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Abstract– Interconnections of several nonlinear systems with inputs are considered in this paper. Each system is assumed
to be input-to-state stable (ISS). However an interconnection of such systems is not stable in general. We provide a stability
condition for interconnections of such systems. Some interpretations of this condition are given. Moreover we show how an

ISS-Lyapunov function for such a network can be constructed explicitly if this condition is satisfied. Further we give the idea
of numerical verification of the small gain condition for networks.
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I. INTRODUCTION

Nonlinear systems appear frequently in applications
and their stability properties are important for design
and performance of such systems. We consider several
nonlinear stable systems and refer to the question, whether
an interconnection of these systems is also stable.

First consider one nonlinear system

ẋ = f(x, u) (1)

where x ∈ RN denotes the state and u ∈ RM is input.
Function f is such that there exists a unique solution
of this equation for any initial condition and arbitrary
measurable input u ∈ L∞. An appropriate stability notion
for such systems was introduced by Eduardo Sontag in
[11] and is called input-to-state stability (ISS), see the
definition below. It is known that feed forward connections
of such systems are ISS again. However a feedback
interconnection of two ISS systems

xi = fi(x1, x2, ui), i = 1, 2

is in general not stable. Stability conditions for intercon-
nections of two ISS systems were derived in [9], see also
[7] for interconnection of ISS and integral ISS systems,
where the latter type of systems is more general and
contains ISS systems as subset.

It is known that ISS property is equivalent to the
existence of an ISS-Lyapunov function, see the definition
below. A construction of an ISS-Lyapunov function for
interconnection of two ISS systems on the base of ISS-
Lyapunov functions of each system was given in [8].

Now consider a network of n ISS systems

xi = fi(x1, . . . , xn, ui), x ∈ Rni , u ∈ Rmi . (2)

In this paper we collect some known stability results
recently obtained for such interconnections.

II. DEFINITIONS

Let R+ denote the set of nonnegative real numbers and
Rn

+ be the positive orthant in Rn. Recall that K denotes
the class of strictly increasing functions f : R+ → R+

such that f(0) = 0. A subset of such functions which are
unbounded is denoted by K∞. Function β : R+ ×R+ →

R+ belongs to the KL class if β(·, t) ∈ K for any t ≥ 0
and β(s, ·) is decreasing with limt→∞ β(s, t) = 0, ∀s ≥ 0.

Definition 2.1: System (1) is called ISS from u to x if
for any initial state x(0) and any measurable input u there
exist γ ∈ K and β ∈ KL such that

|x(t)| < max{β(|x(0)|, t), γ(||u||∞)}, t ≥ 0, (3)

where | · | denotes Euclidean norm in a corresponding
space and || · ||∞ is the standard norm in L∞. Function γ
is then called nonlinear gain.

Remark 2.2: Inequality (3) in the above definition can
be equivalently replaced by

|x(t)| < β(|x(0)|, t) + γ(||u||∞), t ≥ 0, (4)

with some different β and γ.
Definition 2.3: Function V : RN → R+ is called ISS-

Lyapunov function for (1) if there exist ψ1, ψ2, χ ∈ K∞
and a positive definite function α ∈ pdf such that for any
initial condition and any measurable input u the following
holds

ψ1(|x|) < V (x) < ψ2(|x|), x ∈ RN (5)

V (x) > χ(|u|) ⇒ ∇V (x)f(x, u) < −α(V (x)) (6)

Function χ is called Lyapunov gain in this case.
Interconnection (2) can be seen as a network or a directed
graph, with n nodes representing the systems and edges
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between the nodes. There is an edge from the node i to the
node j if the j-th systems has xi as an input coming from
the i-th system. A network is called strongly connected if
the corresponding graph is strongly connected.

