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Abstract

When an incident Herglotz wave function scatteres from a periodic Lipschitz continuous surface with
Dirichlet boundary condition, then the classical (quasi-)periodic solution theory for scattering from peri-
odic structures does not apply since the incident field lacks periodicity. Relying on the Bloch transform,
we provide a solution theory in H' for this scattering problem: We first prove conditions guaranteeing
that incident Herglotz wave functions propagating towards the periodic structure have traces in H/? on
the periodic surface. Second, we show that the solution to the scattering problem can be decomposed
by the Bloch transform into its periodic components that solve a periodic scattering problem. Third,
these periodic solutions yield an equivalent characterization of the solution to the original non-periodic
scattering problem, which allows, for instance, to prove new characterizations of the Rayleigh coefficients
of each of the periodic components. A corollary of our results is that under the conditions mentioned
above the operator mapping densities to the restriction of their Herglotz wave function on the periodic
surface is always injective; this result generally fails for bounded surfaces.

1 Introduction
We consider time-harmonic wave propagation modeled by the Helmholtz equation
Au+ k*u =0 (1)

for a positive, constant wave number k > 0. Well-known entire solutions to this equations are plane waves,
defined by
(z1,22)" — exp lik(sinfxy — cosOaa)], z = (a1, z9) ' € R2. (2)

The direction of these plane waves obviously equals (sin(#), — cos(#)) " and hence these plane waves prop-
agate downwards for 0 € (—m/2,7/2) and upwards for 6 € (7/2,37/2). The exceptional cases 0§ = +m/2
correspond to plane waves either propagating to the left or to the right. Plane waves are quasiperiodic in
x1 with quasiperiodicity ksin(f): For any period L > 0 it holds that

eik(sinﬁ(:ﬁ—i—L)—coszg) _ eiLksin(G) eik(sin€x1—cosex2) for £ = (xI; x2)T c R2.

When a plane wave scatters from a periodic structure with period L then it is well-known that this
scattering problem can be formulated in a framework of quasiperiodic waves. Such a setting has been
studied in many papers, see, e.g., [1,5,6,8,10,20,25]. An important application of this quasiperiodic
scattering theory is the development of non-destructive testing procedures for periodic structures, where
one usually fizes the quasiperiodicity of the incident fields. Several methods to tackle such inverse problems
have been investigated in quite some detail, see, e.g., [3,13,17-19,22,26]. Since there exists, however, only
a finite number of propagating quasiperiodic incident plane waves, most of the above-mentioned papers rely
either on quasiperiodic point sources or on evanescent incident wave fields. From an experimentalists point
of view it would be much easier and in some sense also more natural to consider scattering from periodic
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structures using many plane waves with different directions. This observation directly leads to consider
incident waves in the form of Herglotz wave functions,

U¢(ZE) _ / eik(sin@m—cos@xg)qs(e) d@, = RQ, (3)

—T

for suitable densities ¢ defined on (parts of) the unit circle. The importance of such incident fields from
a practical point of view is one of our motivations to study scattering of Herglotz wave functions vy from
periodic surfaces I' given as graph of a Lipschitz continuous function.

It is well-known that incident Herglotz waves of the from given in belong, e.g., to CI%C(F), see,
e.g., [9]. However, a framework yielding weak (or variational) solutions requires, e.g., that the incident
fields belong to Sobolev spaces H*(I') on the unbounded periodic surfaces. We are not aware of such
results in the literature — indeed, there are counterexamples that show that in general the restriction of vy
to a periodic surface does not even belong to, e.g., L*(T") (see Example [9] below). The lack of such results
might be surprising, since Herglotz wave functions are among the most popular solutions to the Helmholtz
equation. Several characterization of these functions exist, see, e.g., [15,16, 23]; the most familiar one
probably is that a solution u to the Helmholtz equation in all of R? is a Herglotz wave function if and
only if

1
Sup/ lul?dz < occ.
>0 T |z|<r

We also note from [4] that Herglotz wave functions can be characterized using expansions in cylindrical
Bessel functions J,, (see, e.g., [2]): An function u is a Herglotz wave function if and only if u can be written
as u(rexp(ip)) = 3,z anJn(r) exp(ing) with coefficients (ay)nez € €*(Z). This yields hence a Hilbert
space structure for Herglotz wave functions.

In this paper we will rely on the Bloch transform to give sharp conditions that guarantee that the
restriction of vy to a periodic surface belongs to the above mentioned Sobolev spaces H*(I") (with [s| <1
for Lipschitz continuous surfaces). These conditions will be formulated in terms of either the support or else
the behaviour at £7/2 of the density ¢. Under these conditions we even show that the function v4 belongs
to H' on any horizontal strip of finite height (and hence even to, e.g., H 1/2 on any Lipschitz continuous
surface inside such a strip; such surfaces might fail to be periodic or graph of a function). Our results do
not depend on dimension and could be shown analogously in three dimensions.

The Bloch transform also allows to give equivalences between the solution to a scattering problem in the
domain “above” the surface I' (which is, in principle, a special case of a rough surface scattering problem)
and a continuum of periodic scattering problems for the periodic components of the solution. Denoting
the half-space—like domain above I' by €2, this equivalence yields, amongst others, new expressions for the
Rayleigh coeflicients of the periodic components of the non-periodic solution in €.

The mathematical tool we use to solve Dirichlet scattering problems in 2 is the variational solution
theory for weak solutions to the Helmholtz equation in H! developed in [7]. These results could also be used
to solve rough surface scattering problems for incident Herglotz wave functions on non-periodic surfaces
(that still would be required to be graph of a function). Of course, due to the lack of geometric periodicity,
the Bloch transform can in this case no longer be used to analyze this solution by decomposing it into
periodic components.

The structure of this paper is as follows: In Section [2| we introduce the Bloch transform on a line
and use it to define a Bloch transform on a periodic surface I'. In Section |3| we show that the above-
mentioned Herglotz wave functions are bounded in Sobolev spaces H® on the surface I'; this result is
generalized in Section [4] to Sobolev spaces on horizontal strips. In Section [5| we provide an equivalent
characterization of the non-periodic scattered field for arbitrary Dirichlet boundary conditions using a
continuum of periodic scattering problems. The Appendix [A] contains a technical and in principle well-
known result on isomorphisms between Sobolev spaces.



2 Bloch Transform for Sobolev Spaces on Periodic Surfaces

In the remainder of this paper we always denote the quasiperiodicity of a function by «; recall that a
function u defined on some set Q C R? is called a-quasiperiodic with period L if

w(zy + L, xo) := el ®u(z), == (x1,22)" €. (4)

(Of course, we implicitly assume here that for all z € Q the point (z; + L,z2)" belongs to Q, too.)
Obviously, if Lo is a multiple of 27, then this simply means that u is periodic. Thus, given a period L > 0,
it is sufficient to consider quasiperiodicities

a€ (—n/L,nw/L].

Indeed, following definition , a-quasiperiodicity is precisely the same as (« + 27/ L)-quasiperiodicity.
A main tool in our analysis will be the Bloch transform Jg, defined by

Trp(a; 1) = \/g > oo+ Lj)e ™MDy € (<L/2,L/2), a € (=n/L,7/1] (5)

JEZ

for ¢ € C§°(R). (This transform is also known as Floquet- or Floquet-Bloch-transform.) Note that Jgr¢ is
well-defined because ¢ has compact support. We restrict the argument z; of Jr¢ to (—L/2, L/2] since, by
definition, this function would otherwise automatically be L-periodic in x1. Further, the Bloch transform
obviously commutes with L-periodic functions on the real line: If w: R — C is L-periodic, then

[T (wo)] (e 21) = \/gwm +Lj) Y dlar + Lj)e 1) = w(@)) Tn(a; 1)

JEZ

for z1 € (—L/2,L/2] and a € (—7/L,w/L]. Even if we could define Jr for all & € R by the same formula,
for the reasons discussed below ({4]) we restrict « in the following to (—m/L,w/L].

