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Abstract. This paper presents Tikhonov- and iterated soft-shrinkage regularization

methods for non-linear inverse medium scattering problems. Motivated by recent

sparsity-promoting reconstruction schemes for inverse problems, we assume that the

contrast of the medium is supported within a small subdomain of a known search

domain and minimize Tikhonov functionals with sparsity-promoting penalty terms

based on Lp-norms. Analytically, this is based on scattering theory for the Helmholtz

equation with refractive index in Lp, 1 < p < ∞, and on crucial continuity and

compactness properties of the contrast-to-measurement operator. Algorithmically,

we use an iterated soft-shrinkage scheme combined with the differentiability of the

forward operator in Lp to approximate the minimizer of the Tikhonov functional. The

feasibility of this approach together with the quality of the obtained reconstructions is

demonstrated via numerical examples.
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1. Introduction

We consider time-harmonic inverse scattering of either electromagnetic waves in

transverse magnetic polarization from a penetrable non-magnetic material, or of acoustic

waves from an inhomogeneous medium with constant density. The model describing such

waves with time-dependence exp(−iωt) is the Helmholtz equation [1, 8]

∆u+ k2n2u = 0 in R
d, d = 2 or 3. (1)

The wave number k is positive and the refractive index function n equals one outside

a bounded and open set D ⊂ Rd. Inside the scattering object D the refractive index is

different from one. We define the contrast function q : Rd → C, supported in D, by

q := n2 − 1 in R
d.

The aim of this paper is to establish a regularization scheme in Banach spaces for

the inverse scattering problem to reconstruct q from multi-static measurements of

scattered waves solving (1). This algorithm is motivated by recent sparsity(-promoting)

reconstruction techniques for linear and non-linear operator equations in Banach

spaces [2, 3, 4]. We illustrate the reconstruction quality of our reconstruction scheme

for inverse scattering problems by numerical examples for “sparse” contrasts, that is,

for contrasts with small support within the search domain.

When an incident time-harmonic wave ui, that is, a solution to the Helmholtz

equation ∆ui + k2ui = 0, illuminates the inclusion D, then the total wave u satisfies (1)

in Rd, subject to Sommerfeld’s radiation condition for the scattered wave us = u− ui,

lim
|x|→∞

|x|
d−1
2

(

∂
∂|x|

− ik
)

us(x) = 0 uniformly in all directions x̂ = x/|x|. (2)

Denote by Φ the radiating fundamental solution of the Helmholtz equation,

Φ(x, y) =

{

i
4
H

(1)
0 (k|x− y|), x, y ∈ R

2, x 6= y,
exp(ik|x−y|)

4π|x−y|
, x, y ∈ R3, x 6= y,

and (formally) define the radiating volume potential by

V (f)(x) :=

∫

D

Φ(x, y)f(y) dy, x ∈ R
d.

The scattered field us = u−ui from (2) can then be found as solution to the Lippmann-

Schwinger integral equation

us − k2V (qus) = k2V (qui) in D. (3)

There are several possible choices for the spaces in which one considers this integral

equation. For q ∈ L∞(D), the natural (and easiest) choice is to solve for u ∈ L2(D).

However, we are interested in a reconstruction scheme that exploits the a-priori

information that the contrast has small support within the search domain. Hence, for

any Tikhonov-type regularization approach, a penalty term based on Lp-norms for small

p seems most appropriate, since, roughly speaking, small values of the reconstruction

are strongly penalized. Since we would like to work with reflexive function spaces, we
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restrict ourselves to p ∈ (1,∞), for simplicity. Obviously, such an Lp-based Tikhonov

regularization approach requires solution theory for the Helmholtz equation (1) or the

Lippmann-Schwinger equation (3) that is able to deal with contrasts in Lp-spaces. Such

theory is also established in [5] for the Schrödinger equation ∆u + (k2 + q)u = 0 for q

in distributional Sobolev spaces W−ε,p
comp(R

d) with ε > 0 small enough and p > d/2. The

solution to the integral equation is then found in W ε,2p′(Rd) where p′ = p/(p − 1). In

principle, we could use the results from [5] for our paper. However, the proofs in [5] use,

e.g., sophisticated multiplier estimates in the Sobolev spacesW ε,p(Rd). We prefer in this

paper to provide a solution theory for (1) or, equivalently, for the integral equation (3),

in Sobolev spaces W 2,t with contrast q ∈ Lp that uses comparatively elementary tools:

the well-known Sobolev spaces Wm,p for m ∈ N, Sobolev embeddings, and bounds for

the volume potential.

As in [5], our bound in the Lebesgue index p for the contrast q ∈ Lp is p > d/2.

This is due to a unique continuation argument that is needed to establish uniqueness

of a distributional solution to (1). The most general unique continuation result seems

to be contained in [6]. However, the proof of this result is deep and involved. We also

present an independent elementary proof of the unique continuation result generalizing

the Fourier series technique from [7] to a refractive index in Lp for p > d. Despite the

bound in p of this proof is not optimal, we believe again that an elementary proof, that

may still be optimized in p, has its own interest.

The analytic results for scattering with Lp-contrasts serve to prove several

continuity results for the contrast-to-measurement operator N that maps q ∈ Lp to the

multi-static near-field measurements. Amongst others, we prove continuity, compactness

and weak sequential closedness of this mapping. These properties are sufficient to show

convergence of a non-linear Tikhonov regularization in Lp, d/2 < p < ∞, applied to

the inverse problem. Since N is Fréchet differentiable, this allows to use a shrinked,

non-linear Landweber iteration to minimize the Tikhonov functional numerically. We

illustrate the resulting scheme by numerical examples.

Inverse scattering problems are among the most popular and well-studied non-

linear ill-posed problems with a rich and mathematically deep history. We refer

to [8, 9] for an overview of theoretical and numerical methods for (direct and) inverse

scattering. Inverse scattering problems are on the one hand challenging due to their ill-

posedness and non-linearity, but on the other hand also crucial for many important

problems in science and industry. Examples include SONAR and RADAR, light

scattering from nano-structured surfaces (e.g., solar cells), or inverse scattering problems

related to spectroscopy measurements with tunable lasers occurring in production

processes. Known techniques to tackle such problems include high- or low-frequency

approximations as for instance the Born or geometric optics approximation. These

approximations linearize the inverse problem and cannot be applied in the important

resonance region where the inverse problem is truly non-linear. (In our numerical

examples later on, the wave number will be chosen that large that the problem is

set in the resonance region, i.e., v 7→ k2V (qv) is not a contraction.) Let us note
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here that the paper [10] applies a sparsity-promoting ℓ1-penalty approach to tackle

a linearized inverse scattering problem for small scatterers when dealing with intensity

measurements. Further, [11] studies a two-stage approach for the reconstruction of a

sparse contrast, where a direct method is coupled with a semi-smooth Newton method

for minimizing a combined L1- and H1-Tikhonov functional.

If one cannot avoid to cope with the non-linearity of the inverse problem, Newton-

like schemes [12] are powerful and accurate methods to solve inverse medium scattering

problems. This class of methods is probably the closest to our technique, since we also

exploit the Fréchet differentiability of the contrast-to-measurement operator. Of course,

the resulting disadvantage, as for all Newton-like methods, is that computing such

Fréchet derivatives is time-consuming since it requires to solve differential equations.

Last but not least, decomposition methods are popular, in particular in the engineering

community. Examples of such techniques are for instance the contrast source inversion

method [13] or the approximative inverse [14] applied to inverse medium scattering.

We finish this introduction with a couple of further remarks on the setting of this

paper. We entirely consider point measurements of the scattered fields taken a finite

distance away from the scattering objects. However, we are not aware of any theoretical

obstacle to extend the present work to a far-field setting. Note that in our numerical

examples we take the measurements several wavelengths away from the scattering object,

corresponding effectively to far-field measurements.