We assume that each system in (2) is ISS, i.e., for any
solution of the i-th equation with arbitrary initial condition
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and any measurable input u the following holds for all
t ≥ 0

|xi(t)| < max{βi(|xi(0)|, t),
max
j 6=i

{γij(||xj ||∞)}, γi(||ui||∞)}. (7)

Note that we equivalently may assume

|xi(t)| < βi(|xi(0)|, t) +
∑

j 6=i

γij(||xj ||∞) + γi(||ui||∞)

(8)
instead of (7) with some different gains. Motivated by the
expressions on the right hand side of (7) and (8) we define
the following nonlinear mappings from Rn

+ to Rn
+

Γmax(s) = (max
j
{γ1j(sj)}, . . . , max

j
{γnj(sj)})T (9)

Γ∑(s) =
( ∑

j

γ1j(sj), . . . ,
∑

j

γnj(sj)
)T

(10)

where xT denotes the transposition of vector x ∈ Rn.
It is appropriate to collect the gains γij in a matrix

Γ =




0 γ12 . . . . . . γ1n

γ21 0 γ23 . . . γ2n

...
...

γn−1,1 . . . γn−1,n−2 0 γn−1,n

γn1 . . . . . . γn,n−1 0




(11)
defining γii ≡ 0 for completeness. Then (10) looks similar
to the multiplication of the matrix Γ and vector s. Γ may
be seen as an adjacency matrix of the corresponding graph
representing the interconnection.

For a, b ∈ Rn we say that a < b if ai < bi for all
i = 1, . . . , n. Similarly we define a > b and a ≥ b. The
negation of the latter is denoted by a 6≥ b and means
that there exists i ∈ {1, . . . , n} such that ai < bi. For
to operators A and B mapping Rn

+ to Rn
+ we say that

A < B if A(s) < B(s) for all s ∈ Rn
+. Relations >

,≥ for operators are defined similarly. A 6≥ B means
that for some i ∈ {1, . . . , n} the i-th component of A(s)
is less then the i-th component of B(s). A ◦ B denotes
the composition of operators A and B. By id we denote
the identity operator on Rn

+ or other appropriate space.
Note that both operators Γmax and Γ∑ are monotone in
the sense that for any a ≥ b ∈ Rn

+ it holds Γmax(a) ≥
Γmax(b) and the same for Γ∑.

Stability condition of the small gain type for the inter-
connections of systems satisfying (7) (or (8)) are given in
the next section.

III. STABILITY RESULTS

A. Small gain condition for networks

Let us denote x = (x1, . . . , xn)T , f(x, u) =
(f1(x, u1), . . . fn(x, un))T , N =

∑n
i=1 ni. Then the in-

terconnection (2) takes the form (1). Consider intercon-
nection (1) of systems (2) satisfying (7).

Theorem 3.1: Let each system of (2) be ISS satisfying
(7). Let Γmax be defined as in (9). If

Γmax 6≥ id on Rn
+ \ 0 (12)

then the interconnection (1) is ISS form u to x.
This result was firstly obtained in [2] for the case of ISS
definition with

∑
as in (8), see [3], [10] for an alternative

and more detailed proof for both cases, similar results for
the asymptotic gain property and global stability was also
obtained there for such interconnections.

Note that if we would use the definition of ISS with∑
on the places of max, i.e., (8) instead of (7) than

this theorem would hold with the following small gain
condition

Γ∑ ◦D 6≥ id, on Rn
+ \ 0 (13)

for some D : Rn
+ → Rn

+ defined by D(s) = (s1 +
α(s1), . . . , sn +α(sn))T with αi ∈ K∞. In case of linear
gains γij the operator Γ∑ is linear on Rn

+ and (13) is
equivalent to ρ(Γ∑) < 1, where ρ denotes the spectral
radius.

Remark 3.2: For n = 2 it holds Γmax = Γ∑, the
condition (12) is equivalent to γ12 ◦ γ21 < id which can
be found in [8], and (13) is equivalent to existence of
α1, α2 ∈ K∞ such that γ12◦(id+α1)◦γ21◦(id+α2) < id.
The last small gain condition was derived in [9]. Hence we
see that the small gain condition for networks generalizes
the known small gain results.

