

Levelset methods (and XFEM) in FEniCS

Mischa Jahn, Timo Klock, Andreas Luttmann The Center for Industrial Mathematics (ZeTeM), University of Bremen

Motivation

• Our project within the Collaborative Research Center 747 investigates i.a. a material accumulation process based on rod-end melting, see Fig. 1.

Universität Bremen

• This processes can be modeled by PDEs (Stefan problem, Navier-Stokes) and simulated using FEM [3]. The model includes

Fig. 1: Material accum. process

	ds functions
Fig. 5: Implementation structure: Form (header) files,	object classes and utility function

The Levelset method: Review

- The zero level set of a signed distance function $\varphi \colon \Omega \times [t_0, t_f] \to \mathbb{R}$ (continuous, scalar) represents a time dependent discontinuity [6], separating Ω into $\Omega(t) = \Omega^+(t) \cup \Omega^-(t) \cup \Gamma(t)$, cf. Fig. 2.
- The level set problem is given by: Find $\varphi(x,t) \in$ $C^{1}(\Omega, [t_{0}, t_{f}]), \text{ s.t.}$

 $\varphi(x, t_0) = \varphi_0(x)$

in $\Omega \times [t_0, t_f]$, $\varphi_t + \vec{u} \cdot \nabla \varphi = 0$

 $\varphi(x,t) = \varphi_D(x,t)$ on $\partial \Omega_{\rm in}(t) \times [t_0, t_f].$

Fig. 2: Subdomains $\Omega^+(t)$ and $\Omega^{-}(t)$ separated by $\Gamma(t)$.

Weak formulation: With $V_{u,D} = \{v \in L^2(\Omega) : u \cdot \nabla v \in L^2(\Omega) \land v|_{\partial\Omega_{in}} =$ $\{\varphi_D\}$ the weak formulation of the level set problem is given by: For $t \in [t_0, t_f]$ find $\varphi(\cdot, t) \in V_{u,D}$ s.t. $\varphi(\cdot, t_0) = \varphi_0$ and

 $(\varphi_t, v)_{L^2} + (\vec{u} \cdot \nabla \varphi, v)_{L^2} = 0, \quad \forall v \in L^2(\Omega).$

in Ω ,

The Levelset method: Numerical aspects

Discretization: Using standard Lagrangian function spaces and the θ -scheme, the fully discretized and stabilized problem is given by

[...] // Initialization etc.

- // Creating and extending the parameters structure: Since all methods are
- 'hidden within the object class, the reinitialization frequency, the volume
- ['] correction method etc. are added and defined within the parameters structure.

dolfin::Parameters parameters; parameters.add("foo", foo);

// Creating an object of type LevelSetCalculatorXD

LevelSetCalculatorXD lc(mesh, $\vec{u}(x,t)$, $\varphi_h(t_0)$, parameters);

// Update LevelSetCalculatorXD lc object based on the specified parameters. lc.updateLevelSetFunction();

Results

• Example 2D [4]: On $\Omega = [0,1]^2$, consider φ_0 for a disk with r = 0.15centered at (0.5, 0.75) for $t \in [0, 2]$. The velocity field u(t, x, y) is given by

 $u = \begin{pmatrix} -\sin^2(\pi x)\sin(2\pi y)\cos(\pi t/t_f)\\ \sin(2\pi x)\sin^2(\pi y)\cos(\pi t/t_f) \end{pmatrix}.$

Fig. 6: Sketch 2D Example: Ref. φ_h at $t = \{0, 0.5, 1, 1.5\}.$ It is $\varphi_h(t=0) = \varphi_h(t=2)$.

Fig. 7: 2D Results at (t = 2) with $2 \times 32 \times 32 = 2048$ elements (form left to right): reinit., reinit. and global vol. corr, reinit. and local vol. corr., (red), reference solution in black.

$$\sum_{S \in \mathcal{S}_h} \left(\frac{\varphi_h^{n+1} - \varphi_h^n}{\Delta t} + \vec{u} \cdot \left(\theta \varphi_h^{n+1} + (1 - \theta) \varphi_h^n \right), v_h + \delta_S \vec{u} \cdot \nabla v_h \right)_{L^2(S)} = 0.$$
(1)

Interface representation [2]:

- Γ_h is given by the linear interpolation of φ_h on a regularly refined mesh.
- # refinements depends on the polynomial degree k of the basis functions. An example for k = 2 is shown in Fig. 3.