Obviously, Jr is a classical one-dimensional Bloch transform and several mapping properties of this
transform are of course well-known. A standard reference on this topic is [21]. Theorem [4| stated below is
taken from [14, Annexe B], where a detailed proof can be found. Admittedly, the Bloch transform in [14]
contains no phase shift in its definition; the resulting functions are hence not periodic in their second
variable but a-quasiperiodic. This does, however, not affect the results below in any way, as can be seen
by multiplying the Bloch transform Jr by x; — exp(iazy).

To state the mapping properties of Jg, we need to introduce the L-periodic Sobolev spaces H,(R) of
L-periodic functions on R. (From now on, the index p will always mean that functions in this space are
L-periodic with respect to x1.) For an L-periodic distribution ¢ € D} (R) we define its Fourier coefficients

¢(7) for j € Z by

L/2 27i d

30) = 76(a v exp(~(2mi/L)jm)) [: | s B s ®|.  ©

loc
—L/2

Further, we define the well-known Hilbert spaces H,(R) by completion of smooth L-periodic functions in
the norm
L S2N\S | 27\ 2
1611y @) == D1+ i) [6G)?, s €R. (7)
JEZL

Later on in Lemma and Theorem @We will have to deal with functions and distributions with period 27 /L
(the dual period to L). Of course, these functions and distributions can again be development into Fourier
series. The only difference in the definition of the corresponding basis functions and Fourier coeflicients
is that the period L in, e.g., @ has to be replaced by 2w/L. With these changes, we will again denote
the Fourier coefficients as, e.g., ¢(j). The notation H3(R) is, however, exclusively reserved for L-periodic
functions.



As we will see in the next theorem, the image spaces of the Bloch transform are the spaces
L*((—m/L,w/L); H3(R)) of vector-valued, measurable functions from (—m/L,7/L) into H5(R). Those
are defined, for all s € R, by

N m/L
L*((—m/L,m/L); HY(R)) = {cb: (=m/L,m/L) — H;(R) is measurable, /W/ o(a; ')H%{g(R) da < OO}
ith squared no H(;SHQ W/L qu ’ d
WIth square@ DOrM [[@{{p2(_x/px/L);Hg(R)) *— I Hy(R) 9

Theorem 1. For s € R the Bloch transform Jr extends to an isometry between H®(R) and
L?((—m/L,w/L); H3(R)). The inverse transform is given by

(jR 1¢ (x1) \/>/ ¢(a;z1) exp(iax) da, 1 € R (8)

Remark 2. We will almost exclusively work with function spaces containing elements that are merely
defined almost everywhere; to simplify notation we always neglect to write this down explicitly; in we
did for instance not note that the equality holds merely for almost every x; € R.

A convenient tool to analyze the Bloch transform is the usual continuous Fourier transform, defined by
¢ eXp{—I1gT ¢(xq)dx s € R. 9
5 1 1 1

This transform is an isomorphism from H*(R) into a weighted L2-space on R, defined via the Bessel
potentials, yielding norms

1F s = 1fllz@ == € = A+ €7 F )l 2@: s €R.

Since the Bloch transform Jr¢ of ¢ € C3°(R) is L-periodic for fixed «, we can develop it into a Fourier
series with coefficients

£z . . 27i
c(j,a) = qu (z1 + Lj) exp (—ia(z1 + Lj)) exp (—ijl) dxq

—L/2 jez

T+ L= 2mi | .
R \/ﬁ/qﬁyl exp ( 1ozy1)exp( I (yl—LJ)> dy,

— \/217T7L/R¢(y1)exp (—i (a + 2Lg> y1> dy, = \/15& <a+ 2L7TJ> ,  Jj€Z ae(-n/L,n/L]

In consequence,

R 2mi
Tr¢(a; 1) E;b(wr )eXp< i Jx1>
and, for all 1 € R,

(jR¢(a :1:1 \/ﬂ /Tr/L

at 2 j=¢

n 27 . 27 . (i )d
« 7 j)exp 17 jx1 | exp(icxy) do
JEZ

1 A .
= /R B(€) exp (iga1) A€ = o(x1).

The latter relation extends by a standard density argument from Cg§°(RR) to all Sobolev spaces H*(R) with
s e R.



As for the usual continuous Fourier transform, the adjoint of Jg equals its inverse: For ¢ € C5°(R) and
v € Cg°((—=m/L,7/L); C5°(R)) it holds that

7r/L [T (L2

7r/L -L/2 7
L/2
= Z/ ¢(z1 + Ly) \/ / a x1)e _IO‘(WFL]) da dz
jez’ —L/2

14 Li—yy L [/t _ 1
+Li=y / o(z1) \/;/ O(ov, v1) exp(iary) da dyy = (¢, Tg 1(U)>L2(R)-
R TJ—7/L

Since the Bloch transform Jg is an isomorphism between H*(R) and L*((—w/L,7/L); H3(R)) for s € R,
its inverse is an isomorphism between Lz((—ﬂ'/L,w/L);HS(]R)) and H*(R). Of course, the adjoint
Ji with respect to the above L?inner product is naturally an isomorphism between H*(R) and
LQ((—W/L,W/L);H;(R)), too. Of course, the equality J; ' = J* on all spaces LQ((—W/L,W/L);HPS)(R))
that we showed above is due to the fact that Jg, its adjoint, and its inverse do not depend on s.
Theorem 3. (1) For s € R the adjoint Jg of the Bloch transform Jr : H*R) —
L*((—=w/L,w/L); H5(R)) with respect to the inner product of L*>((—w/L,w/L); L2(R)) equals the inverse
Je ' L2((—7/L,7/L); H*(R)) — H*(R) and both are isomorphisms between their pre-image and image
spaces. The inverse of Jr equals its adjoint operator.

(2) The Bloch transform can equivalently be represented as

Tedlaiz) f 54 (a L2 > exp <2L7rijx1> . mie(~L/2, L2, ac (—n/Lx/L].

JEL

for ¢ € H*(R), where gﬁ s the Fourier transform defined in @
(3) The Bloch transform commutes with L-periodic functions on the real line: If, e.g., w : R — C
is a bounded and measurable function, then (Jrwo)(a, x1) = w(z1) Trp(a, x1) for z1 € (—L/2,L/2] and
€ (—n/L,m/L].

