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Abstract

Scattering problems for periodic structures have been studied a lot in the past few
years. A main idea for numerical solution methods is to reduce such problems to one
periodicity cell. In contrast to periodic settings, scattering from locally perturbed
periodic surfaces is way more challenging. In this paper, we introduce and analyze a
new numerical method to simulate scattering from locally perturbed periodic struc-
tures based on the Bloch transform. As this transform is applied only in periodic
domains, we firstly rewrite the scattering problem artificially in a periodic domain.
With the help of the Bloch transform, we secondly transform this problem into a
coupled family of quasiperiodic problems posed in the periodicity cell. A numerical
scheme then approximates the family of quasiperiodic solutions (we rely on the fi-
nite element method) and back-transformation provides the solution to the original
scattering problem. In this paper, we give convergence analysis and error bounds
for a Galerkin discretization in the spatial and the quasiperiodicity’s unit cells. We
also provide a simple and efficient way for implementation that does not require
numerical integration in the quasiperiodicity, together with numerical examples for
scattering from locally perturbed periodic surfaces computed by this scheme.

1 Introduction

In this paper, we present a numerical method for solving scattering problems from locally
perturbed periodic surfaces. Scattering problems for periodic or quasiperiodic incident
fields from periodic structures have been well studied over at least 25 years. The common
way of solving is reduction to one periodicity cell, which avoids the need for computing
numerical solutions in unbounded domains. However, if such reduction fails due to non-
periodicity of the incident field or the surface, one needs to seek for new approaches.

The approach we present in this paper is based on the Floquet-Bloch transform. It
builds up a relationship between a non-periodic problem and a family of quasiperiodic
problems reduced to one single period. With this transform, the scattering problems
from periodic surfaces and non-periodic incident fields have been discussed in [LN15] and
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[Lec16]. Based on these theoretic results, a numerical scheme has been developed to solve
these kinds of scattering problems in [LZ16]. Following this type of technique, we intro-
duce in this paper an algorithm for solving scattering problems from local perturbations
of periodic surfaces that is pretty close to the one from the recent paper [HN16]. Our con-
vergence analysis is for various reasons different, as [HN16] for instance strongly relies on
integral equations in the spatial variable. The source of inspiration for all these techniques
seems to be the paper [Coa12] on wave propagation in full-space periodic media.

To briefly present our numerical approach in some detail, we firstly rely on the Floquet-
Bloch transform, defined on functions living in periodic domains, and hence reformulate
the locally perturbed problem by a suitable diffeomorphism between the locally perturbed
and the purely periodic domain. Applying the Bloch transform to the new problem yields
a family of quasiperiodic scattering problems posed in one single periodicity cell. We state
the classic error analysis for finite element discretizations using low-order approximation in
α. The interesting feature of this discretization is that all integrals in the quasiperiodicity
parameters can be computed by hand, such that standard solvers become attractive to
tackle the full problem. By finite element discretizations for the spatial parts of the
problem and, roughly, the trapezoidal rule discretizing the inverse Bloch transform, one
gets a large but sparse block-linear system to solve. To this end, we use the GMRES
iteration with a specially designed incomplete LU -decomposition as pre-conditioner for
the numerical solution of the linear system.

For Dirichlet scattering problems on perturbed periodic surfaces one can, at least in
two dimensions, of course exploit the corresponding numerical convergence theory for
boundary integral equation approximations from rough surface scattering theory, see,
e.g., [MACK00, AHC02]. There are, however, few methods specifically designed for such
locally perturbed periodic scatterers. In [JLF06, FJ09] and [FJ15], the authors give a
method that approximates the Dirichlet-to-Neumann map on the transparent edges of a
periodic waveguide modeled by the Helmholtz equation. Another method that uses the
so-called recursive doubling procedure constructs the Sommerfeld-to Sommerfeld maps at
artificial boundaries of such a waveguide, see [EHZ09] and [ESZ09]. Both of these methods
are motivated by the infinite half-guide and inspired by the limiting absorption principle.

This paper is organized as follows. In Section 2, we describe the direct scattering
problem corresponding to a locally perturbed periodic surface. In Sections 3 and 4, we use
the Bloch transform to obtain an equivalent family of quasiperiodic problems. In Section 5
we give a discrete inverse Bloch transform and estimate the finite element method applied
to the individual quasiperiodic scattering problems. The numerical implementation for
the Bloch transform based method is illustrated in Section 6. In the last Section 7, several
numerical examples indicate the efficiency of that method. Appendix A briefly introduces
the Bloch transform and some of its mapping properties.