Reinitialization [2,5]:

- During the evolution of φ_h in time, i.a the signed distance property get lost.
- A reinitialization $\hat{\varphi}_h$ of φ_h is required with $\Gamma_h \approx \Gamma_h$ and $||\nabla \hat{\varphi}_h|| \approx 1$.
- The Fast Marching Method of [2] is used as reinitialization technique. It consists of an initialization and an iteration phase, cf. Fig. 4. Volume correction [1]:

Fig. 3: Construction of Γ_h on $\mathcal{S}_{h/2}$

Fig. 8: Rel. volume error in L_2 : Comparison of dif-

ferent maintaining methods on different mesh sizes.

Δt	$\theta = 1$	$\theta = 0.5$
$2^{0}/10$	3.25e - 2	6.10e - 3
$2^{-1}/10$	1.86e - 2	1.54e - 3
$2^{-2}/10$	1.01e - 2	3.87e - 4
$2^{-3}/10$	5.36e - 3	9.68e - 5
$2^{-4}/10$	2.71e - 3	2.42e - 5
$2^{-5}/10$	1.32e - 3	5.99e - 6

Tab. 1: L_2 -error for different time discretization schemes on a mesh consisting of $2 \times 10 \times 10 = 200$ elements.

• Example 3D [4]: On $\Omega = [0, 1]^3$, consider φ_0 for a sphere, centered at (0.35, 0.35, 0.35) with r = 0.15 for $t \in [0, 2]$. The velocity field is given by $(2\sin^2(\pi x)\sin(2\pi y)\sin(2\pi z)\cos(\pi t/t_f))$ $u(t, x, y, z) = \begin{pmatrix} -\sin(2\pi x)\sin^2(\pi y)\sin(2\pi z)\cos(\pi t/t_f) \\ -\sin(2\pi x)\sin(2\pi y)\sin^2(\pi z)\cos(\pi t/t_f) \end{pmatrix}$

- the level set method is (on a discrete level) not volume conserving
- volume correction methods take advantage of the signed distance property, shifting φ_h by $\epsilon_S \in \mathbb{R}$, $S \in \mathcal{S}_{h/2}$, the roots of the non-linear equation $Z_S(\epsilon_S) := V_{h,S}^-(I\varphi_h^{\text{old}}(\cdot)) - V_{h,S}^-(I\varphi_h^{\text{new}}(\cdot) + \epsilon_S) = 0, \ S \in \mathcal{S}_{h/2}$ (2)
- the corrected function is given by $I\varphi_h^c := I\varphi_h^{new} + \psi_h$, with ψ_h interpolating the values ϵ_S .

Fig. 9: 3D Results at (t = 2): Reference solution and numerical solution for mesh sizes $6 \times 24 \times 24$, $6 \times 44 \times 44$ and $6 \times 64 \times 64$ using reinitialization and local volume correction.

Acknowledgement

The authors gratefully acknowledge the financial support by the DFG (German Research Foundation) for the subproject A3 within the Collaborative Research Center SFB 747 "Mikrokaltumformen - Prozesse, Charakterisierung, Optimierung".

References

1 R. Ausas, E. Dari, and G. Buscaglia. A mass-preserving geometry-based reinitialization method for the level set function. Mecanica Computational, 27:25-27, 2008.

2 S. Gross and A. Reusken. Numerical Methods for Two-phase Incompressible Flows. Springer Series in Computational Mathematics. Springer, 2011.

3 M. Jahn, H. Brüning, A. Schmidt, F. Vollertsen. Energy dissipation in laser-based free form heading: a numerical approach. Production Engineering - Research and Development, Springer Verlag, 2013. LeVeque. Wave propagation algorithms for multidimensional hyperbolic systems. Journal of Computational Physics, 131:327-353, 1997. 4 R.

5 S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics, 79(1):12-49, 1988.

6 J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93(4):1591-1595, 1996.