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Outline

This talk will be about time domain and multifrequency Linear
Sampling Methods (LSM):

Scattering from a sound soft object.1

Time domain for penetrable media.2

Multifrequency and time domain numerical results3

See also [HLM14]4

1
Chen Q, Haddar H, Lechtleiter A, Monk P. A sampling method for inverse scattering in the time domain.

Inverse Problems. 2010;26; 085001.
2

Guo Y, Monk P, Colton D. Toward a time domain approach to the linear sampling method. Inverse Problems.
2013;29; 095016.

3
Guo Y, Monk P, Colton D, (2015) In press

4
Haddar H, Lechleiter A, Marmorat S. An improved time domain linear sampling method for Robin and

Neumann obstacles. Applicable Analysis. 2014;93:369–390.
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Time Domain Acoustic Wave Equation

Let D be a bounded domain (scatterer) with connected
complement, boundary ∂D and unit outward normal ν.

Suppose ui is a given incident wave (solution of the wave
equation vanishing near ∂D for t < 0). The scattered pressure
field us = us(x , t) and total field u satisfy

1
c2 ü −∆u = 0 in Ω = R3 \ D for t > 0,

u = ui + us in Ω = R3 \ D for t > 0,
u = 0 on ∂D for t > 0

us = u̇s = 0 at t = 0 in Ω.

Here ü = ∂2u/∂t2 and c is the constant wave speed.
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The Dirichlet inverse problem

We probe the unknown scatterer D with fields due to point
sources at points x0 on a surface Γi . “Measurements" are the
scattered field us a surface Γm. In particular we assume that
us = us(x , t ; x0) satisfies

1
c2 üs −∆u = 0 in Ω× R

us = 0 for t ≤ 0
us(x , t) = −Φ(x − x0, t) for x ∈ ∂D and t ∈ R.

From this data, we want to determine the shape of D.

D

Γ

mΓ

i

Φ(x , t) =
δ(t − ‖x‖/c)

4π‖x‖
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The near field operator

The method we shall use is the direct analogue of the Linear
Sampling Method of Colton and Kirsch in the time domain5.

The time domain near field operator N is given by

(Ng)(x , t) =

∫
R

∫
Γi

us(x , t − t0; x0)g(x0, t0) dx0 dt0.

5
D. Colton and A. Kirsch, Inverse Problems, 12 (1996), pp. 383-93.
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Auxiliary acoustic source

Given a profile χ ∈ C∞0 (R), a point z ∈ R3 and a τ ∈ R, we will
need the auxiliary field

Φz,τ (x , t) =

∫
R

Φ(x − z, t − τ − t0)χ(t0)dt0 =
χ(t − τ − ‖x − z‖)

4π‖x − z‖
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Basic idea (hope) of linear sampling

1 Choose points z and parameter τ and solve a regularized
version of

Ngz,τ = Φz,τ

2 If z is inside D then a suitable norm of gz,τ should be small
and should blow up as z approaches the boundary of D.
This norm of gz,τ gives an indicator function for the domain
D.

3 There are some technical points that need to be
considered (e.g. Ngz,τ = φz,τ may not have a solution).
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Implementation of the method

1 We assume Γm = Γi and we have u(xi ,n∆t ; xj ,0) at
discrete points xi , xj ∈ Γm, 1 ≤ i , j ≤ N and n ≤ NT such
that u ≈ 0 at n = Nt .

2 The discrete near field operator is

Nd (i ,n) =
∑

0≤m≤n

∑
j

u(xi , (n −m)∆t ; xj ,0)φ(j ,n)

3 We solve Ndgz,τ = Φz,τ by truncated SVD
4 We plot 1/‖gz,τ‖L2(R;L2(Γi ))

5 Numerical results are in 2D.

Later we use the method of [HLM] to implement SVD
calculations using eigs.
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Numerical example in R2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 

 

1

2

3

4

5

6

7

8

9

10

11
x 10

−3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 

 

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 

 

1

2

3

4

5

6

7

x 10
−3

Time domain inverse problem: different arrangements of
sources and measurements.