Next we will define an analogous Bloch transform Jr on Sobolev spaces H*(I') and periodic spaces
HS(F) for —1 < s < 1. To this end, assume now that I" is the boundary of a periodic, impenetrable
structure that is L-periodic in x1 and given as the graph of a Lipschitz continuous function { : R — R,

r'= {(331, C(l‘l))T,l'l € R}

Without loss of generality we can assume that there exists (— > 0 such that
0 < ¢- = essinf(C) < ((z1) < [ICllpoe(r) =2 G-

Following [24] we introduce Sobolev spaces on the L-periodic surface I'. For ¢ : I' — C we introduce
¢ R — C by pe(x1) = ¢(x1,((1)) for 21 € R, for ¢ : I' = C, and for the above-mentioned L-periodic
Lipschitz continuous function ¢ defining I'. Then

H*(T) = {¢: I' — C such that ¢, € H*(R)}, 0<s<1, (10)

with norm (||| sy == [|o¢llgs@)- The spaces H*(I') for —1 < s < 0 are then defined by duality with
respect to the inner product

(0, ¥)r = / o TdS = /R o (20T (1) v/ T+ [0 @) P das

(The range of s € [—1,1] is limited since the surface is merely assumed to be Lipschitz continuous.) We
also introduce periodic spaces Hj(I'), for —1 < s <1, by lifting H3(R) to T' via

H3(T) = {¢: T — C such that x; — ¢¢(21) = @(x1,¢(21)) € H3(R)}. (11)



The norm in Hj(I') is again defined be lifting the norm in H;(R) to I, that is, ||<,0||H5(r) = ||80§||H§(R). As
an analogue to the spaces L*((—w/L,w/L); H5(R)), we define

~ /L
L2((—7T/L,7r/L);HS(F)) = {gb : (=m/L,m/L) — Hy(I') is measurable, /

—Tr

6 Mgy dor < o0}

7T/L
(—m/Ly/L);H(T)) 7r/LH

H'(T") with compact support is then defined by

da. The Bloch transform Jr of ¢ €

with squared norm H@Hiz( HH@

Tre (s (@1, ¢( =\ 5 L S” o + L, Gl + Lj)yeioler L), (12)

]EZ

for o € (—7/L,n/L], x1 € (—=L/2,L/2], and for any ¢ € H'(I') with compact support. Since functions
in H'(R) are continuous, functions in H!(I') are continuous, too; since ¢ in the last equation has, by
assumption, compact support, it is also clear that Jry is well-defined. Obviously,

Tro(e; (21,¢(21)) ") = Trec(s 1), a € (—n/L,w/L], a1 € (-L/2,L/2],

and hence the properties of Jp can be directly derived from those of Jg. Indeed, the spaces H*(I') and
H3(T') are defined by transporting H*(R) and Hj(R) to T', see and (11)). This means that the next

result is a simple corollary of Theorem []

Theorem 4. For s € [—1,1] the Bloch transform Jr can be extended to an isomorphism between H*(T")
and L2((—7T/L, m/L); Hy(T ) The inverse transform is given by

\r/ v) expliazr)da, @ = (z1,¢(z1)) €T,

and this inverse transform equals the adjoint of Jr.

3 Herglotz Wave Functions

We turn again to the Herglotz wave functions from and use them to define the Herglotz operator H
by

Ho(z) = /7r eik(sin9$1—C059C(xl))¢(0) do, z= (961,C(961))T cT. (13)

We will analyze mapping properties of H with respect to the Sobolev spaces H*(I') using the Bloch
transform Jr. To this end, we assume for the moment that ¢ belongs to C§°(—n/2,7/2) and note that the
change of variables ¢ = ksin(f) implies that

ds¢

k
Ho(x) = e VR C(@1) g (aresin (/) ) ——ee .
. )

Since ¢ is smooth and vanishes in a neighborhood of the endpoints £7/2, the singularities at { = +k of
1/vk? — £2 in the last expression do not cause problems. Formally computing the Bloch transform of H¢
then yields that

qu Y 1,‘ / Z/ 1€(:r1+L] VEZ 2z ¢(ar(;:1n(€€/k)) d¢ efia(lerLj) (14)

/ Z/ 1€(:r1+L] —iVk2—02 Cm1)¢(arCSID(/ )) dl e —io(z1+Lj) (15)
Vk2 — 02



for = (#1,¢(z1))" €T, o € (—x/L,x/L), and 21 € (—L/2,L/2]. The convergence of the latter series in
7 is not clear without further arguments. To this end, we will first consider the truncated series

N k .
N S .
Sy — § : / elf(l‘ri-l/]) ivk? e2g(x1)¢(arcsm( dl e ia(z1+Lj)
N Nk V2 — (2

j==

k N .
/ S eib(e-a; pitar—iVIP=P ((ar) Plaresin(l/k)) o, o—iant

) Py V2 — (2

and investigate the behavior of this expression as N — oco. Let us, to this end, first define a smooth and
compactly supported function ¢ : R — C by

. . ¢(arcsin({/k))
b(0) = {exp (ilzy — iVE? — 12 C(xl))W || < k,

16
0 16| > k. (16)

Since, by assumption, ¢ € C§°(—n/2,7/2), the function ¢ — ¢(arcsin(¢/k))/vk? — % belongs to C§°(—k, k)
and its extension by zero belongs to C§°(R). The same holds for

0 it —iVRZ (1) p(arcsin({/k))
Vk2 — 12

and implies that ¢ defined in indeed belongs to C§°(R). Using the notation D(R) = C§°(R) for test
functions and D’'(R) for distributions on the real line, we can hence rewrite Sy as duality product

k N .
R N L/k)) .
S 2/ elL(t=a)j | pibw1—ivk? 42C($1)—¢(arcsm( d¢ exp(—iazx 17
N . jZN N xp( 1) (17)
N N
:/ Z =3 | () Al exp(—ia;) = ( Z etb=alj, w>D,(R)XD(R) exp(—iaxy).
R\j=—nN j=—N
The distribution N
om/L _ L iL(-—a)j /
Op N o e € D'(R)
j=—N

is, for finite N € N, a 27/ L-periodic, smooth function. It can hence also be interpreted as a 27/ L-periodic
distribution in D;, s (R): By definition (see [27, Section 5.2]), a distribution v in D'(R) is 27/ L-periodic
(that is, it belongs to D), _ / (R)), if v is shift-invariant with respect to shifts 75,7, of length 27j/L,

(v, Tomj/LP) D' (R)xD(ER) = (Vs P)D'(R)xD(®R) for all ¢ € D(R),j € Z.

Here, Torj/r¢(f) := @(¢ — 27mj/L). As shown in detail in [27, Section 5.2], the dual space of DQW/L(R) can

be identified with the space Dy, /1,(R) of smooth, 27/ L-periodic functions.
Lemma 5. For N — oo, the distribution 537]& converges in D'(R) to the 27/ L-periodic Dirac distribution
52 gt o e (—m/L,m/L], defined by

via the usual Dirac distribution §; € D'(R) at t € R, that is, for all ¢ € D(R) = C§°(R) it holds that

(5§f]<zLa <P>D'(R)xD(R) - <5§W/Lv W)D'(R)xD(R) = Z p(a+2mj/L) as N — oo.

JET



Proof. All limits in the claim of the lemma have to be understood in the sense of the convergence of
distributions in D'(R), see, e.g., [27, Section 5.2]. To prove the convergence of 527r/ L to 527r/ L'in the sense
of D'(R) as N — o0, let us first note from Lemma 5.2.1 in [27] that for periodic dlstrlbutlons, convergence
in D'(R) is equivalent to convergence in D), _ /L (R), where the duality pairing can, e.g., be defined via the

Fourier coefficients of the distribution and the test function,

2m PN
(u, @)DQW/L(R)xD%/L(R) - ZU(J)W(J),
JEZ

see [27, Theorem 5.2.1]. Second, convergence in Di,_ / . (R) follows from the boundedness of the Fourier
coeflicients

2
62/ () = T exp(—iLay) of 2/t eD, /L(R)

by one, compare [27, Example 5.2.4]. Indeed, Theorem 5.2.1 in [27] shows that for all s > 0 there exists a
constant C(, s) such that |@¢(j)| < C(g,s)(1 + |s]|?)~%; hence

2m/L 21/ L 2w I N
(0w =0 @)y memy | ST 20 10EOIIR0G)
JEZ,|j|>N

N—
<Clp,s,L) Y. (L+[i)° =0 ifs>1/2
JEL,|j|>N

27T/L 62#/L

Hence, 67 in the sense of D, /L(]R) as N — oc. O

Theorem 6. If ¢ € C§°(—n/2,7/2), then

To(HS) (i) \/%Z 271'1 2mij /k2 (a+ ) C(a1) qﬁ(arcsin (a/k—&—%)) 1 . (18)
jEZ, \/k2—(a+%)2 {‘a+ ‘<k}

fora € (—m/L,7/L], x1 € (—L/2,L/2], and x = (x1,{(21))" €T.