The condition (12) (or (13)) is called small gain con-
dition for networks. It says that Γmax cannot ”expand” in
all components simultaneously, since it states that there is
at least one i ∈ {1, . . . , n} such that the i-th component
of Γmax(s) is less then si. Moreover it can be shown that
there exists an open unbounded domain Ω in Rn

+ such
that for any s ∈ Ω it holds Γmax(s) < s. We quote several
results from [3] to show several geometrical consequences
from the small gain condition for the operator Γ∑. Let
Γ∑ be such that the corresponding small gain condition
(13) is satisfied. Hence we know that for any s ∈ Rn

+ there
is always some i such that si <

(
Γ∑(s)

)
i
. This motivates

the introduction of the following domains in the positive
orthant:

Ωi :=



s ∈ Rn

+ : si >

n∑

j=1

γij(sj)



 , i = 1, . . . , n.

Further, let ∆r denote a simplex defined as the intersection
of Rn

+ and the hyperplane s1 + · · ·+ sn = r > 0.
Proposition 3.3: Consider Γ∑ as above. The weaker

condition
Γ∑ 6≥ id on Rn

+ \ 0

is equivalent to
⋃n

i=1 Ωi = Rn
+ \ {0}. Furthermore this

condition implies that for all r > 0

∆r ∩
n⋂

i=1

Ωi 6= ∅. (14)

Let us denote Ω := ∩n
i=1Ωi. Note that for any point s in

Ω it holds s > Γ∑(s). The last proposition shows that
this domain is nonempty and unbounded. It can be also
shown, that this domain is pathwise connected, see [4].
Next proposition shows some invariance property of Ω:

Proposition 3.4: Consider operator Γ∑ in a matrix
form as above. Assume that Γ has no zero row. Assume



that it satisfies the same condition as in previous propo-
sition. If s ∈ Ω then Γ∑(s) ∈ Ω.
These geometrical properties were used in [4] to construct
an ISS-Lyapunov function for an interconnection. Similar
results are available for Γmax and for even more general
monotone operators, see [10].

Another interesting result related to the small-gain
condition is the following. Let Γ be Γmax or Γ∑. Consider
a discrete dynamical system defined by

sk+1 = Γ(sk), k = 1, 2, . . . (15)

with initial state s0 ∈ Rn
+.

Theorem 3.5: Let network (2) of ISS systems be
strongly connected. Let Γ denote Γmax or Γ∑ as above.
The small gain condition

γ 6≥ id on Rn
+ \ 0 (16)

is equivalent to the global asymptotic stability of (15).
This theorem reduces the investigation of stability of
the interconnection (2) to the stability investigation of
a simpler system (15), which has dimension n that is
in many cases much smaller then the dimension N =∑n

i=1 ni of the network (2).
Similar small gain condition as in Theorem 3.1 holds

also for discrete time systems. Consider the interconnected
discrete time system

Σ1 : x1(k + 1) = f1(x1(k), . . . , xn(k), u(k))
...

Σn : xn(k + 1) = fn(x1(k), . . . , xn(k), u(k))
(17)

for k ∈ N, where xi(k) ∈ RNi , u(k) ∈ RM , and fi :
R

∑n
j=1 Nj+M → RNi is continuous.

System Σi is ISS, if there exists β ∈ KL and γij , γ ∈
K ∪ {0} with γii = 0, such that every solution xi : N→
RNi of (17) satisfies

|xi(k)| ≤ βi(|xi(0)|, k)+
n∑

j=1

γij(||xj [0,k]||∞)+γ(||u||∞)

(18)
for all inputs xj : N → RNj , j = 1, . . . , n, j 6= i, and
u : N→ RM , where we denote by [0, k] the set {0, . . . , k}
and by ‖x‖∞ = supl∈N{xl} for functions x : N → RN .
The following result was obtained in [3], Proposition 15.