Notation: We denote quasiperiodic Sobolev spaces with regularity s and quasiperiod-
icity α by Hs

α, such that Hs
0 denotes a periodic Sobolev space and not a space of functions

that vanish on some boundary. Despite functions in Sobolev spaces are merely defined
almost everywhere, we usually omit to write this down. Moreover, C is a generic constant
with value that might change from one appearance to the other.
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2 Locally Perturbed Periodic Surface Scattering

In this section, we model scattering from a local perturbation Γp of a periodic surface
Γ ⊂ R2. Suppose Γ := {(y1, ζ(y1)) : y1 ∈ R} is defined by a Λ-periodic Lipschitz
continuous function ζ : R → R, i.e., ζ(x1 + Λ) = ζ(x1) for any x1 ∈ R and itself defines
the periodic domain Ω := {(y1, y2)> : y1 ∈ R, y2 > ζ(y1)} above the graph of Γ. The
locally perturbed periodic surface Γp is then defined via a second Lipschitz continuous
function ζp : R→ R that satisfies

ζp(y1) = ζ(y1) for all y1 6∈
[
−Λ

2
,
Λ

2

]
and defines Γp := {(y1, ζp(y1)) : y1 ∈ R}. (1)

We further assume without loss of generality that there is H0 > 0 such that both Lipschitz
surfaces Γp and Γ are included in R×(0, H0) and introduce the perturbed periodic domain
Ωp := {(y1, y2)> : y1 ∈ R, y2 > ζp(y1)}. Then Ω ⊂ {y ∈ R2 : y2 > 0} and Ωp ⊂ {y ∈
R2 : y2 > 0} as well. For some positive number H ≥ H0 we further introduce truncated
domains

ΩH = {y ∈ Ω : y2 < H} and Ωp
H = {y ∈ Ωp : y2 < H}. (2)

Note that we have for simplicity assumed that ζ 6= ζp only in (−Λ/2,Λ/2)!
The scattering problem we consider is described by the Helmholtz equation with Dirich-

let boundary condition for the total wave field u : Ωp → C,

∆u+ k2u = 0 in Ωp, u = 0 on Γp, (3)

where k > 0 is the wavenumber and ui is the incident field. Moreover, the scattered field
us := u− ui satisfies the so-called angular spectrum representation,

us(x) =
1

2π

∫
R
eix1ξ+i

√
k2−|ξ|2(x2−H0) ˆ̂us(ξ,H0) dξ for x2 > H0. (4)

Here,
√
· is the square root extended to the complex plane by a branch cut at the negative

imaginary axis (such that its real part and imaginary part are non-negative for numbers
in the upper complex half-plane), and ˆ̂us(ξ,H0) is the Fourier transform of us|x2=H0 , i.e.,

ˆ̂ϕ(ξ) := Fϕ(ξ) =
1√
2π

∫
R
e−iξx1ϕ(x1) dx1 for ϕ ∈ C∞0 (R,C) and ξ ∈ R, (5)

and extended by density to functions in L2(R). Thus, we can define the exterior Dirichlet-
to-Neumann map T+,

∂us

∂x2

(x1, H) =
i√
2π

∫
R

√
k2 − |ξ|2eix1ξ ˆ̂us(ξ,H) dξ =: T+(us|ΓH )(x1). (6)

Recall from Appendix A the spaces H±1/2(ΓH) and H1
r (ΩH) with its subspace H̃1

r (ΩH) =
{u ∈ H1

r (ΩH) : u|Γ = 0} of functions that vanish on Γ.
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The operator T+ is bounded from H
1/2
r (ΓH) to H

−1/2
r (ΓH) for all |r| < 1, see [CE10],

and the the variational formulation of (3)-(6) is to find u ∈ H̃1
r (Ωp

H) (that is, more precisely,
the restriction of the total wave field to ΩH , but we omit this fact from now on) such that∫

Ωp
H

[
∇u · ∇v − k2uv

]
dx−

∫
ΓH

T+(u|ΓH )v ds =

∫
ΓH

[
∂ui

∂x2

− T+(ui|ΓH )

]
v ds (7)

for all v ∈ H̃1(Ωp
H) with compact support in ΩH . Due to [CE10] we know that this

variational problem is uniquely solvable for all k > 0 and all bounded anti-linear right-
hand sides.

Theorem 1. For |r| < 1 and any incident field ui ∈ H1
r (ΩH), the variational problem (7)

possesses a unique solution u ∈ H̃1
r (ΩH).

3 Quasiperiodic Surface Scattering

The (Floquet-)Bloch transform JΩ reduces differential equations involving periodicity to,
roughly speaking, quasiperiodic scattering problems from the unit cell of the periodic
structure. Before exploiting this reduction, we need to recall some results on non-perturbed
periodic scattering. In this section, all proofs are omitted and we refer to Appendix A and
the references therein.

For an incident solution ui to the Helmholtz equation ∆ui+k2ui = 0 in Ω, the Dirichlet
scattering problem from the periodic surface Γ defined in the last section is described for
the total wave field u : Ω→ C as in (7) by

∆u+ k2u = 0 in Ω, u = 0 on Γ, (8)

subject to the radiation condition (4) for the restriction of us := u−ui to ΓH for some H >

H0. The variational formulation of this problem is hence to find a solution u ∈ H̃1
r (ΩH)

to (7) with Ωp
H replaced by ΩH , that is,∫

ΩH

[
∇u · ∇v − k2u v

]
dx −

∫
ΓH

T+[u]
∣∣
ΓH
v ds =

∫
ΓH

[
∂ui

∂x2

− T+[ui]
∣∣
ΓH

]
v ds (9)

for all v ∈ H̃1
r (ΩH) with compact support in ΩH .

