
THE ESA NLP-SOLVER WORHP – RECENT DEVELOPMENTS AND APPLICATIONS

Dennis Wassel, Florian Wolff, Jan Vogelsang, and Christof Büskens

Center for Industrial Mathematics, University of Bremen, PO Box 33 04 40, 28334 Bremen, Germany,
Email: {dwassel, fwolff, janv, bueskens}@math.uni-bremen.de

ABSTRACT

The European NLP solver WORHP (We Optimize Really
Huge Problems, also referred to as eNLP by ESA) is a
tool for solving large-scale, sparse, nonlinear optimization
problems with millions of variables and constraints. It is
being developed at the University of Bremen, supported
by the TEC-EC division through GSTP-4 and 5, with the
intention to replace SNOPT in existing and future ESA
projects that involve continuous optimization.

This paper will briefly skip over the mathematical and
algorithmic foundations of WORHP and focus on notable
features, and recent or ongoing improvements, such as the
genuinely sparse structure-preserving BFGS update, the
weak-Active Set mode, the parametric sensitivity analysis
module and the transcriptor TRANSWORHP, as well as
two exemplary applications in model-predictive control of
a swarm of independent agents and in satellite constella-
tion and schedule optimization.

Key words: eNLP; Nonlinear Programming; Large-Scale
Optimization; Mathematical Optimization; Numerical Op-
timization.

1. INTRODUCTION

WORHP solves problems of the form

min
x∈Rn

f(x)

subject to
(
l
L

)
6

(
x
g(x)

)
6

(
u
U

)
(OP)

with bounds

l, u ∈ [−∞,+∞]n,

L, U ∈ [−∞,+∞]m,

and functions f : Rn → R and g : Rn → Rm. If either x
or g are unbounded, the corresponding bound is ±∞ (in
practice,∞ is replaced by a finite, large constant, such as
1020).

Both the objective function f and the constraints g may
be linear, quadratic or nonlinear. WORHP makes no as-
sumptions on the problem structure, like convexity or
conicity – only certain smoothness and regularity assump-
tions are needed by the theoretical foundations, however,
these are next to impossible to ascertain for most problems
of practical relevance. In practice, WORHP often finds
solutions even if the differentiability requirement is not
satisfied.

1.1. Fundamentals of WORHP

The general framework of WORHP is Sequential
Quadratic Programming (SQP), a method devised in the
1960’s by Wilson [10] and later revived by Han [8]. Since
then they belong to the most frequently used algorithms
for the solution of practical optimization problems due to
their robustness and their good convergence properties. A
more extensive account can be found in [6].

SQP methods can be proven to achieve global conver-
gence and locally superlinear convergence rate; even lo-
cally quadratic convergence can be achieved, if second
derivatives are available. KNITRO and the NLP-solver
SPRNLP included in SOCS are all SQP methods.

The fundamental principle of SQP methods is to find KKT
points, i.e. points that satisfy the necessary optimality con-
ditions1. To find such points, the the Lagrange function
L is introduced in terms of functions F and G, which are
simple transformations of f and g to the mathematical
standard formulation

min
x∈Rn

F (x)

subject to Gi(x) = 0, i ∈ I
Gj(x) 6 0, j ∈ J

(NLP)

The Lagrange function isL(x) = F (x, µ)+µᵀG(x). Any
KKT point (x∗, µ∗) has to satisfy∇xL(x∗, µ∗) = 0, which
is why the principle of SQP methods is to find zeros of
∇xL(x, µ) by applying Newton’s method. This results in

1Sufficient optimality conditions can be formulated and tested, but
this is not usually done, since the computational effort for medium- to
large-scale problems is prohibitive.

quadratic subproblems of the form

min
d∈RN

1
2d

ᵀ∇2
xxL(x, µ)d+∇xF (x)ᵀd,

subject to Gi(x) +∇xGi(x)d = 0, i ∈ I
Gj(x) +∇xGj(x)d 6 0, j ∈ J,

(QP)

whose solution d, the search direction, is used to define
the next iterate via

x[k+1] = x[k] + αd.