Theorem 3.6: Consider the systems Σi in (17) and
suppose that each subsystem is ISS, i.e., condition (18)
holds for all i = 1, . . . , n. Let Γ∑ be defined similarly as
in (10). If there exists a mapping D as in (13), such that

(Γ∑ ◦D)(s) 6≥ s, ∀s ∈ Rn
+ \ 0,

then the interconnection (17) is ISS from u to x.
Remark 3.7: In case of definition of ISS with max on

the place of
∑

in (18) the small gain condition should be
changed to Γmax 6≥ id on Rn

+ \ 0.
Remark 3.8: In the discrete time context Teel [12]

proves that if we have maximum ISS estimates of the type
(7) for each system and if for each cycle (or equivalently,
each minimal cycle) in the matrix Γ we have

γk1k2 ◦ γk2k3 ◦ . . . ◦ γkp−1kp < id,

for all (k1, . . . , kp) ∈ {1, . . . , n}p where k1 = kp, then the
network under consideration is input-to-state stable. This
result extends in a straightforward manner to continuous
time systems. It is an easy exercise to show that the cycle
condition and the statement

Γmax(s) � s, ∀s ∈ Rn
+, s 6= 0,

are equivalent. Note that this equivalence does not hold
for Γ∑.

B. Construction of an ISS-Lyapunov function for networks

Since the ISS property is equivalent to the existence
of an ISS-Lyapunov function, the next natural question
arises: Can we use the ISS-Lyapunov function of systems
in (2) to construct an ISS-Lyapunov function of their inter-
connection? Before we answer this question we recall an
interesting consequence of the above small gain condition,
see [4], [10].

Theorem 3.9: Let Γmax and Γ∑ be as above and satisfy
(12) and (13) respectively. Then for each of both operators
there exist some σ1, . . . , σn ∈ K∞ such that for any t > 0
vector σ(t) = (σ1(t), . . . , σn(t)) satisfies

Γmax(σ(t)) < σ(t) (19)

and respectively

Γ∑(σ(t)) < σ(t). (20)
σ1, . . . σn will be used to re-scale corresponding ISS-
Lyapunov function of each system of the interconnection
and construct an ISS-Lyapunov function for the overall
system. Note that σ = (σ1, . . . , σn) parameterizes a
continuous curve in the positive orthant Rn

+ such that each
its point σ(t) = (σ1(t), . . . , σn(t)) ∈ Ω, for all t > 0. See
the definition of Ω above. The proof of the last theorem
is based on the geometrical properties of Γ considered in
the previous subsection.

Returning back to the stated question, let Vi be an
ISS-Lyapunov function of the i-th system in (2), i.e., we
assume that

ψi1(|xi|) < Vi(xi) < ψi2(|xi|) (21)

Vi(xi) ≥ max{χi(‖ui‖),max
j 6=i

γij(Vj(xj))}
=⇒ ∇Vi(xi) · fi(x, ui) ≤ −αi(Vi(xi)),

(22)

for some ψ1i, ψ2i, χi ∈ K∞ and αi(Vi(xi)) ∈ pdf .
Theorem 3.10: Let network (2) be strongly connected.

Let Vi be an ISS-Lyapunov function for the i-th system of
(2) as above. Let Γmax be defined as in (9) with Lyapunov
gains from (22) and satisfy the small gain condition (12).
Let σ = (σ1, . . . , σn) be as in Theorem 3.9. Then the
interconnection (2) is ISS and

V (x) = max
i

σ−1
i (Vi(xi)) (23)

is an ISS-Lyapunov function for the overall system.
Note that σi is always invertible as a K∞ function and its
inverse belongs again to the K∞ class. For the proof of
the theorem we refer to [4], [10].

Remark 3.11: The construction in (23) is non-smooth
since max is a non-smooth operator. However function



V is a Lipschitz continuous function as a maximum of
smooth functions. Hence V is differentiable almost every
where. Methods of non-smooth analysis [1] were used to
show the ISS property of the network.

Remark 3.12: The construction of an ISS-Lyapunov
function works similarly for the case of ISS systems with
Lyapunov gains from the definition with

∑
on the place

of max in (22). One have to use the corresponding σ in
(23).
For application of the presented results we refer to [6],
where a logistic network was considered and investigated
on stability.

