies the equation
Av+k?v =g, where g =2Vu' - VX 4+ u'AX, in R
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2. Direct Scattering Problem

Variational formulation

—/DVV-V¢+k2/Dnvqb+/r+ T+v¢+/r T_vgb:/Dg(l)
for all ¢ € HL(D).

Theorem

For any wave number k in RT except for a discrete set, the variational
problem is uniquely solvable in H:(D), satisfies

VIl oy < Cligll2(py

Define Scattering operator S:
S: X — HY(ry)
Foo (= o) st
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Examples

3. Inverse Scattering Problem

From the definition of 4™ and S,

Inverse Problem (IP): Find f* € X such that
S(F*) = umeas,
or equivalently,
IS(F) = u™ 2, (ry =0

P

Reconstruction of an inhomogeneity in planar April 9, 2015 52 / 84



Examples

3. Inverse Scattering Problem

Define a functional with a regularization term F(f;~)
F(f;y) = S(F*) — “meas”iﬁer(u) + 11221020

where v is the regularization parameter.

Optimization Problem (OP): Find f* € X such that

F(f*;v) = min F(f:v)
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Examples

3. Inverse Scattering Problem

M is a positive integer, define XJ-M =2nj/M,j=0,1,...,M, and

M 1, if x € [x/\i’l,le),
o =

0, otherwise.

where [ =1,2,..., M. Define

XM = span {oM, @3, ..., o0

Seek the numerical solution in the space XM i.e.,

then F(f;~) = F(ﬁ,lgz,---an;”Y)-

IMichiganjlech]
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Examples

3. Inverse Scattering Problem

Lemma

Let h= Zjhil fqubj’-V’ be a function in XM. The scattering operator S(f) is
Fréchet differentiable. Then

P(f)h:= DS(f)h = w|r
where w € HX(D) satisfies the following variational problem
—/ Vw- Vo + k2/ nwgb+/ Ttwo+ T wo
D D .

27
== m) [ hD)l

for all ¢ € HX(D).

ool
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Examples

3. Inverse Scattering Problem

Lemma
Denote M(f) = (P(f))*. If € L2(T'.), then

M(f)¢ = k*(n2 — n1)(Ve))Ir
where 1 € HL(D) satisfies

AY+k2mp = 0,

ey 00 _
-5, = 6
T
le—i—@—o.
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Examples

3. Inverse Scattering Problem

Theorem

The derivatives of F(...;~) are given by

oF

O 262 (m— m) (vl o) L

fm
L2[O,27T]:| * M

m

where 1) € HL(D) is the solution of the boundary value problem, in which
¢ = S(f) — ume.

IMichiganjlech]
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Examples

3. Inverse Scattering Problem

Proof.
Recall the definition

A A A 2
F(h By i) = || S(F) = umess
(h, M:Y) (f)—u ()

A apo 2

The second term is trivial, then the first term

iHS(f) _ ymeas||® — 2R <5(f) _ ymeas 85(f)>
of, L2(T+) " O,

= 2R (S(F) - u™e=, P(F)oM )
= 2R (M(F)(S(F) — u™) 6} )

D/
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Examples

3. Inverse Scattering Problem

If ¢(x) = ez cnexp(ianx), then the operator

Q=) zlcg exp [ia,,x —ig )y —h)], (ey)eD
neZ n

defines an incident field propagating downward.

Lemma

The boundary value problem is equivalent to the following scattering
problem

AYp+k?mp=0 inD,

=11+ Qo inD,

Ty = i% on 4.
dy

where 11 is the scattered field.
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4. Numerical Method

Use the finite element method to solve the direct problem by PML
technique. (G. Bao, Z. Chen & H. Wu '03)
Define DPML = [0, 27] x [h— — &, hy + 6].

O=xo<x1 <+ <xn, =27
h_—5:yo<y1<~-<y/vy:h+—|—5.

Let N, be divisible by M. We seek f € XM and aligns with the mesh grid

f:ZﬁﬁbjM, ﬁ-:yjﬂj,e{O,L...,Ny}
j=1
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4. Numerical Method

Ehiganilech|
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 Eamples
4. Numerical Method

Define a PML function s(y)

1+0Q§%§3 y>hy+e
s(y) = 1+a%, y < h_ —
1, otherwise,

where o is a complex number, 0 < € < 4.

Define a differential operator:

] (s(y);’x> +2 <(1y)§y) T K2n(x, y)s(y)
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Examples

4. Numerical Method

Then we will solve the following boundary value problem

Lo=g=L(uX), (xy)eD™M,
0=0, y=hy+6ory=h_—4,

i(2m, y) = exp(2ima)d(0,y), h- <y < hy,

Corresponding variational formulation

oii 8@ 1 9 a@ 5 —
/DPML |:S(y)axax + S()/)@y@y} —k /;PML S(Y)”(X,Y)Uw

Z—/DPMng

for all ¢ € HX(DPML). -
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4. Numerical Method

{4p1,%2,...,9n} is the finite element basis in DPML| the numerical
solution & can be represented by:

N
i=> iy
j=1
A = (Aj): the stiffness matrix.