The step size α is chosen by using either a merit function,
i.e. a scalar measure of “goodness” of the current trial
point, such as the L1 merit function

L1(x; η) := F (x) +
∑
i∈I

ηi|Gi(x)|

+
∑
j∈J

ηi max{0, Gj(x)},

or by a Filter i.e. a two-dimensional set of points that
considers the objective function value and constraint vi-
olation separately, and accepts trial points, if they yield
an improvement in either direction. The basic principle is
illustrated by Fig. 1.

f(x)

h(x)

forbidden
region

allowed
region

Figure 1. Schematic drawing of a Filter with 5 points
that define the allowed and forbidden region – f(x) is the
objective and h(x) the constraint violation. New points
are accepted, if they lie in the allowed region.

1.2. Derivatives and Sparsity

In addition to f and g, NLP solvers in general and WORHP
in particular need the derivatives ∇f , the gradient of
the objective function, and ∇g, the Jacobian of the con-
straints. Both are assumed to be sparse, i.e. they have
many structural zeros and only few entries that may attain
numerical values other than zero. The ratio between struc-
tural zero and all entries of a matrix is called sparsity;
matrices with sparsity of 100% are dense, i.e. they have
no structural nonzeros, while matrices with sparsity of 0%
contain only structural zeros.

Sparsity is of little concern for small problems with hun-
dreds of variables and constraints (these are usually dense,
or can be treated as such without noticeable performance
impact), but essential for handling large-scale problems
with dimensions of the order of 106 or above. Most classes
of large-scale optimization problems have sparsity of 0.1%
or even lower. An important class of optimization prob-
lems with these properties are discretized optimal control
problems using full discretization, the method used by
WORHP’s companion transcriptor TRANSWORHP2.

Determining the derivatives of non-academic problem for-
mulations is nontrivial at best; for many it is outright
impossible due to technical reasons (e.g. legacy codebase),
the inherent problem formulation (e.g. interpolated table
data), the sheer model complexity, or all of the above
(e.g. interplanetary flight involving ephemeris calculations
of celestial bodies). Since most of these cases are not
tractable by automatic differentiation tools, either, users
have to fall back to finite difference approximations.

Standard finite difference calculations are infeasible: The
simplest case is the forward difference approximation

∂φ

∂xi
(x) ≈ φ(x+ εei)− φ(x)

ε
, i = 1, ..., n

requiring n + 1 function evaluations, which can be pro-
hibitively costly, since n may be large, or φ (either F or
G) may be expensive to evaluate.

The problem is alleviated by the fact that F in many cases
depends on few optimization variables only, hence the
number of nonzeros nnz is small compared to n, and only
nnz + 1� n+ 1 evaluations are needed. The constraints
G, however, as a vector-valued function depend on all
optimization variables, so a more sophisticated approach
is necessary to calculate finite differences with tolerable
effort:

Let the Jacobian of G have sparsity structure

∇G =

(∗ ∗
∗ ∗
∗ ∗

)
=

(• ◦
◦ •
• ◦

)
,

where ∗ denotes structural nonzeros. We can group vari-
ables, if all rows of ∇G depend on at most one variable
per group. One possible grouping is denoted by ◦ and
• in the example above. To calculate a finite-difference
approximation of the Jacobian, we can now perform mul-
tiple perturbations in a single evaluation, and calculate the
whole Jacobian approximation by evaluating

G
(
x+ ε(e1 + e3)

)
−G(x)

ε

and

G
(
x+ ε(e2 + e4)

)
−G(x)

ε
2For a discussion of transcription methods cf. [1, 4] and the presenta-

tion of TRANSWORHP by M. Knauer.

i.e. two evaluations of G (omitting the unperturbed one,
which can be cached) in contrast to four evaluations for
the naïve approach. An additional benefit of the group
strategy is the discretization-invariance when applied to
fully discretized optimal control problems – the number of
groups is constant, irrespective of the discretization grid.