Dirichlet problem Analysis of the TD-LSM Penetrable Media 3D numerics

Numerical example in R2 (continued)

Reconstruction Singular values
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Analysis of the TD-LSM

We establish properties of the solution of the wave equation
using the Fourier-Laplace transform approach of Bamberger
and Ha-Duong6. Let

û(x , s) =

∫ ∞
0

u(x , t)e−st dt

where s = σ − iω for σ > σ0 > 0, and ω ∈ R. Then û satisfies

s2

c2 û −∆û = 0 in R3 \ ∂D

û = ĝ on ∂D, and û bounded at infinity.

The fundamental solution for this problem Φ̂ is bounded at
infinity and satisfies

s2

c2 Φ̂−∆Φ̂ = δy in R3

6
Bamberger, A., Ha-Duong, T., 1986, Math. Methods Appl. Sci. 8 405-35
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Indirect representation

Let ξ̂ = [[∂û/∂ν]] then

û(x) =

∫
∂D

Φ̂(x , y)ξ̂(y) dA(y) := ŜLξ̂.

where ŜL is the single layer potential operator. Letting x → ∂D
gives, for x ∈ ∂D,

ĝ(x) =

∫
∂D

Φ̂(x , y)ξ̂(y) dA(y) := Ŝξ̂

Solving the single layer equation Ŝξ̂ = ĝ gives formally
û = ŜLŜ−1ĝ.
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Time domain single layer and potential operators

Mapping to the time domain by the inverse Fourier-Laplace
transform (using s = σ − iω, ω ∈ R) gives

SLξ =

∫ ∞
0

∫
∂D

Φ(x − y , t − τ)ξ(y , τ) dA(y) dτ.

where Φ(x − y , t − τ) = δ(t − τ − ‖x − y‖/c)/(4π‖x − y‖) and
for x ∈ ∂D

Sξ =

∫ ∞
0

∫
∂D

Φ(x − y , t − τ)ξ(y , τ) dA(y) dτ.

Now u = SLS−1g.
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Mapping properties

Using Bamberger and Ha-Duong’s technique, we can obtain
properties of the time domain operators.
Define the Hp

σ(R>0,X ) norm on functions f such that f = 0 for
t < 0 by

‖f‖2Hp
σ(R>0,X)

=

p∑
q=0

‖exp(−σt)f (q)(t)‖2L2(R,X).

Lemma
The following maps are bounded:

1 SL : Hp
σ(R>0,H−1/2(∂D))→ Hp−1

σ (R>0,H1(Ω)).

2 S : Hp
σ(R>0,H−1/2(∂D))→ Hp−1

σ (R>0,H1/2(∂D)).

3 S−1 : Hp
σ(R>0,H1/2(∂D))→ Hp−2

σ (R>0,H−1/2(∂D)).
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Sketch of proof

Let û = ŜLξ̂. Key observation: Green’s theorem implies∫
Ω∪D
|∇û|2 + s2|û|2 dV =

∫
∂D

[[∂û/∂ν]] û dA

But [[∂û/∂ν]] = ξ̂. Then∫
Ω∪D

s|∇û|2 + s|s|2|û|2 dV =

∫
∂D
ξ̂ (sŜξ̂) dA

So, since s = σ + iω, σ > σ0 > 0 and ω ∈ R,

min(σ, σ3)‖û‖2H1(Ω∪D) ≤
∣∣∣∣∫
∂D

sξ̂ Ŝξ̂ dA
∣∣∣∣

The trace theorem and Parseval’s Theorem completes the
proof of the first claim.
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The near field operator (again)

The scattered field uφ due to an incident field SLΓiφ is denoted
uφ = Nφ. Recall that the near field operator N is given by

(Ng)(x , t) =

∫
R

∫
Γi

us(x , t − t0; x0)g(x0, t0) dx0 dt0.