The Bloch transform of a solution u to the surface scattering problem (9) involv-
ing the periodic surface Γ solves a corresponding quasiperiodic scattering problem. To
introduce the corresponding variational formulation, we recall the Wigner-Seitz cell
WΛ = (−Λ/2,Λ/2] of periodicity Λ and the periodic sets

ΩΛ
H = {x ∈ ΩH : x1 ∈ WΛ}, ΓΛ = {x ∈ Γ : x1 ∈ WΛ}, and ΓΛ

H = {x ∈ ΓH : x1 ∈ WΛ},

as well as Sobolev spaces H̃1
α(ΩΛ

H), Hs
α(ΓΛ

H), and Hr
0(WΛ∗ ; H̃

1
α(ΩΛ

H)) for quasiperiodicity
α ∈ WΛ∗ = (−Λ∗,Λ∗] := (−π/Λ, π/Λ] from Appendix A; WΛ∗ = (−π/Λ, π/Λ] is the
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so-called Brillouin zone. We first rely on a well-known periodic Dirichlet-to-Neumann
operator T+

α on ΓΛ
H ⊂ ΓH that is continuous from Hs+1

α (ΓΛ
H) into Hs

α(ΓΛ
H) for all s ∈ R,

T+
α (ϕ)

∣∣∣
ΓΛ
H

=

[
i
∑
j∈Z

√
k2 − |Λ∗j − α|2 ϕ̂(j) ei(Λ∗j−α)x1

]∣∣∣∣
ΓΛ
H

for ϕ =
∑
j∈Z

ϕ̂(j)ei(Λ∗j−α)x1 .

(10)
Obviously, T+

α is a periodic version of the operator T+ from (6). Second, we introduce

a bounded sesqui-linear form aα on H̃1
α(ΩΛ

H) × H̃1
α(ΩΛ

H) corresponding to the Helmholtz
equation with Dirichlet boundary condition on Γ,

aα(w, v) :=

∫
ΩΛ
H

[
∇xw · ∇xv − k2w(α, ·) v

]
dx −

∫
ΓΛ
H

T+
α

(
w|ΓΛ

H

)
v|ΓΛ

H
, ds,

and state an equivalence result that can be shown along the lines of Theorem 9 in [Lec16].

Theorem 2. Suppose ui belongs to H1
r (ΩH) for some r ∈ [0, 1). Then a function u ∈

H̃1
r (ΩΛ

H) solves (9) if and only if w := JΩu ∈ Hr
0(WΛ∗ ; H̃

1
α(ΩΛ

H)) solves

aα(w(α, ·), v) =

∫
ΓΛ
H

fαv, ds for fα =
∂

∂ν
JΩu

i(α, ·)− T+
α

[
JΩu

i(α, ·)
∣∣
ΓΛ
H

]
(11)

for all v ∈ H̃1
α(ΩΛ

H) and almost every α ∈ WΛ∗.

The last theorem’s assumption that ui belongs to H1
r (ΩH) for some r ≥ 0 is in two

dimensions satisfied, e.g., for (non-periodic) point sources or Herglotz wave functions with,
roughly speaking, vanishing horizontal part, see [LZ16]. The periodic scattering problem
is always uniquely solvable if, e.g., Γ is graph of a Lipschitz function, see [BBS94, EY02].

Lemma 3. If Γ is graph of a Lipschitz continuous function, then (11) is solvable for all
(k∗, α) ∈ (0,∞)×WΛ∗ and the solution operators Aα are uniformly bounded in α ∈ WΛ∗.

The solution w = w(α, ·) does generally not belong to H1
0 (WΛ∗ ; H̃

1(ΩΛ
H)), which follows

actually already from [CE10].

Theorem 4. Assume that Γ is graph of a Lipschitz continuous function. If ui ∈ H1
r (ΩH)

for r ∈ [0, 1), then the solution w = w(α, ·) to (11) belongs to Hr
0(WΛ∗ ; H̃

1
α(ΩΛ

H)) and the

solution u = J −1
Ω w to (9) belongs to H̃1

r (ΩH). If r > 1/2, then α 7→ w(α, ·) is continuous

from WΛ∗ into H̃1
α(ΩΛ

H).

Proof. We merely show the continuity result: Reference [CE10] states that the solution u

to (8) belongs to H̃1
r (ΩH) if the incident field decays as indicated for r ∈ [0, 1) (even for r ∈

(−1, 1)). The transformed solution w = JΩu hence belongs to Hr
0(WΛ∗ ; H̃

1
α(ΩΛ

H)). If r >
1/2, such functions are continuous in α due to Sobolev’s embedding theorem (or Morrey’s
estimate) in one dimension (see [Eva98, LZ16]), such that α 7→ w(α, ·) is continuous from

WΛ∗ into H̃1
α(ΩΛ

H) ⊂ H̃1(ΩΛ
H). (The norm in H̃1

α(ΩΛ
H) is simply the norm of H̃1(ΩΛ

H)!) In

particular, the evaluations w(α, ·) in H̃1
α(ΩΛ

H) depend continuously on α.
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4 Periodized Quasiperiodic Scattering Problems

Now we start to analyze scattering problems from locally perturbed periodic surfaces based
on the Bloch transform from Appendix A and our knowledge on quasiperiodic scattering
from Section 3. As the variational formulation (7) of the locally perturbed periodic surface

scattering problem is set in the non-periodic space H̃1(Ωp
H), we have to transform it into

a problem formulated in the periodic domain ΩH .
To this end, we use the diffeomorphism Φp from ΩH into Ωp