Constructing these groupings such that their overall num-
ber is minimal is an NP-hard problem. WORHP therefore
uses efficient heuristics, which provide groupings close
to optimal for most problems. With some extensions, the
grouping approach can also be used to calculate finite dif-
ference approximations of second derivatives, which are
needed to solve (QP). For a detailed account of advanced
derivative approximation techniques see [9].

2. RECENT DEVELOPMENTS

2.1. TRANSWORHP

WORHP, from its inception, has been designed as the NLP
solver component for solving optimal control problems of
the form

min
u
F (y, u) = η

(
y(t0), y(tf)

)
+

∫ tf

t0

φ0
(
y(t), u(t)

)
dt

subject to ẏ(t) = φ
(
y(t), u(t)

)
,

y(t0) = y0,

ψ
(
y(tf)

)
= 0,

C
(
y(t), u(t)

)
≤ 0, t ∈ [t0, tf]

(OCP)

with η : R2n → R, φ0 : Rn+m → R, φ : Rn+m → Rn,
ψ : Rn → Rr, 0 6 r 6 n, and C : Rn+m → Rk being
sufficiently smooth functions on appropriate open sets.
The admissible class of control functions is that of piece-
wise continuous controls. The final time tf is either fixed
or free.

Optimal control problems can be understood as infinite-
dimensional optimization problems, since the states y
and the controls u have to be optimal for every point of
time t ∈ [t0, tf]. When using direct methods, two major
approaches exist to transform these infinite-dimensional
optimization problems into finite-dimensional ones, either
resulting in small and dense problems (NUDOCCCS [4]),
or large and sparse problems (TRANSWORHP in “From
WORHP to TRANSWORHP” by M. Knauer).

2.2. Structure-Preserving Sparse BFGS

Since finite-difference approximations to second deriva-
tives may still be expensive to calculate, and since the
finite difference approach is inherently ill-conditioned, it
is usually infeasible to apply them to particularly difficult
or large problems. The BFGS update technique is named

after Broyden, Fletcher, Goldfarb and Shanno, who gener-
alized the secant method to calculate approximations to
the Hessian of the Lagrange function ∇2

xxL(x, µ). BFGS
methods take an initial matrix and perform an update on
it that is cheap to compute from known quantities. There
exist variations of the basic technique, such as rank-1
vs. rank-2 updates (cf. [5, 6]), but all of them share favor-
able properties that are the reason for their widespread
use in NLP solvers. One common property of the BFGS
update is the fact that a single update step generally pro-
duces a dense matrix, irrespective of the sparsity of the
initial matrix (this is usually chosen as the identity ma-
trix, which is very sparse). This property precludes the
use of standard BFGS update techniques for problems
with more than a few hundred variables, since the num-
ber of entries of the Hessian ∇2

xxL(x, µ) grows as O(n2),
and would thus destroy any performance advantage over
(sparse) finite-difference approximations.

Therefore WORHP offers a number of non-standard
BFGS update techniques that are also suitable for large-
scale problems: A first modification is to perform non-
intersecting, intersecting or even multiply-intersecting
block-BFGS updates of the form

Bni =

()
, Bi =

()
, Bmi =

()
.

The non-intersecting case is straightforward, because the
classic BFGS method can be applied to the individual
blocks, while the intersecting cases need a technique
called convexity shifts to maintain the BFGS properties.
By choosing appropriate block sizes and overlapping, the
structure of Hessian matrices with small bandwidths can
be approximated or reconstructed using BFGS matrices
of Bi or Bmi structure. If, however, the Hessian has
(many) far off-diagonal entries, none of these approaches
can cover them without sacrificing a substantial degree
of sparsity (which is essential for adequate performance
in large-scale optimization). Even though the solver is
able to cope with missing elements, and will even con-
verge if the Hessian is replaced by the identity matrix,
this adversely affects convergence order. A worse (lower)
convergence order in turn causes the NLP solver to require
more – possibly many more – iterations to converge to an
optimal point.

For these cases, WORHP offers the so-called SBFGS
method. One central idea behind this method is illustrated
by the following example:

Consider the sparse symmetric matrix

A =

a b 0 0
b c d e
0 d f 0
0 e 0 g

 .