A couple of points will remain open in this paper. First, we will not give a proper

numerical analysis of the sparsity-promoting reconstruction method that we propose,

and we will not consider complex-valued contrasts in our numerical examples. Second,

we will only consider Hilbert spaces as image spaces for the contrast-to-measurement

operator, but not Banach spaces.

The structure of this paper is as follows: In Section 2 we present solution theory

for the Lippmann-Schwinger integral equation with contrast in Lp for p > d/2. Being

able to solve this integral equation, we can define a contrast-to-measurement map in

Section 3 and analyze crucial analytic properties of this nonlinear operator. Section 4

extends these results to multi-static measurements and provides convergence results for

a non-linear Tikhonov regularization scheme. In Section 5 we use the analytic properties

of the contrast-to-measurement operator to construct sparsity-promoting reconstruction

schemes and present numerical examples. The appendices contain mostly well-known

auxiliary results on Sobolev embeddings, collectively compact operator theory, Hilbert-

Schmidt operators, nonlinear Tikhonov regularization, and differentiability of the

forward operator in Lp that are necessary to prove the main results of this work.

2. Solving the Scattering Problem via Integral Equations

To tackle the scattering problem via integral equations, let us define the volume potential

(V f)(x) =

∫

BR

Φ(x, y)f(y) dy, x ∈ R
d, d = 2, 3, (4)
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for smooth functions f ∈ C∞
0 (BR) with compact support in BR = {x ∈ Rd, |x| < R}.

Lemma 1. The volume potential V extends to a bounded operator from Lt(BR)

into W 2,t(BR) for all t ∈ (1,∞) and all R > 0.

Proof. For t = 2, this is a well-known result (see, e.g., [8]). For t 6= 2, the above bound

follows from the Calderon-Zygmund decomposition, e.g., the one stated in [15, Theorem

9.9]. In detail, for f ∈ C∞
0 (BR) it is well-known that u(x) = (V f)(x), x ∈ Rd, solves

∆u + k2u = −f in R
d (where f is extended by zero to R

d), that is, ∆u = −(k2u+ f).

Introducing an arbitrary smooth cut-off function χ with compact support in B2R that

equals one in BR, we set w := χu, a smooth function with compact support. Hence, [15,

Theorem 9.9] states that

d
∑

i,j=1

∥

∥

∥

∂2w
∂xi∂xj

∥

∥

∥

Lt(Rd)
≤ C‖χ(k2u+ f)− 2∇χ · ∇u− u∆χ‖Lt(Rd)

≤ C(χ)
[

‖u‖Lt(B2R) + ‖f‖Lt(BBR
) + ‖∇u‖Lt(B2R)d

]

. (5)

It is moreover obvious that ‖u‖Lt(B2R) ≤ C‖f‖Lt(BR) since the integral operator V has

a weakly singular kernel; the bound ‖∇u‖Lt(B2R)d ≤ C‖f‖Lt(BR) follows by the same

argument. Together with (5), this shows that

d
∑

i,j=1

∥

∥

∥

∂2w
∂xi∂xj

∥

∥

∥

Lt(Rd)
≤ C(χ)‖f‖Lt(BR).

However, since χ equals to one in BR, we showed in particular that

‖∂2u/(∂xi∂xj)‖Lt(BR) ≤ C(χ)‖f‖Lt(BR) for i, j = 1, . . . , d. We conclude that

‖u‖W 2,t(BR) ≤ C‖f‖Lt(BR) for all f ∈ C∞
0 (BR). The claim now follows from the density

of these functions in Lt(BR).

As we already discussed, the Lippmann-Schwinger integral equation describes the

scattered field in terms of the incident field restricted to the scatterer D. In the rest of

the paper we assume that

D = supp(q) ⊂ BR.

It is then obvious that we can consider the Lippmann-Schwinger equation (3), originally

acting on functions defined in D, as an equation acting on functions defined in BR.

We denote the corresponding volume potential by VBR→BR
(to distinguish it from other

potentials needed later on). Hence, the Lippmann-Schwinger integral equation becomes

us − k2VBR→BR
(qus) = k2VBR→BR

(qui) in BR.

As preparation for the proof of the next proposition, let us note that the boundedness

of the volume potential V from Ltp/(t+p)(BR) into W 2,tp/(t+p)(BR) and the generalized

Hölder inequality (A.1) implies the bound

‖VBR→BR
(qu)‖W 2,tp/(t+p)(BR) ≤ C‖qu‖Ltp/(t+p)(BR) ≤ C‖q‖Lp(BR)‖u‖Lt(BR), (6)

whenever tp/(t+p) > 1 and t, p > 1. Loosely speaking, we next show that u 7→ V (qu) is

compact on Lt(BR) if t is big enough with respect to the Lebesgue index p of q ∈ Lp(BR).
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Proposition 2. Let p > d/2 and q ∈ Lp(BR).

(a) If p
p−1

< t < dp
2p−d

, then the operator u 7→ VBR→BR
(qu) is compact on Lt(BR).

(b) If t = dp
2p−d

, then u 7→ VBR→BR
(qu) is compact from Lt(BR) to L

r(BR) for r ∈ [1,∞).

(c) If t > dp
2p−d

, then u 7→ VBR→BR
(qu) is compact from Lt(BR) to L

r(BR) for r ∈ [1,∞].

Proof. (a) Note that t > p/(p− 1) implies that tp/(t+ p) > 1. We want to exploit (6)

and, to this end, note that the compact Sobolev embedding (see Lemma 12(a))

W 2,tp/(t+p)(BR) →֒ Lr(BR) for 1 ≤ r < d tp/(t+p)
d−2 tp/(t+p)

implies that u 7→ VBR→BR
(qu) is compact on Lt(BR) if

t < d tp/(t+p)
d−2 tp/(t+p)

, that is, if 1 < dp/(t+p)
d−2 tp/(t+p)

.

The last inequality is equivalent to d− 2tp/(t+ p) < dp/(t+ p), that is, to our general

assumption d/2 < p.

(b) If t = dp/(2p − d), then d = 2tp/(t + p). The latter inequality implies (by

Lemma 12(b)) that W 2,tp/(t+p)(BR) =W 2,d/2(BR) is compactly embedded in Lr(BR) for

all r ∈ [1,∞). Together with (6), this implies the claimed boundedness of u 7→ V (qu).

(c) If t > dp/(2p − d), then d < 2tp/(t + p). In this case, Sobolev’s embedding

lemma (see again Lemma 12(c)) states that W 2,tp/(t+p)(BR) is compactly embedded in

Lr(BR) for all r ∈ [1,∞]. The bound (6) is then again sufficient to conclude.

The next result is a unique continuation property for Lp-solutions to the Helmholtz

equation. To state this result, we use the spaces

Wm,r
loc (Rd) := {v : Rd → C, v ∈ Wm,r(BR) for all R > 0}, m ∈ N0, r ≥ 1.

Lemma 3. Let q ∈ Lp(BR) for p > d/2 such that Im (q) ≥ 0 in BR. Assume that

u ∈ W 2,r
loc (R

d) with

2d
d+2

< r <∞

solves ∆u + k2n2u = 0 in the distributional sense in Rd, subject to the Sommerfeld

radiation condition (2). Then u vanishes in Rd.