Note that N = SLS−1SLΓi

Lemma

N : Hp
σ(R, H̃−1/2(Γi))→ Hp−4

σ (R,H1/2(Γm)) is injective with
dense range (so are the potential operators defined previously
with appropriate spaces).
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Basic theorem of linear sampling

Theorem
Suppose we solve Ngz,τ = φz,τ using Tikhonov regularization.

For z ∈ D, τ ∈ R, there is a solution
gz,τ,ε ∈ H4

σ(R, H̃−1/2(Γi)) such that

lim
ε→0
‖Ngz,τ,ε − φz,τ‖L2

σ(R,H1/2(Γm)) = 0,

lim
z→∂D

‖gz,τ,ε‖H4
σ(R,H̃−1/2(Γi )) = ∞.

Let z ∈ Ω, τ ∈ R. For any gz,τ,ε such that

lim
ε→0
‖Ngz,τ,ε − φz,τ‖L2

σ(R,H1/2(Γm)) = 0,

we have
lim
ε→0
‖gz,τ,ε‖H4

σ(R,H̃−1/2(Γi )) =∞.
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Acoustic Wave Equation: Penetrable Medium

Let D be a bounded domain (scatterer) with connected
complement, boundary ∂D and unit outward normal ν. Let
c = c(x) > 0 and assume c(x) = c0 if ‖x‖ > R for some R.

Suppose ui is a given incident wave (solution of the background
wave equation vanishing near ∂D for t < 0). The scattered
pressure field u = u(x , t) satisfies

1
c(x)2 ü −∆u = 0 in R3 for t > 0,

u = us + ui in R3 for t > 0
us = u̇s = 0 at t = 0 in R3
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The Near Field LSM

Formally, this is the same as for the impenetrable case.
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Penetrable medium: what can we prove?

Using the Laplace transform techniques we can still prove
that N is injective with dense range.
To prove the basic theorem of linear sampling, we need to
define the solution operator for the interior transmission
problem (ŵ , v̂) = K̂ (s)(f̂ , ĝ) given by solving

−∆ŵ +
s2

c2(x)
ŵ = 0 in D

−∆ẑ +
s2

c2
0

ẑ = 0 in D

ŵ − ẑ = f̂ on ∂D
∂

∂ν
(ŵ − ẑ) = ĝ on ∂D

and prove that for σ > σ0 > 0, K̂ (s) is an analytic operator
and ‖K̂ (s)‖ ≤ C|s|µ. But there may be complex
eigenvalues with arbitrarily large imaginary part.
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Numerical example - 2D Penetrable media

Results due to Dr. Y. Guo. We collect data for 0 ≤ t ≤ 16 (252
timesteps using k -wave). Data is generated by k-Wave7

Full circle Half circle

7
Treeby B, Cox B. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields.

J Biomed Opt. 2010;15; 021314.
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Numerical example - II 2D Penetrable media

Results due to Dr. Y. Guo.
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Numerical example - III 2D Penetrable media

Results due to Dr. Y. Guo (changing τ = 4,8,12).
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Frequency Domain Penetrable Media

Let c(x) denote the wave speed and n(x) = c2
0/c

2(x) where c0
is the background sound speed. Let D denote the support of
1− n(x). We also assume that n(x) > 0 for x ∈ D and is
piecewise continuous in D. Given an incident field ûi , û satisfies

∆û + k2n(x)û = 0 in R
3

û = ûi + ûs in R
3

lim
r→∞

r
(
∂ûs

∂r
− ik ûs

)
= 0.

Here ûi is the incident field due to a point source situated at
y ∈ Γi , i.e. ûi(x) = Φ̂(x , y) where

Φ̂(x , y) =
1

4π
eik |x−y |

|x − y |
,
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Standard frequency domain LSM

Use Tikhonov regularization to solve the near field equation

(N̂ĝ)(x) = Φ̂(x , z), x ∈ Γm

where N̂ : L2(Γi)→ L2(Γm) is defined by

(N̂ĝ)(x) :=

∫
Γ

us(x , y)g(y , z) ds(y).