C. Verification of the small gain condition

The last question that we are going to discuss in this
paper is the following. The small gain condition Γ 6≥ id
looks very compact, however it is not obvious how to
check this condition in Rn

+ especially for large n. A
numerical procedure was developed in [5] for this purpose.
The notion local ISS (LISS) was used there. Subsystem i
in (2) is LISS, provided there exist ρi > 0, γij , γi ∈ K∞,
and a βi ∈ KL, such that for all ‖ξi‖ ≤ ρi, ‖ui‖∞ ≤ ρi

‖xi(t, ξi, xj : j 6= i, ui)‖ ≤ βi(‖ξi‖, t)
+

∑

j 6=i

γij(‖xj‖∞) + γi(‖ui‖∞) ∀ t ≥ 0. (24)

Remark 3.13: Instead of (24) we could also write

‖xi(t, ξi, xj : j 6= i, ui)‖ ≤ max{βi(‖ξi‖, t),
max
j 6=i

γij(‖xj‖∞), γi(‖ui‖∞)} ∀ t ≥ 0, (25)

which is qualitatively equivalent. Of course the gains
in (24) and (25) are in general different.
The following local small gain condition was used for
such interconnections: Γ satisfies LSGC on the set 0 ≤
s ≤ w∗ if

Γ(w∗) < w∗ and Γ(s) � s, ∀ 0 ≤ s ≤ w∗, s 6= 0.
(LSGC)

The following results were proven in [5]:
Theorem 3.14: Let all subsystems (2), i = 1, . . . , n,

satisfy (24). Suppose Γ satisfies (LSGC). Then there
exists a ρ > 0, a β ∈ KL, and a γ ∈ K∞, such that
interconnection (2) satisfies

‖x(t, ξ, u)‖ ≤ β(‖ξ‖, t) + γ(‖u‖∞) ∀ t ≥ 0, (LISS)

for all ‖ξ‖ ≤ ρ, ‖u‖∞ ≤ ρ, i.e., is LISS.
Lemma 3.15: Let Γ be a gain matrix as above. For any

w∗ ∈ Rn
+ consider the trajectory {w(k)} of the discrete

monotone system w(k + 1) = Γ(w(k)), k = 0, 1, 2 . . .
with w(0) = w∗. If w(k) → 0 for k →∞ then Γ satisfies
the small gain condition (LSGC) on [0, w∗].
This is the key lemma for the numerical verification of
the LSGC. An example that shows the application of the
numerical procedure was given in this paper. ρ, β and γ
were constructed numerically. However the obtained result
were rather conservative in the sense that the obtained ρ
was essentially smaller then mini{ρi}. This suggests the
investigation of the dependence of ρ on ρi and w∗ which
we are going to undertake in the nearest future.

IV. CONCLUSIONS

We have considered interconnections of arbitrary
amount of stable nonlinear systems. In general an in-
terconnection is not stable. Stability conditions were de-
scribed for such networks. Several interpretations and
connections to known results were discussed. We have
shown, how an ISS-Lyapunov function can be explicitly
constructed for a given interconnection if the small gain
condition is satisfied. These results can be used for inves-
tigation of stability of large nonlinear systems with inputs.
Furthermore an approach for the numerical verification of
the small gain condition was given. However this method
needs some improvements and further developments.
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[5] S. Dashkovskiy, B. Rüffer, and F. Wirth. Numerical verifi-
cation of local input-to-state stability for large networks. In
Proc. 46th IEEE Conf. on Decision and Control, CDC2007,
pages 4471–4476, New Orleans, USA, December 2007.
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[10] B. S. Rüffer. Monotone Systems, Graphs, and Stability
of Large-Scale Interconnected Systems. Dissertation, Dep.
of Mathematics, University of Bremen, Germany, August
2007.

[11] Eduardo D. Sontag. Smooth stabilization implies coprime
factorization. IEEE Trans. Automat. Control, 34(4):435–
443, 1989.

[12] Andrew R. Teel. Input-to-state stability and the nonlinear
small gain theorem. Private communication, 2005, 2005.


	メニュー

	プログラム一覧

	セッション索引

	著者索引

	大会概要