Proof. Since the Helmholtz equation ∆u + k2n2u = 0 has constant coefficients in the

complement of BR, the solution u is a real-analytic function outside BR (see Theorem

9.19 in [15]) and the radiation condition (2) is well-defined. If u ∈ W 2,r
loc (R

d) for

2d/(2 + d) < r < ∞, Sobolev’s embedding theorem (see Lemma 12) implies that u

belongs to W 1,2
loc (R

d), since ‖u‖W 1,2(BR) ≤ C(R)‖u‖W 2,r(BR) for all R > 0.

Integrating ∆u+ k2n2u = 0 in BR against u and partial integration shows that
∫

BR

(

|∇u|2 − k2n2|u|2
)

dx =

∫

BR

u∂u
∂ν

dS.

Since Im (q) = Im (n2) > 0 by assumption,
∫

BR
u ∂u/∂ν dS ≥ 0 and Rellich’s lemma

(see [8]) implies that u vanishes outside a ball of radius R such that D ⊂ BR. Since

solutions to the homogeneous Helmholtz equation are analytic, u even vanishes in the
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complement of BR. The partial differential equation ∆u + k2n2u = 0 that is satisfied

almost everywhere in Rd implies that

|∆u(x)| ≤ k2|n2(x)| |u(x)| = k2(1 + |q|) |u| almost everywhere in Rd. (7)

The above assumptions fit to Theorem 6.3 in [6] (see also Remark 6.7 in that reference),

yielding that u vanishes entirely in Rd.

Remark 4. The results from [6] require proofs that are far from elementary. For

our problem, easier Fourier series techniques from [7] can be employed. In an Lp-

setting, these techniques yield, however, suboptimal results in the Lebesgue coefficient p.

We nevertheless sketch these results here, since we employ them when proving strong

convergence of the Tikhonov regularized solutions for the inverse problem in Section 4.

Assume hence that u ∈ W 2,r
loc (R

d) with r > d/2 is a weak solution of ∆u+ k2n2u =

∆u + k2(1 + q)u = 0 for q ∈ Lp(BR) with p > d. We already noted in the proof of

Lemma 3 that such solutions u automatically belong to W 1,2
loc (R

d) and that they vanish

outside of BR. For R′ > R and t > 0 set ζt = (t, it)⊤ for d = 2 and ζt = (t, it, 0)⊤ for

d = 3. Then

wt(x) = exp(−iζt · x)u(x), x ∈ Q := [−R′, R′]d,

can be extended to a 2R′-periodic function in Rd. Hence, wt belongs to the periodic

Sobolev space H1
per(Q), defined by

Hs
per(Q) =

{

v(x) =
∑

j∈Z3

v̂ne
inπ/Rx,

∑

j∈Z3

(1 + |n|2)s|v̂n|
2 <∞

}

, s ∈ R. (8)

Analogously to the periodization of wt, we restrict the refractive index n2 to Q and

extend it to a 2R′-periodic function. Since u satisfies the Helmholtz equation in L2(Q),

the product rule yields that

∆wt + 2iζt · ∇wt + k2n2wt = −k2n2wt = −k2(1 + q)wt in L2(Q).

In Theorem 1 and the subsequent remark in [7], it is shown that the solution operator

Gt to this periodic partial differential equation satisfies ‖Gt‖L2(Q)→L2(Q) ≤ C/t and

‖Gt‖L2(Q)→H1
per(Q) ≤ C. Standard interpolation theory for periodic Sobolev spaces hence

yields that ‖Gt‖L2(Q)→Hs
per(Q) ≤ Cts−1 for 0 ≤ s ≤ 1. Hence,

‖wt‖Hs
per(Q) = k2‖Gt(n

2wt)‖Hs
per(Q) ≤ Cts−1‖n2wt‖L2(Q)

≤ Cts−1‖n2‖Lp(D)‖wt‖L2p/(p−2)(Q) (9)

≤ Cts−1‖n2‖Lp(D)‖wt‖Hs
per(Q) if d < sp.

If d < sp, the last inequality follows from Lemma 13, stating that Hs(Q) is compactly

embedded in L2p/(p−2)(Q), since d < sp implies that 2p/(p− 2) < 2d/(d− 2s). Indeed,

2p
p−2

< 2d
d−2s

⇔ 2p(d− 2s) < 2d(p− 2) ⇔ −4ps < −4d⇔ d < sp.

By our assumption d < p, there is some s ∈ (0, 1) such that d < sp. Finally choosing t

large enough, we conclude from (9) that wt, and hence also u, must vanish.
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In the remainder of this paper, we always choose q ∈ Lp(D) for p > d/2, and then

determine a Lebesgue index t > 1 depending on p such that the Lippmann-Schwinger

integral equation is uniquely solvable in Lt(BR).

Assumption 5 (Choice of p and t). We fix p > d/2 (≥ 1) to work with contrasts

q ∈ Lp(BR) and choose

t > max
{

p
p−1

, 2d
d+2

}

, (10)

which guarantees that t > 1. Theorem 2 implies that the Lippmann-Schwinger equation

is then well-defined in Lt(BR). To be able to apply the unique continuation result stated

in Lemma 3, we additionally need that

tp
t+p

> 2d
d+2

. (11)

(In dimension d = 2, condition (10) is equivalent to t > p/(p − 1) which furthermore

implies (11).)

Combining the last two results with the well-know Riesz theory (see [17]) yields

solvability of the Lippmann-Schwinger equation

v − k2VBR→BR
(qv) = f in Lt(BR) (12)

for contrasts in Lp(D): Under Assumption 5, compactness of v 7→ VBR→BR
(qv) on

Lt(BR) follows from Proposition 2, and uniqueness of solution follows from Lemma 3.

Theorem 6. Let q ∈ Lp(BR) for p > d/2 such that Im (q) ≥ 0 in BR and choose

t > 1 according to Assumption 5. Then (12) has a unique solution v ∈ Lt(BR) and

‖v‖Lt(BR) ≤ C‖f‖Lt(BR). If f = k2VBR→BR
(qui) for some incident field ui ∈ Lt(BR),

then us = k2VBR→BR
(q(v + ui)) defines a radiating solution us ∈ W

2,tp/(t+p)
loc (Rd) to the

Helmholtz equation ∆us + k2n2us = −k2qui in Lt
loc(R

d).

Once the scattered field us is known in D, us can be evaluated everywhere in Rd

using the integral equation,

us(x) = k2
∫

D

Φ(x, y)q(y)(us(y) + ui(y)) dy, x ∈ R
d.

3. Properties of the Contrast-to-Measurement Map

The solution theory established in Theorem 6 allows to associate to a contrast

q ∈ Lp(BR) and an incident field ui ∈ Lt(BR) a unique solution of the scattering

problem (1, 2). The inverse problem we consider in this paper is the determination

of q from measurements of us taken a finite distance away from the scattering object.

We assume that the measurements are given as point measurements of us on a non-

empty, closed Lipschitz surface Γm. (See [16] for the definition of a Lipschitz surface.)

For simplicity, we suppose that Γm and BR do not intersect. Under this assumption,

the evaluation VBR→Γm of the volume potential defined in BR on the surface Γm is

an integral operator with smooth kernel and hence compact between any reasonable

Sobolev function spaces.
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The operator mapping (q, ui) to us|Γm is called the (mono-static) contrast-to-

measurement operator in the sequel. We start the analysis of the inverse problem

by proving important boundedness and continuity properties of this operator, and then

extend these results to multi-static data. To this end, we assume in this section that

the Lebesgue indices p > d/2 and t > 1 are always chosen according to Assumption 5,

such that Theorem 6 is applicable.

Let us fix an incident field ui ∈ Lt(BR), a smooth solution of the Helmholtz equation

∆ui + k2ui = 0 in BR. Consider contrasts q that belong to the closed and convex set

Lp
Im≥0(BR) := {q ∈ Lp(BR) : Im (q) ≥ 0 in BR} ⊂ Lp(BR).