H , defined by

Φp : x 7→
(
x1, x2 +

(x2 −H)3

(ζ(x1)−H)3
(ζp(x1)− ζ(x1)

)
. (12)

The support of Φp − I is contained in ΩΛ
H as the support of ζp − ζ is by assumption

included in [−Λ/2, Λ/2], too, see (1). The transformed total field uT = u ◦ Φp ∈ H̃1
r (ΩH)

then satisfies by the transformation theorem the following variational problem in ΩH ,∫
ΩH

[
Ap∇uT · ∇vT − k2cp uTvT

]
dx−

∫
ΓH

T+(uT|ΓH )vT ds =

∫
ΓH

[
∂ui

∂x2

− T+(ui|ΓH )

]
vT ds

(13)

for all vT ∈ H̃1(ΩH) with compact support in ΩH and coefficients

Ap(x) :=
∣∣ det∇Φp(x)

∣∣[(∇Φp(x))−1((∇Φp(x))−1)T
]
∈ L∞(ΩH ,R2×2),

cp(x) :=
∣∣ det∇Φp(x)

∣∣ ∈ L∞(ΩH).

We reformulate (13) by applying the inverse Bloch transform composed with the Bloch
transform to the weak solution uT. As ∇Φp = I outside Ωp

H there holds that Ap − I
and cp − 1 are both supported in ΩΛ

H , and an explicit computation shows that the Bloch
transform of (Ap− I)∇uT equals to (Λ/2π)1/2(Ap− I)∇uT in the space L2(ΩH)2, and the
Bloch transform of (cp − 1)uT is (Λ/2π)1/2(cp − 1)uT in L2(ΩH). (Despite, both functions
have compact support in ΩΛ

H .)
If we assume that the incident field ui belongs to H1

r (ΩH) for some r ∈ [0, 1), then

the Bloch transform wB = JΩuT belongs to L2(WΛ∗ ; H̃
1
α(ΩΛ

H)) and satisfies for all test

functions vB ∈ L2(WΛ∗ ; H̃
1
α(ΩΛ

H)) that∫
WΛ∗

aα(wB(α, ·), vB(α, ·)) dα +

[
Λ

2π

]1/2 ∫
ΩΛ
H

(Ap − I)∇
(
J −1

Ω wB

)
· ∇
(
J −1

Ω vB

)
dx

− k2

[
Λ

2π

]1/2 ∫
ΩΛ
H

(cp − 1)J −1
Ω wB J −1

Ω vB dx =

∫
WΛ∗

∫
ΓΛ
H

f(α, ·) vB(α, ·) ds dα,
(14)

for the right-hand side f ∈ Hr
0(WΛ∗ ;H

−1/2
α (ΓΛ

H)) with f(α, ·) ∈ H−1/2
α (ΓΛ

H) given by

f(α, ·) =
∂JΩu

i(α, ·)
∂x2

− T+
α

[
(JΩu

i)(α, ·)|ΓΛ
H

]
. (15)

The corresponding coupled strong formulation is

∆xwB(α, ·) + k2wB(α, ·) = −
[

Λ

2π

]1/2 [
∇ ·
[
(Ap − I)∇

(
J −1

Ω wB

)]
+ k2(cp − 1)

(
J −1

Ω wB

)]
6



with boundary conditions wB(α, ·) = 0 on WΛ∗×ΓΛ and ∂wB(α, ·)/∂x2−T+
α

[
wB(α, ·)|ΓΛ

H

]
=

∂(JΩu
i(α, ·))/∂x2 − T+

α

[
(JΩu

i)(α, ·)|ΓΛ
H

]
on WΛ∗ × ΓΛ

H .

Theorem 5. Assume that the incident field ui belongs to H1
r (ΩH) for some r ∈ [0, 1).

Then uT ∈ H̃1
r (ΩH) satisfies (13) if and only if wB = JΩuT ∈ Hr

0(WΛ∗ ; H̃
1
α(ΩΛ

H)) satisfies
(14).

Proof. From the arguments before (14), it is easy to see that if uT satisfies (13), then wB

solves (14). If wB ∈ Hr
0(WΛ∗ ; H̃

1
α(ΩΛ

H)) satisfies (14), then the property J −1
Ω = J ∗Ω implies

that uT = J −1
Ω uB ∈ H̃1

r (ΩH) satisfies (13).

We next consider unique solvability of (14).

Theorem 6. If Γp is graph of a Lipschitz continuous function, then (14) is uniquely

solvable in Hr
0(WΛ∗ ; H̃

1
α(ΩΛ

H)) for all incident fields ui ∈ H1
r (ΩH) for r ∈ [0, 1).

Proof. If Γp is graph of a Lipschitz continuous function, then [CE10] implies that both

variational formulations (7) and, equivalently, (13) are uniquely solvable in H̃1
r (ΩH) for

incident fields in ui ∈ H1
r (ΩH), r ∈ (−1, 1). Theorem 5 now implies that (14) is uniquely

solvable, too.

Before we study error estimates for a discretization of the variational formulation of wB

in the next section, we need to show an auxiliary result on the regularity of this solution.