. O 0%y 1 0904,
Ajr = /DPML [s(y) Ox Ox + s(y) 0y Oy
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4. Numerical Method

B = (Bji): the mass matrix.

Bj = /D S0 )iy

From the definition of €4,

Bj=m Z / Y)W, + Z / Y)W,

TeQ, TeQ
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 Eamples
4. Numerical Method

Suppose f is modified by f + h.

M= {(x,f(x) + h(x)) : x € R}
QY ={(x,y) 1 y > f(x) + h(x)}
Q" = {(x,y) 1 y < f(x) + h(x)}

Refractive index: n" = ny in Q n" = n,in Q".

Stiffness matrix: A" = A.
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4. Numerical Method

Mass matrix: B" = (Bj’]).
B = [ sy

= m Z /Ts(y)ijl-i-nz Z /TS(Y)ijl

Teqh TeQh
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4. Numerical Method

Define KT = Q, \ Q7 and K~ =Q; \ Q".
Calculate the difference between Bj and Bj’,’

Bjj — Bji = (m — n2) Z/ )i, — Z/ Y )i,

TeK— TeK+

Cost of construct B: O(N, N, ).
Cost of modify B: O(Ny)
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4. Numerical Method

Initial Guess
Define the interface I := {(x,y;)}, j=0,1,..., N,.
The scattered field uf corresponding to 7 is

(()1) (2) { }
ui(x, hy) = —5——r5y exp |iax + /B ( —2yj)
+ 6(2) J
Choose the optimal jo such that

meas meas __

[ w7 (%, h+)”L2[o,2w]

ufo(Xa h+)HL2[o,27r] :j:oT,i.?,Ny Hu

The initial data is given by

E :y,lo¢m ={(x,o(x))}
Michiganiech
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4. Numerical Method

Quasi-Newton Method

@ Use one fixed incident angle € and multiple wave numbers
ki, j=1,...,J,

uj’-' = exp(ia/x — ifly), &/ = kjsin6, Fk;cosf

@ For each incident wave, use the quasi-Newton method to modify the
function f, and the new function is used as the initial data for the
quasi-Newton procedure with the next incident wave.
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4. Numerical Method

@ Initialization: give an initial guess fj.

@ lteration:
for j=1:J
Denote by f;_1 the solution obtained in the j — 1-th step.
In the j-th step, use the BFGS method to obtain the modified
function f;.
Remark: the modified functions f; should in XM and aligns with the
mesh grid.
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Examples

5. Numerical Examples

Parameters:
k=1,2,...,8
M = 10,20

N, = N, =200
hy =0.5
y=5x10"3

Define the errors between the exact function f and the numerical solution
fl\/l

Nx

erry = g

J=1

Fo) — V()|

Reconstruction of an inhomogeneity in planar April 9, 2015 72/ 84



Examples

5. Numerical Examples

Example 1

The refractive index in Q_ is np = 2.
Use incident waves with one fixed incident angle 6 = 3.

The profile ' is defined by f:
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Examples

5. Numerical Examples

oxact prafie
025 - = = numerical soluion|

Figure: First row: M = 10; second row: M = 20.
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Examples

5. Numerical Examples

Figure: First row: M = 10; second row: M = 20. First column: 5% noise; second

column: 10% noise.
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Examples

5. Numerical Examples

Example 2

The refractive index in Q_ is n, = 0.8 +0.1/.
Use incident waves with one fixed incident angle 6 = 7.

The profile ' is defined by f:

1 1
f(x)=-0.1+ gsinx - §c052x.

Reconstruction of an inhomogeneity in planar April 9, 2015 76 / 84



Examples

5. Numerical Examples

oxact prafie
0z = -~ e soton
o T 2 3 0 B 5 o s

Figure: First row: M = 10; second row: M = 20.
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Examples

5. Numerical Examples

Figure: First row: M = 10; second row: M = 20. First column: 5% noise; second

column: 10% noise.
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Examples

5. Numerical Examples

Example 3

The refractive index in Q_ is np =2+ 0.1/.
Use incident waves with one fixed incident angle § = —¢.
The profile T is defined by f:

0.25, 0.5 < x < 1.5,
f(x) = .
0, otherwise.

Note that I' dose not align with the mesh grid. f ¢ X0, f € X?0,

IMichiganjlech]
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Examples

5. Numerical Examples

oxact prafie
035 - = = numerical soluion|

Figure: First row: M = 10; second row: M = 20.
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Examples

5. Numerical Examples

Figure: First row: M = 10; second row: M = 20. First column: 5% noise; second

column: 10% noise.
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Examples

5. Numerical Examples

Example 4

The refractive index in Q_ is np =2+ 0.1/.
Use incident waves with one fixed incident angle 0 = 3.
The profile T is defined by f:

0.28, 0.5m < x <,
f(x) = .
0, otherwise.

Note that I aligns with the mesh grid. f ¢ X0 f ¢ X2

IMichiganjlech]
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Examples

5. Numerical Examples

oxact prafie
035 - = = numerical soluion|

Figure: First row: M = 10; second row: M = 20.
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Examples

5. Numerical Examples

Figure: First row: M = 10; second
column: 10% noise.

Reconstruction of an inhomogeneity in planar

row: M

= 20. First column: 5% noise; second
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