For q ∈ Lp
Im≥0(BR) the inverse

Tq := (I − k2VBR→BR
(q ·))−1 (13)

is a bounded operator on Lt(BR) due to Assumption 5 and Theorem 6. In consequence,

the non-linear contrast-to-measurement operator

S : Lp
Im≥0(BR) ⊂ Lp(BR)× Lp(BR) → L2(Γm), (q, ui) 7→ us(q, ui)

∣

∣

Γm

is well-defined. Explicitly,

S(q, ui) = k2VBR→Γm(q(u
s(q) + ui))

= k2VBR→Γm(qu
i + k2q(I − k2VBR→BR

(q ·))−1VBR→BR
(qui)) (14)

= k2VBR→Γm [q(I − k2VBR→BR
(q ·))−1ui] = k2VBR→Γm [qTqu

i].

Lemma 7. Assume that p > d/2 and t > 1 satisfy Assumption 5.

(a) If {qn}n∈N ⊂ Lp
Im≥0(BR) is weakly convergent in Lp(BR) to q, then q belongs to

Lp
Im≥0(BR) and Tqnv → Tqv as n→ ∞ in Lt(BR) pointwise for all v ∈ Lt(BR).

(b) Under the assumptions of part (a), let R : X → Lt(BR) be a compact operator from

a Banach space X into Lt(BR). Then ‖(Tqn − Tq)R‖X→Lt(BR) → 0 as n→ ∞.

(c) The mapping q 7→ Tq from Lp
Im≥0(BR) ⊂ Lp(BR) into the space of linear bounded

operators on Lt(BR) is uniformly bounded on each bounded subset of Lp
Im≥0(BR).

Proof. Our proof relies on collectively compact operator theory, see Appendix B. To

this end, we abbreviate K := k2VBR→BR
(q ·) and Kn := VBR→BR

(qn ·).

(a) Since qn ⇀ q ∈ Lp, the norms ‖qn‖Lp(BR) are uniformly bounded in n. Moreover,

for each real-valued and positive ψ ∈ C∞
0 (BR) 0 ≤

∫

BR
Im (qn)ψ dx →

∫

BR
Im (q)ψ dx,

which implies that q ∈ Lp
Im≥0(BR). Recall from (6) that

‖Knu‖Lt(BR) ≤ C‖Knu‖W 2,tp/(t+p)(BR) ≤ C‖qn‖Lp(BR)‖u‖Lt(BR) ≤ CC∗‖u‖Lt(BR).

Due to Proposition 2, the embedding W 2,tp/(t+p)(BR) →֒ Lt(BR) is compact. Hence,

for each B > 0, the set {Knu : u ∈ Lt(BR), ‖u‖Lt(BR) < B, n ∈ N} is pre-compact in

Lt(BR). This means that {Kn} is collectively compact on Lt(BR).

It is straightforward to see that qn ⇀ q implies that Knv converges to Kv in

Lt(BR), pointwise for all v ∈ Lt(BR). Indeed, since tp/(t + p) > 1 it follows that

qnv ⇀ qv in Ltp/(t+p)(BR). Since v 7→ k2VBR→BR
v is compact on Lt(BR), the sequence

k2VBR→BR
(qnv) = Kn(v) converges hence strongly in Lt(BR).
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Let now vn −Knvn = f and v −Kv = f in Lt(BR) for some f in Lt(BR). Due to

the collective compactness and the pointwise convergence of the operators Kn, we can

apply Theorem 14 to obtain the error estimate

‖vn − v‖Lt(BR) ≤ C‖(Kn −K)v‖Lt(BR) = C‖VBR→BR
((qn − q)v)‖Lt(BR).

As above, qn ⇀ q yields that VBR→BR
((qn − q)v) → 0 in Lt(BR). Hence, vn → v

in Lt(BR), or equivalently, Tqnf → Tqf in Lt(BR). We have hence shown pointwise

convergence of Tqn to Tq.

While part (b) follows directly from Theorem 14, we briefly prove (c) by

contradiction: If the assertion does not hold, then there is a bounded sequence

{qn}n∈N ⊂ Lp
Im≥0(BR) such that the operator norms ‖Tqn‖Lt(BR)→Lt(BR) are unbounded.

Due to the boundedness of {qn} we can extract a weakly convergent subsequence,

qn ⇀ q ∈ Lp
Im≥0(BR). Since {Kn} is collectively compact, Theorem 14 states that

‖Tqn‖Lt(BR)→Lt(BR) = ‖[I −Kn]
−1‖Lt(BR)→Lt(BR) ≤ C uniformly in n ∈ N.

In the next corollary we exploit that the contrast-to-measurement operator q 7→

S(q, f) = k2VBR→Γm [qTq(f)] is a composition of Tq with the compact operator v 7→

k2VBR→Γm [qv].

Corollary 8. Assume that p > d/2 and t > 1 satisfy Assumption 5. For fixed

f ∈ Lt(BR) the contrast-to-measurement operator q 7→ S(q, f) is continuous, compact,

and weakly sequentially closed from Lp
Im≥0(BR) ⊂ Lp(BR) into L

2(Γm).

4. Multi-Static Data and Tikhonov Regularization in Lp

The aim of this paper is to reconstruct a contrast function in a Banach space Lp(BR)

from near-field measurements. Unique determination of the contrast in terms of the

measured data can only hold for multi-static scattering data: We use incident point

sources on a closed Lipschitz surface Γi ⊂ Rd enclosing BR and measure the resulting

scattered fields on the measurement surface Γm (introduced in the last section). Due to

the superposition principle, we can equivalently use single layer potentials as incident

fields,

SLΓi
ϕ =

∫

Γi

Φ(·, y)ϕ(y) dy in R
d \ Γi.

We will always assume that Γi ∩BR = ∅ since, in this case, SLΓi
is an integral operator

with smooth kernel that is hence compact from L2(Γi) into Lt(BR) for all t ∈ [1,∞].

The scattered field corresponding to the incident field SLΓi
ϕ is then recorded on the

measurement surface Γm ⊂ Rd that we already used in the last section. By construction

of the forward operator S(q, ·), this field equals equals S(q, SLΓi
ϕ). Hence, we define a

multi-static contrast-to-measurement operator as follows,

N : Lp
Im≥0(BR) ⊂ Lp(BR) → HS

(

L2(Γi), L
2(Γm)

)

, q 7→ Nq (15)
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where Nq : L
2(Γi) → L2(Γm) is defined by ϕ 7→ S(q, SLΓi

ϕ). Here, HS (L2(Γi), L
2(Γm))

denotes the space of Hilbert-Schmidt operators from L2(Γi) into L
2(Γm) (see Appendix

C). Let us first explain why Nq is a Hilbert-Schmidt operator. The superposition

principle for linear differential equations implies that this operator can be represented

as a linear integral operator with kernel usq(x, y) = S(q,Φ(·, y))(x) for x ∈ Γm and y ∈ Γi.

More precisely,

Nq : ϕ 7→

∫

Γi

usq(·, y)ϕ(y) ds(y). (16)

It is easy to see that this kernel is square-integral in both variables, due to the C∞-

smoothness of the incident and scattered fields outside the scatterer. Hence, Lemma 15

implies that Nq ∈ HS (L2(Γi), L
2(Γm)).

Theorem 9. Assume that p > d/2. Then the mapping N is continuous, compact,

and weakly sequentially closed from Lp
Im≥0(BR) ⊂ Lp(BR) into HS (L2(Γi), L

2(Γm)).

Proof. For the entire proof, we assume that the Lebesgue index t for the solution space

Lt(BR) of the Lippmann-Schwinger integral equation is chosen as in Assumption 5.