By selecting and rearranging the elements of A, we can
form three dense sub-matrices matrices

A1 =

(
a b
b c

)
, A2 =

(
c d
d f

)
, A3 =

(
c e
e g

)

and perform the standard BFGS update on them, to ob-
tain Ãi. An updated form Ã of the original matrix A can
then be reassembled from the Ãi, since all elements are ac-
counted for. However, c is present in all three sub-matrices
Ai, resulting in three potentially different elements c̃i after
the dense BFGS updates on Ãi. The updated element c̃
can be obtained from a convex combination

∑
i λic̃i with

suitably chosen λi.

The SBFGS method uses the above idea to decompose
the Hessian into smaller dense sub-matrices, perform the
classic BFGS update on them, and then reassemble them
appropriately. The mathematical challenge is to preserve
certain properties of the update to admit a convergence
proof and maintain positive definiteness, while the tech-
nical challenge is to find the minimum number of dense
sub-matrices of maximum size. Mathematical details and
a convergence proof can be found in [9].

2.3. Post-Optimality Analysis

WORHP’s post-optimality analysis module is currently
in development. It is based on the theory of Parametric
Sensitivity Analysis [2, 3] and allows a range of advanced
applications of nonlinear optimization, including real-time
optimization and deterministic risk assessment.

The mathematical background is based on a perturbed
version of (NLP)

min
x∈Rn

F (x;p) + rᵀx

subject to Gi(x;p) = 0 + qi, i ∈ I
Gj(x;p) 6 0 + qj , j ∈ J

(NLPp)

where p ∈ Rn, q ∈ Rm and r ∈ Rk are arbitrary perturba-
tions. Parametric sensitivity analysis is a tool that allows
to compute sensitivity derivatives of important optimal
values, such as

dF

d?
(x∗),

dG

d?
(x∗),

dx∗

d?

with ? ∈ {p,q, r}. The sensitivity derivatives have a
wide range of possible applications, in all areas where
optimization is used: The sensitivities of optimal trajecto-
ries enable on-board optimal closed-loop control of any
kind of craft; an example is a reentry vehicle that main-
tains its optimal trajectory even under atmospheric density
fluctuations. Applied to a design cycle, for instance apply-
ing topology optimization, high sensitivities can be used
to improve a design by raising its robustness against the
respective perturbation. Sensitivities allow deterministic
and quantitative risk assessment, since it is possible to
exactly3 determine the size of (even multiple, concurrent)
perturbations that would cause the modeled process to fail.

3The actual precision depends on the size of the perturbation, since
parametric sensitivity analysis is a local theory. Using second-order sen-
sitivity derivatives increase admissible perturbation sizes and precision.

As a more extensive example for an application of post-
optimality analysis, we can consider a (possibly MDO)
launcher design, where the objective F (x;p) is the mass
that can be launched into a specific orbit, and our goal is
to vary some design parameters and observe the change
of the objective with respect to these changes.

The standard approach to this problem is Monte-Carlo
simulation, using a high number of simulations with ran-
domly chosen design parameters, which yields a non-
deterministic result, i.e. a probability distribution for the
optimum. The computational costs are high, since many
complete optimization runs have to be performed.

Using post-optimality analysis, we can instead fix a design
parameter p0 and compute F (x∗;p0) and dF

dp (x
∗;p0)

once. Changing the design parameter p0 can be con-
sidered as a perturbation ∆p = p − p0 of the original
problem, whose solution is known. Using the previously
computed sensitivity derivative, the perturbed optimal so-
lution for a specific value of p can now be computed
through

F (x∗;p) ≈ dF

dp
(x∗;p0) ·∆p,

which is very cheap to evaluate. The error (due to truncat-
ing the Taylor approximation) is of order O(‖∆p‖2).