Proof. Following the above computations and the definition of the auxiliary function ¢ in , we find the
value of Jr(H¢) (a;z) as the limit of the terms Sy defined in (17),

N
Jr(Ho) (a; x) \/ hm SN = \/ A}linoo _Z: o ) D' (R)xD(R) exp(—iaz)
2W<52”/L ¥) exp(—iax 21/1 o+ 27mj/L)e o

D/@)xp(@) XP1021) J

jGZ
2w Z 2T iy k2= (aJri) ¢(z1) Cb( arcsin (Oé/k’ + 2]97}4]))
Vi~ VE? = (a+2mj/L)> o 22}

fora € (—n/L,7/L], x = (x1,¢{(x1))" €T, and z1 € (—L/2, L/2]. Note that the last series contains at most
a finite number of non-zero terms due to the condition |a + 27rj/L’ < kfor k>0and o € (—/L,n/L].
Together with this condition, the root-like singularities of (k% — (o + 2mj/L)?)~1/2 are canceled by the
function ¢ which is, by assumption, compactly supported in (—7/2,7/2). O

Up to now it is not clear whether bounds for the Bloch transform of Jr(H¢) in the spaces
L*((—m/ L,W/L);Hg(F)) can be shown. An affirmative answer is given in Theorem [7| below. Roughly
speaking, we are going to show that H¢ is well-defined in H'(I') and that H is bounded from L? into
H(T), if the support of the density ¢ stays away from the Rayleigh frequencies at £ /2 that correspond
to horizontally propagating waves.



Theorem 7. For any number & € (0,7/2), then the Herglotz operator is bounded from L*(—7/2+9,m/2—6)
into H*(L') for |s| < 1. The operator norm of H depends on T' merely through the number ||(’|| o w) and
hence remains constant if one translates the surface I.

Proof. We need to show that, under the stated assumptions, the Bloch transform Jr(H ¢) possesses a finite
norm in L?((—x/L,w/L); H5(T)) for |s| < 1. Choose a function ¢ € C§°(—m/2+ 6, /2 —6) and let us first
note that

x — Yj(a;x) =: exp (QL”ijxl —i\/k2— (a+22j)2$2>, JEZL, x= ()= (Céll)) e’l, (19)

is an L-periodic function on I, since ¢ is L-periodic and exp(2wij/L (x1 + L)) = exp(27ij/L z1) because
J € Z. Moreover, due to the indicator function in we merely need to consider the case (a+2mj /L)% < k2,
such that the square root in is real-valued and the absolute value of the exponential in equals
one. Hence, the definition of the norms | - || z5(r) implies that ||z — ;(q; $)HH§(F) = 2m; further,

Hl‘ = Q;Z)] a3 T HH1 - Hxl = ¢j(a; ($17<(x1)—r))HHé(R)

< ||@1 — exp (27 ja1 /L) HH;(R) |21 — exp (i\/k2 — (a+2mj/L)?¢ (1)) HHII,(]R)

since H}(R) is a Banach algebra, see [27]. One first computes explicitly that

.. 2
o1 = exp (2mi /L) | 1y my = 2 (14 32/22)7,

second that

s = exp (iV/E2 = o+ 2m /L2 () |13, = 47°,

and third that

s 1= exp (iv/R2 = (o + 271/ L ¢ (o) [

— 4?4 |21 — VK2 — (a0 + 275 /L)2 ¢' (1) exp (iV/k? — (a + 27 /L)% (21)) Hig(R)

that is,

o > exp (/R = (@ + 20 D2 G [y < 42 [1+ 2 = (o 21 /2P I ey

Since (a + 27j/L)? < k2, the last inequality in particular implies that

< C(() (20)

145005 ) gy = || = exp (Zjey — /A2 — (a + 2mj/L)%2s) | Hy(r) <

uniformly in s < 1 and a € (—n/L,7/L]. Note that the constant C(¢’) merely depends on [|¢’|| 1o (r)-
To prove mapping properties of H we finally need to investigate the (squared) norm of Jr(H¢) in
L*((—m/L,m/L); H(T)), that is, the expression

w/L
|1 @ By dan s <1,

—T

must be bounded in terms of the (squared) norm of ¢ in L?(—n/2 + §,7/2 — &). We compute that

2
w/L w/L resin al+2mj
[ 1oy do < SEY | oarsin CF) | ge )

—= ]1 27
/L 2 iz -m/L {‘oc—i- J‘</€} \/k2 ()[+27T_]/L)
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and exploit now that the support of ¢ is, by assumption, restricted to [—m7/2 + §,7/2 — ¢]. We hence do
not change the value of the last integral on the right if we merely integrate over o such that —m/2 4§ <
arcsin (%) < /2 — 6, that is, if we merely consider « such that

ol 4 2mj

in(—m/2
sin(—7/2 +9) < 7

< sin(7/2 = 9).
The latter condition is equivalent to ksin(—n/2 4+ ¢0) < o+ 27j/L < ksin(w/2 — §), or
(o + 21§ /L) < k*(1 — cos®(m/2 — 0)).
Consequently, 1/|k? — (a+27j/L)?| < 1/(k?cos?(7/2 — §)) < oo. Moreover, the condition |+ 27j/L| < k

is equivalent to

27j L . L
‘*k <:Of+"j?*‘< k < ‘*é;;(k‘+’00 <:j‘< é;;(k A'OO.

Since a € [—7/L,m /L], this yields a-priori bounds J, < j < J* for j € N,

Lk 1 ) Lk 1 X
J;.—— [—'2ﬂ— 2} <:j‘< {2ﬂ'+_2J = J .

Note that J, < 0 < J* that is j = 0 is always included in the sums below. Plugging the different estimates
of the proof together, we find that

w/L
/ HJF(H@(a;')H?{g(r)da

—T

C : al+2mj ‘2
< o k2 0052 7r/2— Z /_W/L ‘aL+27rj’<Sm(ﬂ_/2 5) ‘¢ arcsin (%)) | da

J* min(w/L,7/2-6)
C(C)L / =/ : al+2mj 2

— d

" 2mk? cos?(m/2 - 0) & —min(w/L,w/z—é)‘¢(amsm( Lk ))‘ “

O CQL S /e C(OLJT* = Jut 1)

< <

= 2rkeo(n/2— 6) 2 [ sy PO o508 < S22 W oass o

C*(¢,0)?

where we employed in (%) the change of variables arcsin (O‘LJ“,CZM = t. Due to Theorem 4, this implies

that [|Ho||gsr) < C*(C,0)[9ll 2 (n/2+87/2-0) for all ¢ € C§°(—7/2 4 0,7/2 —0) and s < 1. Since smooth
functions with compact support in (—7/2 + 0, 7/2 — §) are dense in L2( w/2+ §,m/2 — §) we obtain the
claimed norm bound actually for all ¢ € L2(—7r /24 0,7/2 —¢) by a standard density argument. O

Higher-order regularity results for H¢ can of course be shown if the surface, that is, its generating
function (, is smoother; in this case, higher order derivatives in z; of JrH¢ remain bounded. Since the
proof is essentially the same as the one for H' we do not detail this point. However, in Theorem [12|in the
next section we will show that the Herglotz wave function first defined in are bounded in the Sobolev
spaces H® on any horizontal strip {0 < z2 < h} of finite height (the lower bound z2 = 0 is of course not
essential).