The basic ingredient of the proof is that the class of Hilbert-Schmidt operators is stable

under multiplication with bounded linear operators, see (C.1). Since VBR→Γm is an

integral operator with smooth kernel, this operator is bounded from Lr(BR) for arbitrary

r ∈ (0,∞) into all Sobolev spaces Hm(Γm) = Wm,2(Γm) (see [16] for a definition of

these spaces). If m > 0 is chosen large enough – m = 2 is sufficient – then it is well-

known that the embedding operator from Hm(Γm) into L
2(Γm) is Hilbert-Schmidt (see,

e.g., [18]). Hence, N (q)[ϕ] = S(q, SLΓi
ϕ) = k2VBR→Γm [qTq(SLΓi

ϕ)] is the composition

of the Hilbert-Schmidt embedding from Hm(Γm) into L2(Γm) with the compact linear

operator

Ltp/(t+p)(BR) ∋ v 7→ k2VBR→Γmv ∈ Hm(Γm)

and with the bounded linear operator ϕ 7→ qTq(SLΓi
ϕ). Hence, (C.1) implies

‖N (q)‖HS(L2(Γi),L2(Γm)) ≤ k2‖I‖HS(L2(Γm),Hm(Γm)) ‖VBR→Γm‖Ltp/(t+p)(BR)→Hm(Γm) (17)

‖q‖Lp(BR) ‖ϕ 7→ Tq(SLΓi
ϕ)‖L2(Γi)→Lt(BR).

To prove compactness of q 7→ N (q) it is now sufficient to note that the smoothness

of the kernel of SLΓi
implies that this operator is compact from L2(Γi) into Lt(BR).

Moreover, Lemma 7(b,c) implies that q 7→ [ϕ 7→ Tq(SLΓi
ϕ)] is continuous and bounded

from Lp(BR) into the space of bounded and linear operators from L2(Γi) into L
t(BR).

Finally, the weak sequential closedness of q 7→ N (q) follows analogously: If

Lp
Im≥0(BR) ∋ qn ⇀ q in Lp(BR), then q ∈ Lp

Im≥0(BR) by Lemma 7(a) and ‖[Tqn −

Tq](SLΓi
·)‖L2(Γi)→Lt(BR) → 0 due to Lemma 7(b). Since multiplication by q is a bounded

and linear operation from Lt(BR) into L
tp/(t+p)(BR) and since VBR→Γm does not depend

on q, the decomposition exploited in (17) shows that N (qn)⇀ N (q).
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Now, assume that q† ∈ Lp
Im≥0(BR) is the searched-for exact contrast corresponding

to the exact near-field operator Nq† := N (q†), see (16). Assume further that for ε > 0

we possess noisy measured data N ε
meas ∈ HS (L2(Γi), L

2(Γm)) such that

‖N (q†)−N ε
meas‖HS(L2(Γi),L2(Γm)) ≤ ε. (18)

Typically, N ε
meas is an integral operator with kernel given by noisy measurements of the

the exact scattered fields usq(x, y) for x ∈ Γm and y ∈ Γi. The equation

N (q) = Nq† , q ∈ Lp
Im≥0(BR) ⊂ Lp(BR), (19)

for q is locally ill-posed about q†, see [4, Def. 3.15]: Indeed, for any real-valued sequence

{en}n∈N such that ‖en‖Lp(BR) = 1 and en ⇀ 0 as n → ∞, and any radius r > 0, it

holds that q† + ren ∈ Lp
Im≥0(BR) converges weakly to q†. However, the compactness of

q 7→ N (q) shown in Theorem 9 implies thatN (q†+ren) → N (q†) in HS (L2(Γi), L
2(Γm)),

that is, (19) is locally-ill posed about (any) q† in Lp
Im≥0(BR). Hence, the inversion of (19)

has to be regularized. For regularization we introduce the Tikhonov functional

J ε
α(q) := ‖N (q)−N ε

meas‖
2
HS(L2(Γi),L2(Γm)) +

α
p
‖q‖pLp(BR) on Lp

Im≥0(BR) ⊂ Lp(BR) (20)

for parameters α > 0, ε ≥ 0 and p > d/2 and set J ε
α(q) = ∞ if q ∈ Lp(BR)\L

p
Im≥0(BR).

(We sketch in Appendix E that a larger domain of definition of J ε
α is possible; all

subsequent convergent results do also hold for the larger domain indicated in (E.1).)

Theorem 10. Assume that p > d/2, that q† ∈ Lp
Im≥0(BR), and that the family

{N ε
meas}ε>0 ⊂ HS (L2(Γi), L

2(Γm)) satisfies (18). Choose α = α(ε) such that

0 < α(ε) → 0 and 0 < ε2/α(ε) → 0 as ε→ 0.

Then there exists a minimizer qεα(ε) of (20) in L
p
Im≥0(BR) with α = α(ε), for any ε > 0.

If 0 < εn → 0 as n → ∞, then {qεnα(εn)}n∈N contains an Lp(BR)-convergent subsequence

that converges to a norm-minimizing solution q∗ ∈ Lp
Im≥0(BR) of (19), i.e.,

‖q∗‖Lp(BR) ≤ ‖q‖Lp(BR) for all solutions q ∈ Lp
Im≥0(BR) to (19).

Proof. We apply Theorem 16 with r = 2, F = N , D(F ) = Lp
Im≥0(BR), and

V = HS (L2(Γi), L
2(Γm)). Due to Theorem 9, the assumptions of Theorem 16 are

easy to check: For α, ε,M > 0, the level set L = {q ∈ Lp(BR) : J ε
α(q) ≤ M} is

obviously bounded in the Lp-norm by (Mp/α)1/p > 0 and contained in Lp
Im≥0(BR)

by definition of J ε
α . Hence, L is weakly sequentially compact in Lp(BR). Suppose

that {qn}n∈N ⊂ Lp
Im≥0(BR) is an arbitrary sequence satisfying J ε

α(qn) ≤ M and

qn ⇀ q ∈ Lp(BR) as n → ∞. Necessarily, q ∈ Lp
Im≥0(BR). Moreover, N (qn) → N (q)

in HS (L2(Γi), L
2(Γm)) due to the compactness of N shown in Theorem 9. This

means in particular that the restriction of N to L is weakly sequentially continuous.

Since the Lp- and the Hilbert-Schmidt norm are both weakly lower semi-continuous,

J ε
α(q) ≤ limn→∞ J ε

α(qn) ≤ M . This implies that L is weakly sequentially closed in

Lp(BR).
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Theorem 11. Under the assumptions of Theorem 10, suppose additionally that the

dimension d equals three and that p > d = 3. Then the solution q† to (19) is unique and

qεα(ε) → q† in Lp(BR) as ε→ 0.

Proof. Due to Theorems 10 and 16, we merely need to show that q† is the only solution

to N (q) = Nq† . This is based on unique determination results in dimension three,

see [19, 20, 21]. These results are usually stated for q ∈ L∞(BR) and for far-field

data, see, e.g., Section 6.4 in [9]. (An exception is, e.g., [20], considering the Helmholtz

equation in a bounded domain.) Converting far-field data into near-field data and vice

versa is based on well-known unique continuation results for the Helmholtz equation,

see, e.g., [8], that are applicable due to our assumptions on the closed surfaces Γi and

Γm (both enclose BR).

The treatment of contrasts in Lp(BR), p > d = 3, is less straightforward and relies

essentially on Remark 4. We choose the Lebesgue index t > 1 for the solution to the

scattering problem such that Assumption 5 is satisfied, and additionally assume that

tp/(t+p) > 3/2. Then Theorem 12 implies that any function in W 2,tp/(t+p)(BR) belongs

to H1(BR) ∩ C0
B((BR)). These two properties are essential to transfer the uniqueness

proof of, e.g., [9, Sect. 6.4] to our setting.