Compared to the Monte-Carlo approach, the post-
optimality analysis has initial computational costs that are
somewhat higher than a single optimization run, but allow
exhaustive analysis of the perturbation parameter space at
virtually no cost, with deterministic results. This process
can further be improved by combining this with q and
r perturbations (see (NLPp)), and possibly second-order
sensitivity derivatives for higher precision and greater ad-
missible perturbation size.

2.4. Weak-Active Set

Textbook SQP methods use the so-called Active Set
method to handle inequality constraints. An inequality
constraint g(x) 6 0 is called active, if the inequality turns
into an equality g(x) = 0, i.e. the constraint “reaches
its bound”. The Active Set approach tries to determine,
which of the inequality constraints Gj(x) 6 0, j ∈ J in
(NLP) will become active in the next iteration. The active
inequality constraints are then treated as equalities, while
the inactive constraints are dropped. Since the method
has to make a prediction about a nonlinear function G,
it is not always exact, and therefore has to iterate until
the correct active set has been determined. Although the
active set stabilizes close to the optimum, the iterative
determination has worst-case exponential complexity, and
could thus be unsuitable for large-scale problems. For
this reason, WORHP uses a different internal approach
that is able to handle inequality constraints, but has higher
complexity than the standard approaches for inequality
constraints only.

Due to this, the Weak-Active Set (WAS) approach tries to
reduce the number of inequality constraints that have to
be considered by making a similar prediction to the strict
(non-“weak”) method, and dropping those inequality con-
straints that have a high probability of not becoming active
in the next iteration. Potential candidates for inequality
constraints that may become active are left untouched,
since WORHP can internally handle them fine.

n m standard WAS

50,000 149,997 8.1 s 1.6 s
100,000 299,997 13.3 s 3.5 s
250,000 749,997 54.4 s 15.2 s
500,000 1,499,997 249.2 s 40.3 s

Table 1. Timings for a modified version of the mccormck
problem from CUTEr, comparing the standard and the
Weak-Active Set approach for different problem sizes.
Given times are pure NLP times without time spent in
AMPL routines.

This approach is especially powerful for optimal control
problems with inequality path constraints (C in (OCP))
that are active only in certain phases of the overall process.
Using the Weak-Active Set, WORHP can significantly
reduce the problem sizes and thus achieve a noticeable
performance boost. Table 1 shows an example that profits
greatly from the Weak-Active Set approach.

3. APPLICATIONS

3.1. CUTEr

While CUTEr by itself is not a genuine application, it
is a commonly used “yardstick” to measure a solver’s
robustness and performance.

10−1 100 101 102 103 104

20

40

60

80

100

Cumulative time [s]

N
um

be
ro

fs
ol

ve
d

pr
ob

le
m

s
[%

] CUTEr (920 problems, AMPL models)

WORHP 1.0-r1804 Ipopt 3.9.2
KNITRO 6.0.0 SNOPT 7.2-8

Figure 2. Semi-logarithmic plot showing the percentage
of solved problems (of the CUTEr set) against the time
needed to solve them.

Figure 2 demonstrates that WORHP is the fastest and most
robust among the test candidates on the CUTEr test set.

3.2. Model-Predictive Control of a Swarm

The following example is motivated by [7]. Consider a
swarm of P agents moving in the 2-dimensional plane,
described by

ẋi(t) = φ
(
xi(t), ui(t)

)
, i = 1, . . . , P (1)

with states xi = (xi1, . . . , xi4)
ᵀ ∈ R4 and controls

ui = (ui1, ui2)
ᵀ ∈ R2 and a system dynamic φ(xi, ui) =

(xi2, ui1, xi4, ui2)
ᵀ. The position of each agent i in

the plane is described by (xi1, xi3) and its velocity by
(xi2, xi4). The acceleration of each agent can be con-
trolled by the control input (ui1, ui2). The overall dimen-
sion of the problem is therefore 4P states and 2P controls.

The control input is constrained by −12 6 ui1(t) 6 12,
and −12 6 ui2(t) 6 12. The state constraints are given
by

• collision avoidance constraints

‖(xi1(t), xi3(t))ᵀ − (xj1(t), xj3(t))
ᵀ‖2 > 0.08

∀t ∀i, j = 1, . . . , P, i 6= j.