Here ûs(x , y) corresponds to ûi(x) = Φ̂(x , y) for y ∈ Γi . We use
the indicator function

G(z) :=
1

‖g(·, z)‖L2(Γm)
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Test problem

Target scatterer: three identical cubes with n(x) = 1/4 inside
the cubes and n(x) = 1 outside.

The point sources and receivers are at the points in the grid
above the scatterers. This grid is called A1.
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Measurement/Source Arrays

Using the BEM++8 we can compute the scattered field from
these cubes at a given frequency due to point sources on the
measurement array.

Later we consider the effect of choosing various arrays of
measurements and sources:

Array Region N points Altitude
A1: [−2.5,2.5]2 6 z = 2.5
A2: [−3,3]2 7 z = 2.5
A3: [−4,4]2 9 z = 2.5

8
W. Śmigaj, S. Arridge, T. Betcke, J. Phillips and M. Schweiger, Solving Boundary Integral Problems with

BEM++, submitted to ACM Trans. Math. Software, (2013)
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Single frequency reconstructions

Cross sections of single frequency reconstructions in the plane
x1 = 0.25 using measurement array A1. Left: k = 2.99. Right:
k = 6.03.
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Multifrequency LSM

One possible remedy: use multiple frequencies in the LSM.
This has been studied by Cakoni et al.9.

If g(x , kj ; z), 1 ≤ j ≤ Nk , is the regularized solution of the near
field equation for different wave numbers k1, k2, · · · , kNk , then
the indicator function G(z) is

G(z) :=

Nk∑
j=1

1
‖g(·, kj ; z)‖L2(Γ)

.

9
Guzina B, Cakoni F, Bellis C. On the multi-frequency obstacle reconstruction via the linear sampling method.

Inverse Problems. 2010;26; 125005.
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TDLSM for penetrable media

Another possible remedy is the Time Domain LSM that we have
already described.
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Some comments on the numerics

We choose

χ(t) = (6 cos(6t) + (9.6− 3.2t) sin(6t)) exp(−1.6(t − 3)2)

While χ does not have compact support, the function becomes
very small for |t − 3| large.

Left: Time course of the pulse function χ(t) as a function of t .
Right: Magnitude of the Fourier transform |χ̂(ω)| as a function
of ω.
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Time domain, A1

Using the k-Wave we can predict the scattered field for a given
source and receiver, and invert the near field equation using the
scheme from [HLM].
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Multi-frequency from time domain, A1

We can use FFT to convert windowed time domain data to the
frequency domain.
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A1 multifrequency (accurate data)

Multi-frequency approach using 79 equally spaced frequencies
in the interval ω ∈ [3.7,9.4] using BEM++.
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Large Sparse Arrays: A2/A3, time domain
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(bottom row) using the same format as Fig. ??. The larger
array does not much improve the reconstruction.
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Multifrequency A2,A3

Multi frequency reconstruction using 79 equally spaced
frequencies in [3.7,9.4].
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Refined array A1f

Array A1 but with N = 11 points in each direction.

Multi-frequency frequency domain reconstructions using the
finer measurement array A1f. We use 79 equally spaced
frequencies in [3.7,9.4].
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Small apertures I

Refining the measurement grid doesn’t help in this case.
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Small apertures II

Refining a larger coarse array helps avoid artifacts.



Dirichlet problem Analysis of the TD-LSM Penetrable Media 3D numerics

Conclusion

Tentative conclusions:
1 Single frequency data may fail to reconstruct the scatterer.
2 Both time domain or frequency domain data may be used,

and the methods give the same qualitative reconstruction
when the data is of comparable quality.

3 Neither method can reconstruct the targets if the aperture
is too small, and increasing the number of measurements
in a small aperture does not help.

4 The measurement array has to be dense enough to sample
the scattered field, but can be close to the Nyquist limit.



Dirichlet problem Analysis of the TD-LSM Penetrable Media 3D numerics

Open problem

Do the complex transmission eigenvalues lie in a strip?
More generally, how do we analyze the solution operator
for the time domain interior transmission problem?
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