Theorem 7. Assume that the restrictions of ∂ui/∂x2 and ui to ΓH belong to H
1/2
r (ΓH)

and to H
3/2
r (ΓH) for r ∈ [0, 1), and that ζ and ζp ∈ C2,1(R,R). Then the quasiperiodic

solutions wB(α, ·) to (14) do all belong to H2
α(ΩΛ

H) and the inverse Bloch transformation
uT = J −1

Ω wB belongs to H2(ΩH).

Proof. From [CM05] we know that the variational problem (7) possesses a unique solution
that is bounded in H1(ΩH) by the norm of ui in H1/2(ΓH). From the regularity of ζ and
ζp, we deduce that Γp is C2,1-smooth such that elliptic regularity results, see, e.g., [McL00],
imply that both ∂ui/∂x2 and the restriction of ui to ΓH itself belong actually to H3/2(ΓH).
In turn, these regularity results further imply by localization that u ∈ H2(ΩH) (see,
e.g., [LR10]). Thus, uT = u ◦Φp belongs to H2(ΩH) by the C2,1-smoothness of Φp defined
via ζp and ζ in (12), and its Bloch transform belongs to L2(WΛ∗ ;H

2
α(ΩΛ

H)) by the mapping
properties of JΩ: wB = JΩuT ∈ L2(WΛ∗ ;H

2
α(ΩΛ

H)). For almost every α, the solution wB

to (14) hence belongs to H2
α(ΩΛ

H)

We finally state an equivalent way of writing (14) if the incident field ui belongs to
H1
r (ΩH) for some r ∈ (1/2, 1).

Theorem 8. If Γp is graph of a Lipschitz continuous function and if ui ∈ H1
r (ΩH) for

r ∈ (1/2, 1), then the solution wB ∈ L2(WΛ∗ ; H̃
1
α(ΩΛ

H)) equivalently satisfies for all α ∈ WΛ∗

7



and all vα ∈ H̃1
α(ΩΛ

H) that

aα(wB(α, ·), vα) +

[
Λ

2π

]1/2 ∫
ΩΛ
H

(Ap − I)∇
(
J −1

Ω wB

)
· ∇vα dx (16)

−
[

Λ

2π

]1/2

k2

∫
ΩΛ
H

(cp − 1)J −1
Ω wB vα dx =

∫
ΓΛ
H

f(α, ·) vα ds.

Proof. Reference [CE10] states that the solution u to (7) belongs to H1
r (ΩH) if the incident

field decays as indicated for r ∈ [0, 1) (even for r ∈ (−1, 1)). As Φp merely modifies u in a
bounded region, the transformed field uT = u◦Φp decays with the same rate as x1 → ±∞
and wB = JΩuT hence belongs to Hr

0(WΛ∗ ; H̃
1
α(ΩΛ

H)) ⊂ Hr
0(WΛ∗ ; H̃

1(ΩΛ
H)) for r > 1/2.

Such functions are continuous in α with values in H̃1(ΩΛ
H) due to Sobolev embeddings (or

Morrey’s estimate) in one dimension (see [Eva98, LZ16]).
Thus, we can test equation (14) by Dirac distributions in α0 ∈ WΛ∗ , multiplied by

functions vα0 ∈ H̃1
α(ΩΛ

H), to get that wB solves (16) for each α0 ∈ WΛ∗ . In turn, if wB

satisfies the latter (infinite number of) equations, constructing a complete countable family

of test functions in L2(WΛ∗ ; H̃
1
α(ΩΛ

H)) shows that wB solves (14) as well. (To this end, one

takes an orthonormal family of the separable Hilbert space L2(WΛ∗ ; H̃
1
α(ΩΛ

H)); separability
can be shown by first considering functions that are piecewise constant in α and take values
in the periodic Sobolev functions H̃1

0 (ΩH), and, second, multiplication of these functions
by exp(−iαx1).)

5 The Numerical Scheme and Error Estimates

In this section, we discuss a Galerkin discretization of the variational formulation (14) of
wB together with an error estimate for the solution to the discretized problem. Of course,
this makes it necessary to introduce a suitable finite element space first. We actually chose
the simplest type of (nodal) elements, which is not crucial but avoids technicalities. (For
instance, when using periodic boundary integral equations instead, we would need to take
care of exceptional wave numbers where uniqueness of solution fails.)

We assume hence to know a family of regular and quasi-uniform meshesMh, 0 < h ≤
h0, of the domain ΩΛ

H such that for each mesh width h the nodes on the right and left
boundary of ΩΛ

H have the same height. This in particular ensures that piecewise linear
and globally continuous functions on that mesh can be extended to periodic functions on
a regular and quasi-uniform mesh of ΩH . To construct such periodic functions we omit
now all nodal points on the left boundary of ΩΛ

H , denote the piecewise linear and globally
continuous nodal functions equal to one at exactly one of the remaining nodes and zero
at all others by {ϕ(`)

M }M`=1, and denote the discrete subspace spanned by these functions by

Ṽh ⊂ H̃1
0 (ΩΛ

H). It is well-known (see, e.g., [SS07]) that for functions v ∈ H̃1
0 (ΩΛ

H)∩H2(ΩΛ
H)

there holds

min
vh∈Ṽh

‖vα,h − v‖H`(ΩΛ
H) ≤ Ch2−`‖v‖H2(ΩΛ

H) for 0 < h < h0. (17)
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To introduce our finite element space, we introduce uniformly distributed grid points