• velocity constraints

‖(xi2(t), xi4(t))ᵀ‖2 6 1 ∀t ∀i = 1, . . . , P.

• static obstacle constraints

(xi1(t), xi3(t))
ᵀ /∈ Brp(yp),

∀t, p = 1, 2, 3, ∀i = 1 . . . P,

i.e. circular obstacles with midpoints y1 =
(1.1,−0.3)ᵀ, y2 = (2, 0.3)ᵀ, y3 = (2.4,−0.2)ᵀ and
(r1, r2, r3) = (0.4, 0.3, 0.15). Br(y) denotes the
closed ball with radius r around y.

• moving obstacle constraints

(xi1(t), xi3(t))
ᵀ /∈ B0.13(y4(t)), ∀t, ∀i = 1 . . . P,

with y4(t) = (−0.35 + 0.925t,−1.2 + 1.225t)ᵀ.

• initial state constraints

xi(0) =
(
(i− 1)0.12, 0, 1, 0

)ᵀ ∀i = 1 . . . P.

The state constraints render the overall problem nonlinear,
even though the dynamic (1) is linear.

The goal is to find a closed-loop control u = µ(x),
µ : R4P → R2P that moves all agents to the the point
of origin xe1 = 0 until t = 4.5 s and after t = 4.5 s until
t = 8 s to xe2 = (3, 0, 0, 0)ᵀ.

We solve this problem with a nonlinear model predictive
control (NMPC) approach. The idea of NMPC is to solve
an optimal control problem at each sampling instant k for

x1

x3

×

k = 15

x1

x3

×

k = 50

x1

x3

×

k = 90

x1

x3

×

k = 160

x1

x3

×

k = 190

x1

x3

×

k = 210

x1

x3

×

k = 235

x1

x3

×

k = 320

Figure 3. Agents and obstacles at 8 different time points.
Note the moving obstacle in the first two plots. The swarm
first moves towards the origin xe1, trying to minimize their
distances, and after the switch to the second target xe2 at
k = 180, begin to move through the obstacles.

a given finite optimization horizon. To obtain a closed
loop control, only the first step of the optimal control is
actually carried out by the system, and after each time
step, a new control sequence with updated initial state
constraints is calculated. With the NMPC approach, a
sequence of optimal control problems (OCP) within the
sampling period T have to be solved.

Figure 3 shows how this problem is solved for P = 64
agents by an NMPC-Algorithm with WORHP. To solve
the swarm problem, the OCP are discretized using an
explicit Euler scheme. The sampling period is chosen as
T = 0.025 s and the horizon as N = 7, such that in each
step k, the objective function

min
u∈UN

J(x, u) :=

N−1∑
j=0

P∑
i=1

(∥∥(xji1, xji3)ᵀ − xe∥∥22
+
∥∥(xji2, xji4)ᵀ∥∥22/4000)

is minimized subject to the abovementioned constraints
and the equality constraints arising from the discretization
of the system dynamic, with xe = xe1 for k = 1 . . . 179
and xe = xe2 for k = 180 . . . 320. Note that the control
u is not penalized and that the problem is solved without
terminal constraints. For this specific case WORHP has to
solve 320 optimization problems with each 2,560 variables
and 18,912 constraints. The system shows exactly the
desired behavior, as seen in Figure 3.

The limited look-ahead horizon of each agent can be ob-

served by noticing that they only start evading obstacles
shortly before they are reached, whereas an optimal con-
trol approach would start the evasive maneuver earlier.

3.3. Satellite Coverage Optimization

The task of this application is to maximize the covered
area of an Earth observation satellite or a constellation of
satellites. The available degrees of freedom are (usually
a subset of) the Keplerian elements of the satellite, and
the observation schedule, where the latter may be subject
to various constraints concerning the sensor duty cycle,
downlink availability and on-board storage space, energy
budget, etc. Additional requirements may be revisits, min-
imum time to observation, local sunlight conditions of
the observed area, etc. All in all, the general problem
statement has very many possible specializations, and is
highly relevant to Earth observation.