The Herglotz operator is also bounded from a weighted L2-space into H*(T"). To state this result, define

L2 .(—7/2,7/2) as the closure of C§°(—7/2,7/2) in the norm

Ccos

/2 1/2
D122 (—r/om2) = [/ |¢(9)|2/6039d9] .

—7/2

Theorem 8. The Herglotz operator H is bounded from L%, (—n/2,m/2) into H*(T') for|s| < 1.

10



Proof. We use of course to conclude by a change of variables o 4+ 27j /L = ksin 6 that

2
7/L C(O L /L ¢( arcsin aLt2nj
/ LHJF(H(Z))(a;')H%Ig(F)daS(25.‘.)2/ Lﬂ{\a+%\<k} ( ( - ))2 da
—n/ ez’ -/ \/kQ— (a—|—27T]/L)

_COL ¥ /“/2 PO 4y  COLT = Tt )

9117

,71-/2 COS(G) 2m cos(_ﬂ/gﬂr/Q).

2T
J=Jx

O

Since the spaces L?(—m/2 4+ §,7/2 — §) can via extension by zero obviously be considered as subspaces
of L2, (7/2,7/2) we will in the sequel always work with L2 (—m/2,7/2). We close this section by showing

COoSs COS
via an explicit example that the statements of Theorem [7] and of Theorem [§ are sharp.

Example 9. The assumptions of Theorems[7 and[§ are sharp in the following sense: If ¢ is constant on
(—7/2,7/2), then ¢ belongs to L?(—n/2,7/2), but Ho does not belong to L*(T') for T = {zo = 0}. To
show that H¢ fails be belong to L*({xy = 0}), recall that the Bessel function Jy can be represented as

1 T 1 w/2
JO(t) / elsln@t do = / 6151n9t dg, te R,

B % —m T J—m/2
see e.g. [2, (9.1.21)]. Consider now ¢ = 1/mw in (—7/2,7/2) and the flat surface T' = {xg = 0}. Then
1 w2
Hp(z) = = / eFsinter 49 — Jo(kay).

T J—m/2

The Bessel function x1 +— Jo(kx1), however, does not belong to L*(R) since, e.g., its Fourier transform is
not square integrable.

4 Scattering Problems and a Volumetric Bloch Transform

In this section we introduce a precise mathematical formulation of the scattering problem that we use to

model scattering of the Herglotz wave H¢ from the periodic surface I'. As above, ¢ € L2 (—7/2,7/2)

and the surface ' = {(x1,{(21)) ", 21 € R} is given as the graph of an L-periodic and Lipschitz continuous
function ¢ : R — R. We denote the domain above I' by

Q= {:E = (xl,xg)T € R?, C(x1) < :EQ}
and set
Q= {x = (l‘l,Jiz)T €R?, ((x1) < 23 < h} and Iy, = {x = (ml,mz)T € R?, 29 = h}

for h > (4 = [[Cll oo (r)- We will frequently identify I'; with the real line, writing F(€) or f(&,h) for the
Fourier transform in x; of a function f: I', — C.
The Dirichlet scattering problem we consider is to find a weak solution

ueH(Q) = {ue H . (Q) and u € H'(Q) for all h > (;}
that satisfies the following Dirichlet problem for the Helmholtz equation
Au+ku=0 inL*Q), ulp=H¢ inHY*T). (22)

Moreover, u is required to satisfy a radiation condition in form of the angular spectrum representation,

uar.az) = —= [ exp (0 + 1V = (e =)k, 2> (23)

Due to [7] we know that the latter problem possesses a unique solution.

11



Theorem 10. For any ¢ € L2 ,(—m/2,7/2) there exists a variational solution u € H(Q) to .

COs

Further, for any h > (1 = ||C]| Lo (r) there is C = C(h) > 0 such that

ull g0,y < Cldll2,, (= /2,7 /2)-

cos

Proof. Setting f = H¢ € H'/?(T), the above scattering problem can be reformulated in the subspace
Vo := {u € H'(Qp), ulr = 0} of H'(Qp), b > ¢4 = [[¢||poo(r)- To this end, we first use an extension F of
f such that F € H' (¢, ), F|r = f, and such that the trace of F on I'¢, vanishes. This extension exists
due to, e.g., [24, Th. 3.37]. We extend F' by zero into 2\ ¢, . Obviously, the restriction of this extension
to €, belongs to H'(Qy) for all h > ;. Second, we employ the exterior Dirichlet-to-Neumann operator
Ty, : HY?(T',) — H-'Y/2(T},) on Ty, defined by

(Tho) (1) = m /]R VI = € exp(i€zy) (e )(€) A€,z €R.

Then (22}{23)) can be formulated variationally as follows: We seek u in H'(,) for h > (4 in the form
u = w—+ F where w € Vj is afterwards extended via the angular spectrum representation to all of © in
order to obtain a solution in H(€2). Since u must solve (2223)), the variational problem for w € V; reads

a(w,v) = / (Vw - Vo — k*wv) dz —/ T (w)dS = (VF-Vo—k*Fv) dz for allv € Vj. (24)
Qp Ty Qn

From [7] we know that the sesquilinear form a satisfies an inf-sup condition. Hence, a solution w to the latter
variational problem exists and satisfies ||| g1 (q,) < C[|F|lg1(q,) < Clfllgi/2@)- Note that [7, Remark
2.1] ensures that after extension to €2 by the solution u is independent of the value A chosen to define
Vo. Theorem (7| now implies that || f|| g2 = [Hol g2y < Cllollrz, (—x/2,7/2)- O

As for functions defined on the surface I', we analyze the solution u to (22H23|) using a Bloch transform.
This transform is denoted by Jo and defined by
L . .
Jadla;z) =/ 5 > ¢(xr + Lj, wo)e ) = (2y,29) T €Q, —7/L <a < /L, (25)
T JEL
for smooth functions ¢ : 2 — C with compact support in Q. Note that this implies in particular that

Jou(a;z) = JIr (ulp) (o; ) for z €T (26)

In the next theorem, we show that the Bloch transform Jn extends to a transform between certain
Sobolev spaces, in the same way as the transforms Jg and Jr in Section 2} This result will then be used to
analyze the solution u to (22423)). Before stating the mapping properties of Jq, we introduce the domain

Q) ={zxeQ, x1€(-L/2,L/2), xz < h}, for h > ¢4 = [l oo m)- (27)
The boundary part of 2} that intersects I' is denoted by
I'y={xel',x; €(-L/2,L/2)}. (28)
We define the periodic Sobolev spaces Hy (Qp) of L-periodic functions in z in the usual way:
HJ(Qn) = {u € Hyp (), uis L-periodic} for n € Ny, (29)

and equip this space with the norm u — ||ul| HP (D)) that is, with the usual H™-norm over one period in
z1. (E.g., HuH?{l(Qp) = [or (IVul® + |u|?) dz for n =1). An L-periodic function hence belongs to H ()
h h

if its H™ (€2} )-norm is finite. For s > 0, the intermediate spaces H3(€,) are then defined by interpolation,
see [24, Ch. 3 & App. B]. Note that this definition is consistent with the one of H3(R).

12



Theorem 11. The Bloch transform Jqo extends to an isomorphism between H*(Qp) and
L*((—=m/L,m/L); H5 () for all s € [0,1] and h > hg := (4 + 3¢_.
(b) The inverse transform to Jq is given by

I, (/L
=4/ 27?/ ) ¢(a; x) exp(iax) da, = (x1,22) €Q, (30)
—n/L

and defines an isomorphism between L?((—n/L,7/L); H3(Qp)) and H*(Qy) for all s € [0,1] and h > ho.