α
(1)
N = −π

Λ
+

π

NΛ
, α

(j)
N = α

(j−1)
N +

2π

NΛ
∈ WΛ∗ for j = 2, . . . , N ∈ N,

and consider a basis {ψ(j)
N }Nj=1 of the space of functions that are piecewise constant on

each interval [α
(j)
N − π/(NΛ), α

(j)
N + π/(NΛ)] for j = 1, . . . , N such that ψ

(j)
N equals one on

the jth interval and zero else. The finite element space X̃N,h we consider is spanned by
products of these two bases, multiplied by exp(−iαx1),

X̃N,h =

{
vN,h(α, x) = e−iαx1

N∑
j=1

M∑
`=1

v
(j,`)
N,h ψ

(j)
N (α)ϕ

(`)
M (x) : v

(j,`)
N,h ∈ C

}
⊂ L2(WΛ∗ ; H̃

1
α(ΩΛ

H)),

(18)

It is easy to see that functions in X̃N,h indeed belong to L2(WΛ∗ ; H̃
1
α(ΩΛ

H)): Without the
exponential factor in (18) they are clearly periodic in α and in x1 as functions defined in
R× ΩH ; further, multiplication by exp(−iαx1) implies for α ∈ R and x ∈ ΩH that

vN,h (α, ( x1+Λ
x2

)) = e−iα(x1+Λ)

N∑
j=1

M∑
`=1

v
(j,`)
N,h ψ

(j)
N (α)ϕ

(`)
M (( x1+Λ

x2
)) = e−iαΛvN,h (α, x) ,

such that vN,h(α, ·) is α-quasiperiodic and hence belongs to H̃1
α(ΩΛ

H).
Introduce now, abstractly, the sesqui-linear form

b(w, v) =

[
Λ

2π

]1/2 ∫
ΩΛ
H

[
(Ap − I)∇w · ∇v − k2(cp − 1)wv

]
dx on H1(ΩΛ

H)×H1(ΩΛ
H).

For the boundary term f(α, ·) = ∂(JΩu
i(α, ·))/∂x2 − T+

α (JΩu
i)(α, ·) in H

−1/2
α (ΓH)

from (15), we now seek a finite element solution wN,h ∈ X̃N,h to the finite-dimensional
problem∫

WΛ∗

aα(wN,h, vN,h) dα + b
(
J −1

Ω wN,h,J −1
Ω vN,h

)
=

∫
WΛ∗

∫
ΓΛ
H

f(α, ·) vN,h ds dα (19)

for all vN,h ∈ X̃N,h. As functions in X̃N,h are for fixed x piecewise exponential in α on each

interval [α
(j−1)
N , α

(j)
N ], the inverse Bloch transform in the latter problem can be explicitly

computed:

J −1
Ω wN,h(α, x) =

[
Λ

2π

]1/2 N∑
j=1

∫ α
(j)
N +π/(NΛ)

α
(j)
N −π/(NΛ)

wN,h(α, x) dα

=

[
Λ

2π

]1/2 N∑
j=1

M∑
`=1

v
(j,`)
N,h ϕ

(`)
M (x)

∫ α
(j)
N +π/(NΛ)

α
(j)
N −π/(NΛ)

e−iαx1 dα

=

[
Λ

2π

]1/2 N∑
j=1

g
(j)
N (x1)

M∑
`=1

v
(j,`)
N,h ϕ

(`)
M (x) =: J −1

Ω,N

(
{wN,h(α(j)

N , ·)}Nj=1

)
(20)
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where
g

(j)
N (x1) = ie−iα

(j)
N x1

[
e−iπx1/(NΛ) − eiπx1/(NΛ)

]
/x1 if x1 6= 0, (21)

and g
(j)
N (0) = 2π/(NΛ). Note that (20) hence defines a numerical approximation J −1

Ω,N to
the inverse Bloch transform that we rely on in our numerical examples later on.

Theorem 9. Assume that ui ∈ H2
r (ΩH) for r ≥ 1/2 and that ζ and ζp are C2,1 diffeo-

morphisms. Then the linear system (19) is uniquely solvable in X̃N,h for any right-hand
side

f(α, ·) =
∂JΩu

i

∂x2

(α, ·)− T+
α (JΩu

i)(α, ·) in Hr
0(WΛ∗ ;H

1/2
α (ΓΛ

H))

if N ≥ N0 is large enough and 0 < h < h0 is small enough. The solution wB ∈ X̃N,h

satisfies the error estimate∥∥wN,h − wB

∥∥
L2(WΛ∗ ;H`(ΩΛ

H))
≤ Ch1−` (N−r + h

)
‖f‖

Hr
0 (WΛ∗ ;H

1/2
α (ΓΛ

H))
, ` = 0, 1. (22)

Remark 10. (a) Despite we have explicitly introduced the finite dimensional space X̃N,h

via piecewise linear and globally continuous functions on a mesh of ΩΛ
H , Theorem 22 holds

for any family of finite-dimensional spaces that satisfies (17). Of course, (19) is also

uniquely solvable for any other continuous linear form on Hr
0(WΛ∗ ; H̃

1
α(ΩΛ

H)) as right-hand
side.