Denote as in (16) by usq(·, y) ∈ W 2,tp/(t+p)(BR) the unique weak solution to the

scattering problem (1, 2) for incident field Φ(·, y), y ∈ Γi. One first shows that the set

of total fields

{uq(·, y) : BR → C, uq(·, y) := Φ(·, y) + usq(·, y) for y ∈ Γi} ⊂W 2,tp/(t+p)(BR),

is dense in {v ∈ W 2,tp/(t+p)(BR), ∆v + k2n2v = 0 in BR} with respect to the L2(BR)-

norm. Note that the Helmholtz equation is again understood in the distributional sense.

All integrals in the proof of [9, Lem. 6.22] are well-defined due to the above-discussed

embeddings of W 2,tp/(t+p)(BR) and the proof can be straightforwardly transferred.

Second, one shows that if N (q1) = N (q2) for q1,2 ∈ Lp(BR), then
∫

BR

v1v2[q1 − q2] dx = 0 (21)

for all solutions v1,2 ∈ W 2,tp/(t+p)(BR) to ∆v1,2 + k2(1 + q1,2)v1,2 = 0 in BR. Since the

equality N (q1) = N (q2) implies that uq1(·, y) = uq2(·, y) on Γm for all y ∈ Γi, the proof

of [9, Lem. 6.23] can again be directly transferred to our setting.

Third, one constructs distributional solutions uz ∈ L2(BR) of the form uz(x) =

exp(z · x)(1 + vz(x)) to the Helmholtz equation ∆uz + k2(1 + q)uz = 0 that depend

on a parameter z ∈ C
3 with z · z = 0. The crucial property of these solutions is that

‖vz‖L2(BR) ≤ C/|z| for all z ∈ C3 with z · z = 0 and |z| large enough. If p > d, then the

construction of these solutions for q ∈ Lp(BR) works precisely as in Remark 4, and is

the analogue to [9, Th. 6.24].

To prove the unique determination result, one finally plugs in solutions uz1,2 to

∆uz1,2 +k
2(1+ q1,2)uz1,2 = 0 for two different parameters z1,2 ∈ C3 corresponding to the

two contrasts q1 and q2 into (21). By a clever choice of z1,2 (see, e.g., [9, Th. 6.25]) one
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finds that the continuous Fourier transform of q1−q2 (which exists, since both functions

have compact support) vanishes. Hence, q1 = q2. This last step works precisely as the

proof of [9, Th. 6.25].

5. A Shrinked Landweber Scheme and Numerical Examples

Theorems 10 and 11 provide convergence results for a non-linear Tikhonov regularization

in Lp-spaces applied to inverse medium scattering problems. In this section we discuss a

numerical method to actually compute minimizers of the Tikhonov functional from (20),

J ε
α(q) :=

1
2
‖N (q)−N ε

meas‖
2
HS(L2(Γi),L2(Γm)) +

α
p
‖q‖pLp(BR).

For simplicity, we will only consider real-valued contrasts in this section and denote

the space of real-valued contrasts in Lp(BR) by Lp
R
(BR). By considering the (formal)

first-order optimality conditions, we obtain that

[N ′(q)]∗(N (q)−N ε
meas) + αJp(q) = 0.

The adjoint [N ′(q)]∗ of the Fréchet derivative N ′(q) is discussed below; the mapping

Jp(·) is the so-called duality mapping [4, 22]. For a Lebesgue index p > 1 one can check

that

[Jp(q)](x) = |q(x)|p−1 sign(q(x)), x ∈ BR.

For p = 1 (a case that is formally not included in our above analysis) the duality

mapping is the set-valued sign function

[J1(q)](x) = Sign(q(x)) =











1 if q(x) > 0,

[−1, 1] if q(x) = 0,

−1 if q(x) < 0,

x ∈ BR.

Rearranging the terms in the (formal) optimality condition we get

(I + αµJp)(q) = q − µ[N ′(q)]∗(N (q)−N ε
meas), µ > 0.

It turns out that the mapping Sαµ,p := (I + αµJp)
−1 is well-defined. For p = 1 it is the

well-known soft-shrinkage operator,

[Sα,1(q)](x) =











q(x)− α if q(x) ≥ α,

0 if |q(x)| < α,

q(x) + α if q(x) ≤ −α,

α > 0, x ∈ BR, (22)

see, e.g., [2]. Hence, we arrive at the so-called shrinked Landweber method

qn+1 = Sαµn,p

[

qn − µn[N
′(qn)]

∗(N (qn)−N ε
meas)

]

, µn > 0. (23)

The numerical results below are obtained by using the Barzilai-Borwein rule [23] for the

choice of the step sizes µn and by stopping the iteration using the standard discrepancy

principle. Since we only treat real-valued contrasts, we additionally set the (unavoidable)

imaginary component of qn to zero in each step. Note that (23) is well-defined, since in
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our case the adjoint [N ′(qn)]
∗ is a bounded linear operator from HS (L2(Γi), L

2(Γm)) into

Lr(BR) for all r ∈ [1,∞], see Appendix E, in particular the explicit representation (E.3).

The shrinked Landweber iteration (23) requires to evaluate the adjoint [N ′(qn)]
∗

of the Fréchet derivative, evaluated in the direction N (qn) − N ε
meas. When dealing

with j incident point sources in a discretized setting, computing the discretization of

N (q) and of [N ′(qn)]
∗ requires to approximately solve j direct and adjoint Lippmann-

Schwinger integral equations, respectively. In total, every iteration step of (23) requires

to approximately solve 2j (direct and adjoint) integral equation, which is the main

computational cost of the scheme. Since our integral equation solver provides point

values of the solution on a grid, we apply the shrinkage operator Sαµn,1 pointwise on the

grid points.

For linear operators a convergence analysis for the iteration (23) (without step size

control) was given in the seminal paper [2]. Further, it was shown in [24] that this

iteration converges linearly if the respective (linear) operator has the so-called Finite

Basis Injectivity property. For other minimization schemes consider [25, 26]. To the

authors best knowledge the general convergence properties of the shrinkage iteration for

non-linear problems are still an open problem. However for several special cases at least

convergence to a stationary point can be shown, see, e.g., [27, 3, 28].

Our numerical results are preliminary in the sense that we only present two-

dimensional reconstructions by the iteration (23) with p = 1, such that Sαµ,1 is the

soft-shrinkage operator. (Of course, in two dimensions we should, strictly speaking,

choose p > 1 to match the assumptions of our theory.) For the numerical solution

of the scattering problem (1–2) in two dimensions we approximate the solution to

the Lippmann-Schwinger equation (3) by the fast Fourier transform (FFT) based

volume integral equation approach from [29, 12]. This technique exploits that, after

a suitable periodization, the integral operator can be diagonalized by trigonometric

polynomials. We solve the resulting linear system by a GMRES iteration (without

restart), preconditioned by the two-grid approach presented in [12]. Since the direct and

adjoint linear problems to be solved in each iteration step of the shrinked Landweber

iteration (23) merely differ in their right-hand side, using adapted preconditioners might

provide some speed-up for the iteration, which we did not try so-far.