Proof. (a) The proof relies on the diffeomorphisms ¥ and © between Q, and U, = {y = (y1,%2)' €
R2,0 < yo < h} for h > hg = ¢, + 3(_, constructed in Appendix [A| and their mapping properties, see
Proposition Recall that u +— wo ¥ and v — v o © are isomorphisms between H!($,) and H(Up)
for h > hg. Hence, it is sufficient to show the mapping properties of the Bloch transform by transporting
functions from €2, to Uy and vice versa, afterwards relying on mapping properties of the Bloch transform
ij , defined by

Trz $(05y) =\ 5 Z¢ y1+ L, yp)e W)y = (y1,y) T €RE, —w/L<a<w/L, (31)

]EZ

for smooth functions ¢ with compact support in @ Note that iji ¢(a;-) is by definition L-periodic in
y1. Hence, knowing jRi ¢(c;y) for y in the closure of Q) is sufficient to know jRi d(asy) for all y € Q.
The Bloch transform Jgz extends to an isomorphism between H*(Up) and L*((—n/L,=/L); H3(UM))

for s € [0,1] and h > hg. For s = 0 this follows by interpreting L?(Uy) = L?((0, h); L>(R)) as an L2-space
on (0, h) with values in L?(R): Since jRi does not act on ys, applying Theorem [1{ with s = 0 yields

w/L
152 S5 ) ez = | , / e #(s (s y2) 221 .12 dye

- / 162l v = 6120,

The proof for s = 1 is analogous, since derivatives in z3 interchange with the Bloch transform (see also the
proof of the subsequent Theorem. The case s € (0,1) can then be treated by interpolation, see [24, Ch. 3
& App. BJ.

Next, we consider ¢ € H*(Q),) for s € [0, 1] and note that

Jao(a, 1) = [JR1(¢ oU)|(e,O(z)) forz e, ae(-L/2,L/2). (32)

Since ¢ o ¥ € H'(U), the Bloch transform JRi(qb o W) belongs to L*((—L/2,L/2); Hi(Uy)), that is,
(o, ) — [jRi(qS o ¥)](a, O(x)) belongs to L*((—L/2,L/2); H5(Qy)). This shows part (a).

(b) For part (b) we use again the inversion formula for the one-dimensional Bloch transform Jr from
Theorem Assume that ¢) = JRz ¥ for 1 € H*(,). Then (-, 22) = Jg (-, x2) for 2 € (0, ), that is,

\f / (as.2) expliam:) da = (Jpe D) (a))

for x € Uy and a € (—L/2,L/2). Due to ([32), the inverse transform to Jo is hence given by (30): For
¢ € H*(Qy,) and ¢ = Jq¢ it holds that

- /L
7" 9(e,2) = (7360, 00 ) () = o & [ (90, (O()) explio)da

\/ / o(a, ) exp(ioz) da for z € Qp, and o € (=L /2,L/2).

13



As announced above, we can now prove that the restriction of the Herglotz wave function

’U¢(IL‘) — / eik(sina‘mfcoszg)(b(e) d@, = RQ,

—T

defines a bounded linear operator Hy : ¢ — vg|y, from L 7/2,7/2) into H'(Uy) for any strip Uj, =

{y=(y1,52)" €R? 0 <ya<h}.

COS(

Theorem 12. The operator Hy is bounded from L
any s € R.

w/2,7/2) into H*(Uy) for any height h > 0 and

COS(

Proof. We abbreviate || - [|z2 (_x /2:7/2) in the entire proof by || - || and we first show the claimed result

for s = 0. To this end, we use again that the L?>-norm of Hy¢ = ve|y, can be expressed as ||1)¢)HL2 0 =

fo llvg (-, ||L2(R) dt. Theoremapphed to {zg =t} instead of I states that [lvy(-,t)||z2®) < Cl|¢[| with C
mdependent of t. Hence follows the claimed norm bound for s = 0.

Next we consider the case s = 1. Since we merely need to bound the first weak derivatives of vy, we
use again Theorem [7] to obtain that

/h
L2(Uy) 0

To bound the partial derivative with respect to xo we rely on the Bloch transform jRi defined in 31| (and,
by abuse of notation, apply jRi also to functions that are merely defined in Uy,). Note that jRgr commutes

8U¢ 2

Omy

el L T30

h
< < 2
2 day < /0 g, 8) 121y daz < Ol

L2(R)

by definition with derivatives with respect to xo,

0 0
jRi <8:: > (a;z) = a—xQJRiu(a;m), zeRY, a€(—n/L,x/L].

Since jRi is for fixed xo simply a one-dimensional Bloch transform in 1, Theorem |§| implies that

jz(HUgZ) o 2) \/ﬁz 21111 k2— (+L)x2 ¢(arcs1n(o</k—|—2k7rLj))]l
R = \/k ( + 27r]) {‘a+2w]‘<k}7

that is,

271'1] —(a .
D e (H0) (0 f oY i By

It is now obvious that the second derivative of Tr2 (Hy¢) is bounded in L?(—7/L,7/L; Hg({xz = t})),
that is, Hy¢(-,t) is bounded in H(R) by C||¢| with a constant C that is uniform in ¢. This bound then
yields that |[vg (-, 22) || g1 (w,) < Cll¢ll. The corresponding bound for s € N follows analogously; intermediate
values s > 0 are then treated using an interpolation argument. O

Note that the last Theorem [12] implies that for any Lipschitz continuous surface I' contained in a strip
U, the mapping ¢ — vg|r is bounded from L2 (—m/2,7/2) into H'/2(T"). Of course, such surfaces are
neither required to be the graph of a function not to be periodic.

5 Periodic Scattering Problems and Equivalences

Now we show that the Bloch transform [Jn of a solution to the Helmholtz equation yields a periodic
solution to a (shifted) Helmholtz equation in . Vice versa, a family of periodic solutions to this (shifted)
Helmholtz equation yields a solution to (22) via an inverse Bloch transform. To state this result, we first
need to introduce tools for the variational formulation of the periodic Helmholtz equation in .

14



Define, for a € (—m/L, /L], the shifted differential operators

Vof =Vf+ (10(‘)f ) and  divyF = div F + iaF®

for scalar functions f and vector fields F = (F(), F(?))T and consider some function f;, € Hé/ 2 (T'). Then
the weak formulation of the shifted Helmholtz equation is to find a solution w in the periodic Fréchet space

Hp(Q) = {u € H.(Q), u is L-periodic, and u € Hé(Qh) for all h > (4}

to the problem

dive Vou + k*u = Au + 2ia§—u + (k2 —a®)u=0 in L2(Q), ulp=fp in Hgﬂ(l‘), (33)
x1

such that u satisfies the radiation condition

VE2—12mj/L+ a2 k?>|275/L + al?,
iV/[2mj/L + o> — k2 else.

(34)

() = Zﬂj621i1x1+iﬂj(wz—h) for zo > h, with 3; = {
JEZ

The numbers 4; = (u|r, )(j) are the so-called Rayleigh coefficients of u and given as the Fourier coefficients
of the restriction u|r,. As for I';, we introduce the space V' = {u € H}(), ulr = 0} and the operators

_ . oy 2mi
Ty Hy?(Tn) — H'2(0w), @ i) B0() exp(——ja),
JEZL

where qAS(j) are the Fourier coefficients of ¢ defined in @ These definitions allow to derive the following
variational formulation for (33H34)),

(0= [

If the surface I' is given as the graph of a Lipschitz continuous function ¢, then it is well-known that
existence and uniqueness of solution to this variational problem holds for all £ > 0. Such results go back
to [6,11,12,19]. Moreover, for fixed k, the solution operator to the above variational problem is uniformly
bounded for all « in (—n/L,n/L].