(b) The assumption of Theorem 9 for ui applies for instance if ui is the Dirichlet Green’s
function of the half space for all r ∈ (1/2, 1), see [LZ16].

Proof. The proof exploits the regularity result in Theorem 7 stating that wB(α; ·) ∈
H2
α(ΩΛ

H). The latter function is continuous in α by Theorem 8. Solvability of the given
discretized sesqui-linear problem that features a continuous sesqui-linear form that satis-
fies a G̊arding’s inequality as well as an injectivity condition is due to basic finite elements
theory, see, e.g., [SS07]. The indicated error bound (22) follows from the corresponding
standard convergence estimate∥∥wN,h − wB

∥∥
L2(WΛ∗ ;H̃1

α(ΩΛ
H))
≤ C inf

vN,h∈X̃N,h

∥∥vN,h − wB

∥∥
L2(WΛ∗ ;H̃1

α(ΩΛ
H))

≤ C(N−r + h)‖wB‖Hr
0 (WΛ∗ ;H2(ΩΛ

H)) (23)

≤ C(N−r + h)‖f‖
Hr

0 (WΛ∗ ;H
1/2
α (ΓΛ

H))
.

To prove the additional L2(ΩΛ
H)-estimate, we need to consider the adjoint problem to

find vB ∈ L2(WΛ∗ ; H̃
1
α(ΩΛ

H)) such that, for some given g ∈ L2(WΛ∗ ;L
2(ΩΛ

H)), there holds∫
WΛ∗

aα(w, vB) dα + b
(
J −1

Ω w,J −1
Ω vB

)
=

∫
WΛ∗

∫
ΩΛ
H

w g ds dα (24)

for all w ∈ L2(WΛ∗ ; H̃
1
α(ΩΛ

H)). Conjugating the entire latter equation obviously yields a
Fredholm problem such that is suffices to show uniqueness of solution to deduce existence
of solution. If v ∈ L2(WΛ∗ ; H̃

1
α(ΩΛ

H)) annihilates the latter sesqui-linear form,∫
WΛ∗

aα(v, v) dα + b
(
J −1

Ω v, J −1
Ω v

)
= 0,
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we deduce that v solves as well the homogeneous primal problem (14) and hence vanishes
by uniqueness of the primal problem (see Theorem 6).

The arguments proving the H2-regularity estimate for the solution wB from Theorem 7
directly transfer to the solution vB to the adjoint problem (24), such that there is C > 0
with ‖vB‖L2(WΛ∗ ;H2(ΩΛ

H))) ≤ C‖g‖L2(WΛ∗ ;L2(ΩΛ
H)). Recall that the difference wN,h −wB of the

solutions to the continuous and discretized primal problem satisfy Galerkin orthogonality,

A(wN,h − wB, vN,h) :=

∫
WΛ∗

aα(wN,h − wB, vN,h) dα + b(J −1
Ω (wN,h − wB), J −1

Ω vN,h) = 0

for all elements vN,h ∈ X̃N,h of the discretization space. This shows that

(wN,h − wB, g)L2(WΛ∗×ΩΛ
H) = A(wN,h − wB, vB) = A(wN,h − wB, vB − vN,h) (25)

≤ C‖wN,h − wB‖L2(WΛ∗ ;H̃1
α(ΩΛ

H)) ‖vB − vN,h‖L2(WΛ∗ ;H̃1
α(ΩΛ

H))

for all vN,h ∈ X̃N,h. If we choose vN,h as the orthogonal projection of vB onto X̃N,h ⊂
L2(WΛ∗ ; H̃

1
α(ΩΛ

H)), then firstly

‖vB − vN,h‖L2(WΛ∗ ;H̃1
α(ΩΛ

H)) ≤ Ch‖vB‖L2(WΛ∗ ;H2(ΩΛ
H)) ≤ Ch‖g‖L2(WΛ∗ ;L2(ΩΛ

H)). (26)

Together with (25), this estimate secondly implies that

(wN,h − wB, g)L2(WΛ∗×ΩΛ
H) ≤ Ch‖wN,h − wB‖L2(WΛ∗ ;H̃1

α(ΩΛ
H))

holds for all g ∈ L2(WΛ∗ ;L
2(ΩΛ

H)) with norm equal to one. In consequence, Theorem 7
and (23) imply that

‖wN,h − wB‖L2(WΛ∗×ΩΛ
H) ≤ Ch‖wN,h − wB‖L2(WΛ∗ ;H̃1

α(ΩΛ
H))

≤ Ch(N−r + h)‖f‖
Hr

0 (WΛ∗ ;H
1/2
α (ΓΛ

H))
.

6 Numerical Implementation for Locally Perturbed

Surfaces

In this section, we describe the numerical implementation of the variational problem (19)
in detail. For convenience, we solve for the scattered field instead of for the total field and
further periodize all quasiperiodic functions, such that the sesqui-linear forms will become
α-dependent instead of the function spaces.