The contrasts q1,2 that we consider for the numerical examples are plotted in

Figures 1(a) and 2(a), respectively. Both contrasts have small support within the

search domain, and both are piecewise constant (q1 = 4 inside its support and q2 = 3

inside its support). The wave number for the experiments with q1,2 is always chosen

as k = π/0.09 ≈ 34.9 which corresponds to a wave length λ = 0.18. We use 32

transmitter/receiver pairs that are equidistributed on the unit circle (about five wave

lengths away from the scatterers). With these parameters, one shrinked Landweber

iteration in the reconstruction process of q1,2 on a regular 512× 512-grid took between

45 and 60 seconds on an Intel Core i7 processor (3,4 GHz, four cores, 16 GB RAM). The

parameter τ for stopping the shrinked Landweber iteration via the discrepancy principle

is chosen as 1.6 in all examples.
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The reconstructions in Figures 1 and 2 show that the shrinked Landweber iteration

is stable at high (relative) noise levels of 0.1 or 0.05 while producing accurate results for

low (relative) noise level of 0.0005. All indicated relative errors are measured in discrete

L2-norms. In the last case, the numerical values of the contrast are well-approximated,

in contrast to the reconstructions for higher noise levels that find the contrast shape

well but do not even approximately reach the correct numerical values. As it is usual

for the Landweber iteration, the reconstructions for low noise level are time-consuming

due to the high number of iterations necessary to satisfy the discrepancy principle.

In Figures 1(i) and 2(i) we show reconstructions that are computed without using

the shrinkage operator in the Landweber iteration, that is, for p = 2, or equivalently,

using a “standard” Hilbert-space approach. This reconstruction has been computed

from data with a noise level of ε = 0.0005, as for the sparsity reconstructions in

Figures 1(g) and 2(g). Both the visual appearance of the reconstruction and the relative

L2-errors are comparable to the reconstructions of the shrinked Landweber scheme for

the noise levels ε = 0.005 or even ε = 0.01. (Again, all errors are measured in discrete

L2-norms.) This advantage of the shrinked schemes is, according to all our numerical

experiments, typical for the considered class of inverse medium scattering problems

when the support of the contrast has small support within the search domain.

Appendix A. Inequalities and Embeddings

Here, D ⊂ Rd, d = 2, 3 is an open set. The generalized Hölder inequality states that

‖uv‖Ltp/(t+p)(D) ≤ ‖u‖Lp(D) ‖v‖Lt(D) for u ∈ Lp(D), v ∈ Lt(D), p, t ∈ (1,∞). (A.1)

The following version of the Sobolev embedding lemma is from [30, Theorem 6.3].

Lemma 12. Suppose that D is a Lipschitz domain, let m ∈ N, and 1 ≤ p <∞.

(a) If mp < d, then Wm,p(D) is compactly embedded in Lq(D) for 1 ≤ q < dp/(d−mp).

(b) If mp = d, then Wm,p(D) is compactly embedded in Lq(D) for 1 ≤ q <∞.

(c) If mp > d, then Wm,p(D) is compactly embedded in C0
B(D), the space of bounded

continuous functions on D equipped with the maximum norm on D. Moreover, Wm,p(D)

is also compactly embedded in Lq(D) for 1 ≤ q ≤ ∞.

For non-integer values of the smoothness index of Sobolev spaces one has either to

use interpolation techniques, see, e.g., [30], or to use Bessel potential techniques. For the

periodic Sobolev spaces Hs
per(Q) (see (8) for a definition) these results hold analogously.

Lemma 13. If 2s < d, then Hs
per(Q) is continuously embedded in L2d/(d−2s)(Q),

and compactly embedded in Lr(Q) for 1 ≤ r < 2d/(d− 2s).

Appendix B. Collectively Compact Operators

We recall two results on pointwise convergent collectively compact operators from [17],

see Corollary 10.8, Theorem 10.9 and Corollary 10.11. A sequence {Kn}n∈N of operators
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Figure 1. Reconstruction results for contrast q1. (a) True contrast (b) ε = 0.1, 14

iter., rel. error= 0.806 (c) ε = 0.05, 16 iter., rel. error=0.737 (d) ε = 0.01, 27 iter.,

rel. error=0.693 (e) ε = 0.005, 46 iter., rel. error=0.695 (f) ε = 0.001, 1325 iter.,

rel. error=0.575 (g) ε = 0.0005, 8442 iter., rel. error=0.404 (h) Discrepancy and error

plotted versus iteration index for ε = 0.0005 (i) L2-Reconstruction without shrinkage,

ε = 0.0005, 3467 iter., rel. error=0.682.

on a Banach space X is called collectively compact if the set {Knψ : ψ ∈ X, ‖ψ‖X <

C, n ∈ N} is compact for arbitrary C > 0.

Theorem 14. Assume that {Kn : X → X}n∈N is a sequence of collectively compact

operators that converges pointwise to K : X → X.

(a) If T : Y → X is compact, then ‖(Kn −K)T‖X→X → 0 in the operator norm.

(b) If I−K is injective, then the inverses of I−K and I−Kn exist as bounded operators

on X for n ≥ N0, and the operator norms ‖(I −Kn)
−1‖X→X are uniformly bounded in
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Figure 2. Reconstruction results for contrast q2. (a) True contrast (b) ε = 0.1, 12

iter., rel. error=0.721 (c) ε = 0.05, 14 iter., rel. error=0.622 (d) ε = 0.01, 27 iter.,

rel. error=0.553 (e) ε = 0.005, 53 iter., rel. error=0.549 (f) ε = 0.001, 1280 iter.,

rel. error=0.451 (g) ε = 0.0005, 4134 iter., rel. error=0.358 (h) Discrepancy and error

plotted versus iteration index for ε = 0.0005 (i) L2-Reconstruction without shrinkage,

ε = 0.0005, 3467 iter., rel. error=0.556.

n ≥ N0. If v and vn solve v −Kv = f and vn −Kvn = f for f ∈ X, respectively, then

‖vn − v‖X ≤ C‖(K −Kn)v‖X , n ≥ N0,

holds for some constant C > 0 independent of n.
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Appendix C. Hilbert-Schmidt Operators

Let H1 and H2 be separable Hilbert spaces, and assume that {ϕj}j∈N is an orthonormal

basis of H1. A bounded, linear operator T : H1 → H2 is called a Hilbert-Schmidt

operator if

‖T‖2HS =
∑

j∈N

‖Tϕj‖
2
H2
<∞.

We denote this class of operators by HS (H1, H2). It turns out that ‖·‖HS is independent

of the choice of the orthonormal basis in H1, see, e.g., [31, Section A.3] and that

this operator norm is induced by an inner product, (T1, T2)HS =
∑

j∈N(T1ϕj , T2ϕj)H2 ,

making of HS (H1, H2) a Hilbert space. An essential class of Hilbert-Schmidt operators

are integral operators with square-integrable kernels. Given open and non-empty

submanifolds Γ1 and Γ2 of Rd, consider the integral operator

N : ϕ 7→

∫

Γ1

κ(·, y)ϕ(y) dy

from L2(Γ1) into L
2(Γ2). The next result can be found in, e.g., [31, Prop. A.3.2].

Lemma 15. The mapping κ 7→ N from L2(Γ1×Γ2) into HS (L2(Γ1), L
2(Γ2)) is an

isometric isomorphism, i.e., ‖N‖HS(L2(Γ1),L2(Γ2)) = ‖κ‖L2(Γ1×Γ2).

Finally, Hilbert-Schmidt operators form a two-sided ideal in the algebra of all

bounded linear operators: If, e.g., T1 : H1 → H2 and T2 : H2 → H3 is a bounded linear

operator and a Hilbert-Schmidt operator between separable Hilbert spaces, respectively,

then T2T1 : H1 → H3 is a Hilbert-Schmidt operator and

‖T2T1‖HS(H1,H3) ≤ ‖T2‖HS(H2,H3) ‖T1‖H1→H2. (C.1)

Appendix D. Tikhonov Regularization

We cite the main result of Tikhonov regularization in Banach spaces from Section 3.2

in [32] in a reduced form sufficient for our application. To this end, assume that

F : D(F ) ⊂ Lp(BR) → V is a non-linear operator between Lp(BR), 1 < p < ∞,

and a reflexive Banach space V , defined on a non-empty domain D(F ) ⊂ Lp(BR).