L/2
(Vo Vol — K2ut) do — / BT u( R dey =0 forallue V2. (35)

b ~L/2

Theorem 13. (a) The solution u = u(a) € H () to exists for all k > 0 and o € (—w/L,w/L]. For
fized k there is C'= C(k) > 0 such that ||u()||m1(q,) < C’(k)||fp||H1/2(F), uniformly in o € (—m/L,m/L].

(b) A function u € H' () is a variational solution to for boundary data f € HY2(T') if and only if
Jou(e, -) is for (almost) every o € (—m /L, /L) a variational solution in H}(Qp) to for boundary data
Jrfla;-) € Hrl,/z(l‘). The Rayleigh coefficients of Jou(a;-) are given by the Fourier transform a(¢,h) /v L
of u, evaluated at the points oo+ 275/ L.

Proof. (a) It is well-known that the sesquilinear form aj defines a Fredholm operator of index zero. Hence,
for fixed k > 0 and o € (—m/L,7/L) one merely needs to check uniqueness of solution to (35). Since
the uniqueness result for Lipschitz surfaces is well-known due to [12], we only sketch a proof under the
additional assumption that the surface I' is of class C™!. Under this assumption, any solution u to the
homogeneous problem belongs by elliptic regularity results to HS(Qh). We extend u by to a function
in H,,(€2); this extension then also belongs to H2(,) for all h > (.

By checking the imaginary part of ag(u,u) for a solution to the homogeneous problem with f = 0,
one notes that all propagating modes of such a solution must vanish. Hence w and all of its first and

15



second partial derivatives decay exponentially. Multiplying the shifted Helmholtz equation by du/dxs and
integrating by parts, one finds that

0 :/ [divavauau n kzuau} da
U

8x2 8%2
1 8 2 2 2 / . T 8U
= -3 a « - - 1; Vol 57—
2/[,(%;2 [Vl = #Iuf?) @z — [+ ie0,0)T] - Ve 5 a5
1 2 1212 . Ou 9 . ou
=—= | wnl[|Veu|’ = kul’] do — v Vu+ioa=— — a’u+ivyau] =—dS,
2 Tp Tp 8.’E1 a$2

with U = {—-L/2 < x; < L/2, 9 > ((x1)} and the upwards pointing unit normal v on I". Since u vanishes
on I' due to the homogeneous Dirichlet boundary condition we find that

1 9 . Ou Oou , Ou
0= 2/Fp1/2|Vau] dz —I—/F [(1/1+1a)8$1 + 1 283:2]8302 ds,

P

moreover, it holds that Vu = v - (8u/8u) on I' and Ou/0x; = e;j - v(0u/Ov) = v; (8u/3y) € H1/2( I). In
particular, 0 = pr va[[Vaul? + 2 |Ou/ov))? Jdz. Since vo > 0 on I' = {(x2,((z2))", z2 € R} D I, this is
only possible if Ju/0v vanishes. Hence, Holmgren’s lemma implies that u vanishes entirely.

To show that the bounds C'(k«) for the solution operators are uniform in o we show that the sesquilinear
form afy depends continuously on . For —m/L < o, & < 7/L it holds that

a & 27 ~
a8 (u, v) — af (u, v)| < f\a = al [lull gy o) IVl 10

L Z<\/k2 (a+2mj/L)? \/k‘2 a+27rj/L)2) @@

JEZL

(*)

and the first term on the right-hand side obviously tends to zero as @ — «. Further,

(%) <

sup

jez (14 52)1/2

|V/k?* = (a+2mj/L)? — \/k? — (& + 27 /L)?|
T

For j = 0 the term over which the supremum is taken equals | (k% — (a+27j/L)?)Y/? — (k? — (a+2nj /L)%)'/?|
and tends to zero as & — «. Further, if for some 0 # j* € Z it holds that k* = (a + 2mj*/L)?, then
|(k? — (& 4 2mj* /L)?)Y/?|/j* — 0 as & — . It is hence sufficient to show that supjgo,;+1 [f(a, @) — 0 as
& — « where

1 & —af[|a@+ a| +4mj/L]

) = S e a s om0 + I (@ £ om )T

For j # j* there is § > 0 such that all terms (k? — (a + 27j/L)?)"/? have magnitude larger than § (since
none of these terms vanishes and since they grow as j for |j| — o0o). Since \/k2 — (o + 27j/L)? is either
real and positive, zero, or purely imaginary with positive imaginary part, it follows that the denominator
in the definition of f(a, &) is bounded below in magnitude by §/v/2. We can hence estimate

V2

sup |f(o,@)| < —la—«ao|[la+a|+4n/L] -0 asa— a.
J¢{0.5*} 0

Hence, ‘ag(u,v) - ag‘(u,v)‘ < Cla-—aq| ||u||Hp1(Qh)Hv||Hp1(Qh) for some constant C' independent of « and a.
Now, Strang’s lemma (see, e.g., [28, Th. 4.2.11]) implies that the solution operator to is continuous in
a. Since this operator is also pointwise bounded in «, the compactness of [—7/L, /L] then implies that
C(k,a) < C(k) for a € [-mw/L,7/L].
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(b) Assume that v € H'(Q,) is a variational solution to (22/{23)) for boundary data f € H'/?(T). It is
obvious that for a smooth function v € C*°(£2},) with compact support the relations

0 0 0
Jo (8;1> = <ax1 - loz) Jov  and  Jo <8 1;) = Jqv (36)

hold. By density of such functions in H'(€2), these relations extend to all v € H'(£2;,). Since u satisfies
the Helmholtz equation in the weak sense it follows that the xi-periodic function z — w(a;z) = Jou(a;-)
satisfies the shifted Helmholtz equation in the weak sense. It is also clear that the boundary condition
u|p = f satisfied in H'/?(T') transforms due to into w(a;-)|p = Jrf(es-) in Hgm(l“). We finally need
to check the radiation condition satisfied by the periodic solutions to To this end, we use the
angular spectrum representation , yielding that

Jaou (Oé; (1‘1,]}2)T> = \/2171_7[/2]: |:$1 '_>/F ei§$1+i\/k2 £2(x2—h) (5 h) d§:| ( 7] x2) exp (2£1j$1)
] h
fz o2 iy /K= (22 (22— h) ( +2% $2)

JEZ

f Z ( T] > o L jw1+iB; (w2 —h) for zo > h.

The Rayleigh coefficients of Jou(a;-) can hence be expressed via 4(&, h) evaluated at £ = o + 275/ L.

If w(e,-) is a function in D'((—n/L,n/L); H}(€)) that solves for (almost) every o € (—w/L,m/L)
the variational problem for boundary data Jrf(a;-) € Hp !/ 2( I'), then the uniform boundedness of the
solution operator to this problem established in part (a) of this theorem implies that

w/L m/L

HwH%Q((—n/L,ﬂ/L);HII)(Qh)) = / [Jw(es ')”%{;(Qh) da <C [T f (e ')Hill/z r

2
—/L —x/L 2 )da < Ol ey

Due to , we know that the inverse Bloch transform u = Jg Lw satisfies the Helmholtz equation in €.
As above, the boundary condition u|p = f in H'/?(T') is clear because of (26). It remains to show that u
can be extended to a solution to the Helmholtz equation in the form . The representations of the
periodic solutions w(«, ),

N 27r1]
= g wi(a)e i (mh) x2 > h,
JEZ

imply for xz2 > h that holds

u(x) = \/ / (a; z) exp(iaz ) da
| L Z/ ‘7+Oé)561-‘r1 k2—(a+ 2ﬁj)2(w2—h) da
—7r/L

2w 1/2)/L
\/7 /’ (3+1/2)/ é‘) €xq-ti k2 52 (wa—h) ¢ = \/7/ lgml—i—l k2 §2(a:2 h) de.
2m(j—1/2)/

The correspondence between the solution to the non-periodic problem (22H23]) and the continuum of
quasiperiodic problems (33H34)) has a couple of consequences.