If we denote with x2i−1 the starting time, and with x2i the
ending time of swath i, we can formulate a basic problem
as

max
x∈R2n

Area(x)

subject to x2i − x2i−1 6 lmax (sensor limitations),
x2i − x2i−1 > 0 (positive swath length)
x2i+1 − x2i > s (time between swaths).

The established approach is to cover Earth with a grid
of discrete points to keep track of observed areas. Due
to its discrete nature, this approach cannot make reliable
statements about the area between points (although this
can be remedied by local grid refinement), and is not
tractable for smooth optimization, since it is inherently
non-differentiable.

Figure 4. A couple of overlapping swaths over Europe.
One can clearly observe that all polygons are convex, and
that overlaps have been simplified by merging.

Our new approach models areas on an ellipsoid as a set
of polygons. This allows precise calculation of the cov-
ered area with respect to WGS 84 or other ellipsoid Earth
models in use. One major challenge is the calculation of

arbitrary polygons, which can be simplified by requiring
them to be convex – a non-convex polygon is split into
two or more convex ones. Since it is desirable to represent
the covered area with as few polygons as possible, itera-
tive simplification, as the covered area increases, is used
to simplify the area by merging adjacent polygons into
fewer polygons. Another complication is caused by the
fact that swaths often cover an area multiple times, which
has to be taken into account when merging to calculate
the whole observed area. Figure 4 shows an example of
multiply-covered areas with merged polygons.

The formulation is differentiable, so it is tractable for opti-
mization with WORHP, allowing to optimize orbits, con-
stellations and observation schedules with unprecedented
accuracy.

ACKNOWLEDGMENTS

Development of WORHP has been supported by BMWi
(German Federal Ministry of Economics and Technol-
ogy), the TEC-EC Control Division of the European
Space Agency (ESA) in the projects eNLP (GSTP-4) and
eNLPext (GSTP-5) and Steinbeis Research Center (SFZ)
Optimization and Optimal Control.

REFERENCES

1. John T. Betts. Practical Methods for Optimal Control
Using Nonlinear Programming. SIAM Press, Philadel-
phia, Pennsylvania, 2001.

2. Christof Büskens. Optimierungsmethoden und Sensi-
tivitätsanalyse für optimale Steuerprozesse mit Steuer-
und Zustands-Beschränkungen. Dissertation, Univer-
sität Münster, 1998.

3. Christof Büskens. Echtzeitoptimierung und Echtzeitop-
timalsteuerung parametergestörter Probleme. Habili-
tation, Universität Bayreuth, 2002.

4. Christof Büskens and Helmut Maurer. SQP-methods
for solving optimal control problems with control and
state constraints: Adjoint variables, sensitivity analy-
sis and real-time control. Journal of Computational
and Applied Mathematics, pages 85–108, 2000.

5. Roger Fletcher. An optimal positive definite update
for sparse Hessian matrices. SIAM Journal on Opti-
mization, 5(1), 1995.

6. Philip E. Gill, Walter Murray, and Margaret H. Wright.
Practical Optimization. Academic Press, 1981.

7. Lars Grüne. NMPC without terminal constraints.
Preprint, 2012.

8. Shih-Ping Han. Superlinearly Convergent Variable
Metric Algorithms for General Nonlinear Program-
ming Problems. Math. Programming, 11(3):263–282,
1976/77.

9. Patrik Kalmbach. Effiziente Ableitungsbestimmung bei
hochdimensionaler nichtlinearer Optimierung. Disser-
tation, Universität Bremen, 2011.

10. Robert B. Wilson. A Simplicial Algorithm for Con-
cave Programming. PhD thesis, Harvard University,
1963.

	Introduction
	Fundamentals of Worhp
	Derivatives and Sparsity

	Recent developments
	TransWorhp
	Structure-Preserving Sparse BFGS
	Post-Optimality Analysis
	Weak-Active Set

	Applications
	CUTEr
	Model-Predictive Control of a Swarm
	Satellite Coverage Optimization