It is well-known that the norm in Lp(BR) is convex, weakly sequentially lower semi-

continuous, and satisfies the Radon-Riesz property: um ⇀ u weakly in Lp(BR) and

‖um‖Lp(BR) → ‖u‖Lp(BR) implies that um → u strongly in Lp(BR) as m→ ∞.

Define, for vε ∈ V , α > 0, and q ∈ (1,∞),

Jα,vε(u) := ‖F (u)− vε‖qV + α‖u‖pLp(BR), u ∈ D(F ),

and set Jα,vε(u) = ∞ if u ∈ Lp(BR) \ D(F ). If F (u†) = v†, then u† is called a norm-

minimizing solution of this equation if ‖u†‖Lp(BR) := min{‖u‖Lp(BR), u ∈ D(F ), F (u) =

v†}. Since the penalty term in the definition of Jα,vε uses the Lp(BR)-norm, it is clear

that the level sets Lα,v(M) := {u ∈ Lp(BR) : Jα,v(u) ≤ M} are weakly sequentially

compact and weakly sequentially closed in Lp(BR) for every α > 0 and M > 0.
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Theorem 16 (Proposition 3.32 in [32]). Assume that the restriction of F to

Lα,v(M) is weakly sequentially continuous for all α > 0, M > 0 and v ∈ V . Assume

further that there exists a solution u† ∈ D(F ) to F (u†) = v† ∈ V , that vε ∈ V satisfies

‖vε − v†‖V ≤ ε for ε > 0, and choose α : (0,∞) → (0,∞) such that α(ε) → 0 and

εq/α(ε) → 0 as ε → 0. For any sequence (εm)m∈N such that 0 < εm → 0 as m → ∞,

set vm = vεm and αm = α(εm).

Then there exists a minimizer um of Jαm,vm for all m ∈ N. For every sequence of

minimizers (um)m∈N there exists a subsequence (um′) and a norm-minimizing solution

u of F (u) = u† such that ‖um′ − u‖Lp(BR) → 0 as m′ → ∞. If the norm-minimizing

solution u is unique, then um → u as m→ ∞.

Appendix E. Fréchet Derivatives

The domain of definition Lp
Im≥0(BR) of the contrast-to-measurement operator N is a

closed subset of Lp(BR) with empty interior. Since we want to show that N is Fréchet

differentiable (instead of studying directional derivatives as in, e.g. [4, 32]) we first

indicate how to define N on an open subset of Lp(BR). We always assume in this

section that the Lebesgue indices p > d/2 and t > 1 satisfy Assumption 5.

A standard Neumann series argument shows that for q ∈ Lp
Im≥0(BR) there exists

ε = ε(q) > 0 such that the solution operator Tq+h (see (13)) exists as a bounded operator

on Lt(BR) for each h ∈ Lp(BR) with ‖h‖Lp(BR) < ε(q). This follows from Proposition 2,

since ‖VBR→BR
(qv)−VBR→BR

((q+h)v)‖Lt(BR) ≤ C‖h‖Lp(BR)‖v‖Lt(BR). Recall from (14)

that S(q, ui) = k2VBR→Γm [qTqu
i]. Hence, we can extend the domain of definition of

S(·, ui) to

Dp := ∪q∈Lp
Im≥0(BR){q + h, ‖h‖Lp(BR) < ε(q)}. (E.1)

Since the potential VBR→Γm is a linear operator, and since q 7→ qTq is Fréchet

differentiable by the product rule [33, Prop. 4.10] in Banach spaces, the mapping

q 7→ S(q, ui) is Fréchet differentiable with derivative

S ′(q, ui)[h] = k2VBR→Γm

(

hTq(u
i) + qk2Tq(VBR→BR

(hu(q)))
)

. (E.2)

One can additionally prove that ‖S(q + h, ui) − S(q, ui) − S ′(q, ui)[h]‖L2(Γm) ≤

C‖h‖2Lp(BR)‖u
i‖Lt(BR) for all h ∈ Lp(BR). The multi-static measurement operator

N : Dp ⊂ Lp(BR) → HS (L2(Γi), L
2(Γm)), N (q)[ϕ] = k2VBR→Γm [qTq(SLΓi

ϕ)], is a

composition of the Hilbert-Schmidt embedding from H2(Γm) into L2(Γm) with the

bounded operator VBR→Γm : Ltp/(t+p)(BR) → H2(Γm) and with the Fréchet differentiable

operator q 7→ qTq. Hence, the chain rule [33, Prop. 4.10] in Banach spaces implies that

N is Fréchet differentiable, too. Explicitly computing this derivative shows that

N ′(q)[h] : ϕ 7→ k2VBR→Γm ◦
[

I + k2 (q ·) ◦ Tq ◦ VBR→BR

]

◦ (hTq(SLΓi
ϕ)).

Lemma 17. Assume that p > d/2. Then N is Fréchet differentiable

and the derivative N ′(q)[h] : ϕ 7→ S ′(q, SLΓi
ϕ) satisfies ‖N (q + h) − N (q) −

N ′(q)[h]‖HS(L2(Γi),L2(Γm)) ≤ C‖h‖2Lp(BR).
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For Newton-like schemes one often needs to evaluate the adjoint [N ′(q)]∗ of

the Fréchet derivative. Assume that {ϕj}j∈N is an arbitrary orthonormal basis of

L2(Γm), abbreviate V (ϕ) := V (ϕ) for any linear operator V , and choose an arbitrary

G ∈ HS (L2(Γi), L
2(Γm)). Explicitly exploiting the inner product in HS (L2(Γi), L

2(Γm)),

see Appendix C, shows that

[N ′(q)]∗[G] = k2
∞
∑

j=1

Tq[SLΓi
ϕj ] ·

(

[I + k2V BR→BR
◦ T ∗

q (q ·)] ◦ [SLΓm→BR
(Gϕj)]

)

. (E.3)

Independently of the Lebesgue index p > d/2 of q ∈ Lp(BR) one can show that the latter

expression defines a bounded, linear operator from HS (L2(Γi), L
2(Γm)) into L

r(BR) for

all r ∈ [1,∞]. The proof mainly exploits that SLΓi
belongs to HS (L2(Γi), H

m(BR)) for

all m ∈ N0, since, by assumption, the distance between Γi and BR is strictly positive.
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1968.

[19] A. I. Nachman. Reconstructions from boundary measurements. Ann. Math., 128:531–576, 1988.

[20] R. G. Novikov. Multidimensional inverse spectral problems. Funct. Anal. Appl., 22:263–272, 1988.

[21] A. G. Ramm. Recovery of the potential from fixed energy scattering data. Inverse Problems,

4:877–886, 1988.

[22] I. Cioranescu. Geometry of Banach spaces, duality mappings and nonlinear problems. Kluwer,

Dordrecht, 1990.

[23] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA J. Numer. Anal.,

8:141–148, 1988.

[24] K. Bredies and D. A. Lorenz. Linear convergence of iterative soft-thresholding. Journal of Fourier

Analysis and Applications, 14:813–837, 2008.

[25] K. S. Kazimierski. Minimization of the Tikhonov functional in Banach spaces smooth and convex

of power type by steepest descent in the dual. Comput. Optim. Appl., 48(2):309–324, 2011.

[26] T. Bonesky, K. S. Kazimierski, P. Maaß, F. Schöpfer, and T. Schuster. Minimization of Tikhonov
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