O]

Corollary 14. The Herglotz operator H is injective from L2 (—m/2,7/2) into H*(T) for s € [1/2,1] and
any surface T = {(z1,¢(21))", 1 € R} given by the graph of a Lipschitz continuous function C.
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Proof. The injectivity of H is equivalent to the injectivity of H~ defined by changing the sign of the second
coordinate, that is, H™ ¢ = f37r/2 exp(ik(sin @z + cos 0 ((z1))) #(0) df. Note that changing the sign of the
second coordinate does not affect any of the bounds shown above and all results shown for H also hold for
H~.

If H™ ¢ vanishes on I', then the Herglotz wave function v, defines a solution to the Helmholtz equation
that belongs to H!(U},) for all h > 0 by Theorem [12| and hence belongs to H(2). Moreover, it is obvious
that the Bloch transform of vy equals

Jave (a; 1) \/gz 2T iy k2= (a+ ) o ¢(arcsin (a/k-{-%)) ,
TV o igy el

for « € (—m/L,n/L] and = € Q. This implies that each periodic component Jovg (a;-) is an upwards
radiating function that satisfies (34]). Theorem implies that vy itself is also upwards radiating, i.e., vy
satisfies . We have hence shown that vy is a solution to the homogeneous Dirichlet problem .
Due to Theorem such a solution must vanish. Since vg is analytic (as any strong solution to the
Helmholtz equation) it must vanish in all of R?, which is only possible if ¢ = 0, see [9, Th. 3.19)]. O

A second consequence of Theorem|[13]is the one-to-one correspondence between the propagating informa-
tion of solutions to the quasiperiodic problems and to problem : If u € H(Q2) solves ,
then the Rayleigh expansion of u, = Jqu(c;-) consists of an infinite number of terms that are exponentially
decaying and a finite number of terms that are propagating plane waves. The latter terms correspond to
indices j € Z such that (o + 2mj/L)? < k?, that is, such that the number 8; = (k? — (a + 275 /L)%)Y/? is
real valued. The propagating part of u, is hence

1 o o
uP™P (z) = NG Z U <a + %, h> exp <72‘]:1:1 +i6j(z2 — h)) , x9 > h.

jila+2nj/LI<k

One can analogously define the propagating part of u € H() by neglecting all numbers £ in the angular
spectrum representation such that k? < €2, since their contribution for large zo will be exponentially
small,

W) = < / exp (i€o1 + VR — (zs — W)alg. h) g, a2 > h.

prop

Note on the inverse Bloch transformation applied to us = equals the propagating part uP™P of wu,

Toy HuB P (x) i (o 2, p) ot ) mtin et g

_ 1/
_\/E—W/L

jilad2mi/LI<k
ij in/k2—(a+277/L)2)(za—h
@le Ljat2mj/Li<kyt (a—l— h) i(at2Et o+ (at27j/L)?)(x2=h) 4,

\/T/ f h i€x1+i\/k2—£€2)(z2—h) df _uPTOP(w)
T

This is in some sense bad news from the point of view of inverse problems: Even if one leaves the quasiperi-
odic solution framework to obtain an infinite-dimensional space of propagating solutions to the Helmholtz
equation, there will always be some information lost in the evanescent fields radiating from the periodic
structure.

A Diffeomorphisms and Isomorphisms Between Sobolev Spaces

As in the entire paper, we assume that 2 is the domain above the periodic surface I' given as the graph
of a periodic function (. Here, we explicitly construct a coordinate transform mapping €2 to the upper
half-plane Ri = {y € R? y5 > 0}. Moreover, this coordinate transform is invariant on points = with
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x9 > hg for h > 0 large enough (see the explicit bound below), and hence it does not perturb the radiation
condition encoded in the angular spectrum representation or in the Rayleigh series . In particular,
for h > hg, the coordinate transform maps 2 to

Up={y=(y1,92)" €R* 0<yp <h}. (37)

To construct such a transform, let us first recall that I' = {& = (x1,22) ", 23 = {(x1)} for ¢ € C%1(R) =
WLee(R). Moreover, the numbers (y := ||(]|oo and (_ := essinfg(¢) > 0 are by assumption strictly positive.
Choose a monotone function y € C*°(R — R) such that x(t) =1if ¢t < {4, x(¢t) =01if t > {4 + 3¢, and
such that —1 < 2¢_x/(t) <0 for t € R. Then we define

U R2 - Q, (Z;) = (2) . <y2 +C(§1)x(yz)> ’

and note that this Lipschitz continuous mapping is invertible and hence a Lipschitz continuous diffeomor-
phism. Indeed, det DU (y) = 1+ ¢(y1)x (y2) # 0, because 1+ ((y1)x'(y2) > 1 — ((y1)/(2¢~) > 1/2. The
inverse © = U~! is given by

0:0-R2, (i;) = @) = (:L'Q - C(g;)x(yz)> '

If h > hg :== (4 + 3(_, then © and ¥ are also Lipschitz continuous diffeomorphisms between €2, and Uj
(see (37)) and between

O = {2 € Q, w1 € (—L/2,L/2)} and Ul := {y — (y1,y0) " € (—L/2,L/2) x (0, h)}.

Both mappings are obviously L-periodic in their first variable. Further, if ¢ is more regular than merely
Lipschitz continuous, then also the regularity of ¥ and © increases: If ( € W™*°(R), then ¥ and © are
both diffeomorphisms of class W™,

Proposition 15. If { € W™*(R), n € N, and if h > ho := (4 + 3(_ is large enough, then ¥ and © are
diffeomorphisms of class W™ and the mappings u — uwo WV and v — vo© are isomorphisms from H*(Qp,)
into H%(Up) and from H*(Uy) and H*(Qyp,) for 0 < s < n, respectively:

1 1
Sllullas @) < llwo ¥lgsw,) < Cllullgia,) Svllzs@,) < lve®Ollgs@,) < Cllvllaw,),
C C

for some C > 0 large enough. The same relations hold for the periodic Sobolev spaces Hj(S2p,), see ,
and H(Uy) on the bounded domains Q) and U{)L instead of H*(Qy,) and H*(U},), respectively.

Proof. We merely indicate a proof for Lipschitz continuous (, that is, for n = 1 (the case of larger n can
be treated analogously). If ¢ € W1H*°(R), then both © and ¥ are Lipschitz continuous and the chain rule
implies that these transforms transform H!(Q) into H'(U}) and vice versa. The same holds for the L2-
spaces L%(Qy) into L?(Uy,). Since ¥ and © are inverses to each other, both u +— u(¥(-)) and v +— v(0(-)) are
continuous and continuously invertible from H*(€),) into H*(Uy) and from H*(U) and H*(§2y,) for s =0
and s = 1, respectively. The general result then follows from interpolation theory, see, e.g., [24, App. B].
The proof for the Sobolev spaces Hy () and Hj(Up,) of periodic functions are similar but additionally rely
on the L-periodicity of ¥ and ©. 0
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