Recall that the scattered field ws(α, x) := wB(α, x) − (JΩu
i)(α, x) belongs to

L2(WΛ∗ ; H
1
α(ΩΛ

H)) and satisfies the variational problem∫
WΛ∗

aα(ws(α, ·), vB(α, ·)) dα +

[
Λ

2π

]1/2 ∫
ΩΛ
H

(Ap − I)∇
(
J −1

Ω ws
)
· ∇
(
J −1

Ω vB

)
dx

− k2

[
Λ

2π

]1/2 ∫
ΩΛ
H

(cp − 1)J −1
Ω ws J −1

Ω vB dx = 0

(27)
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for all vB ∈ L2(WΛ∗ ; H̃
1
α(ΩΛ

H)), together with the variationally formulated boundary con-
ditions∫

WΛ∗

∫
Γ

[
ws(α, ·)− (JΩu

i)(α, ·)
]
t(α, ·) dx dα = 0 for all t ∈ L2(WΛ∗ ; H

−1/2
α (Γ)). (28)

We next periodize all functions involved in the latter formulation, that is, we introduce

w0(α, x) = eiαx1ws(α, x) and v0(α, x) = eiαx1vB(α, x) for (α, x) ∈ WΛ∗ × ΩH ,

such that w0 and v0 in L2(WΛ∗ ;H
1
0 (ΩΛ

H)) are for fixed α two Λ-periodic functions in x1.

Further, t0(α, x) = exp(iαx1)t(α, x) belongs to L2(WΛ∗ ;H
−1/2
0 (Γ)).

As the gradient∇xw
s(α, ·) transforms to (∇x+iαe1)(e−iαx1w0), the variational problem

(27) for ws equivalently reformulates for w0 as∫
WΛ∗

[∫
ΩΛ
H

[
(∇x + iαe1)w0 · (∇x − iαe1)v0 − k2w0v0

]
dx−

∫
ΓΛ
H

T̃+
α (w0|ΓΛ

H
)v0 ds

]
dα

+

[
Λ

2π

]1/2 ∫
ΩΛ
H

(Ap − I)∇J −1
Ω (exp(−iα ·)w0) · J −1

Ω ∇(exp(−iα ·)v0) dx

− k2

[
Λ

2π

]1/2 ∫
ΩΛ
H

(cp − 1)J −1
Ω (exp(−iα ·)w0)J −1

Ω (− exp(iα ·)v0) dx = 0

(29)

for all v0 ∈ L2(WΛ∗ ; H̃
1
0 (ΩΛ

H)) and∫
WΛ∗

∫
ΓΛ

[
w0(α, ·)− eiαx1(JΩu

i)(α, ·)
]
t0(α, x) ds dα = 0 (30)

for all t ∈ L2(WΛ∗ ; H
−1/2
0 (ΓΛ)). In (29), the modified Dirichlet-to-Neumann map T̃+

α is
defined on periodic functions ϕ =

∑
j∈Z ϕ̂(j) exp(ijΛx1) in Hs(ΓΛ

H) by

T̃+
α (ϕ)

∣∣∣
ΓΛ
H

=

[
i
∑
j∈Z

√
k2 − |Λ∗j − α|2 ϕ̂(j) eijΛx1

]∣∣∣∣
ΓΛ
H

. (31)

For simplicity, we introduce short-hand notation for (31), writing

b′(w, v) =

[
Λ

2π

]1/2 ∫
ΩΛ
H

[
(Ap − I)∇J −1

Ω (exp(−iα ·)w) · ∇J −1
Ω (exp(−iα ·)v) (32)

− k2(cp − 1)J −1
Ω (exp(−iα ·)w)J −1

Ω (exp(−iα ·)v)
]
dx

for arbitrary w, v ∈ H1(ΩΛ
H) and abbreviate the term inside the α-integral in the first line

in (29) by a′α(w0, v0). Then (29) reads∫
WΛ∗

a′α(w0(α, ·), v0(α, ·)) dα + b′(w0, v0) = 0 for all v0 ∈ X̃N,h. (33)
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Let us emphasize that b′ implements the coupling due to the perturbation of the periodic
surface between the different quasiperiodic components of the Bloch transformed solution.

We next discretize the latter family of problems by finite elements and recall from
the definition of the finite-dimensional approximation space X̃N,h in (18) the piecewise

constant set of functions {ψ(j)
N }Nj=1 in α, as well as the piecewise linear and globally con-

tinuous nodal basis {ϕ(l)
M}Ml=1 of the finite-dimensional approximation space Ṽh ⊂ H̃1

0 (ΩΛ
H)

of basis functions that vanish on ΓΛ. We now introduce a larger approximation space
Vh = span{ϕ(l)

M ′}M
′

l=1 with M ′ = M ′(h) ≥ M spanned by all basis functions defined on the

mesh, i.e., also those that do not vanish on ΓΛ, such that ϕ
(l)
M ′ = ϕ

(l)
M for 1 ≤ l ≤M and

Vh := span{ϕ(l)
M ′}

M ′

l=1 ⊂ H1
0 (ΩΛ

H).

If we denote the nodes of the mesh defining Vh by x
(1)
M ′ , . . . , x

(M ′)
M ′ , then ϕ

(m)
M ′ is piecewise

linear on each triangle of the mesh and satisfies ϕ
(`)
M ′(x

(m)
M ′ ) = δ`,m for 1 ≤ `,m ≤ M ′. In

particular, the mesh functions ϕ
(M+1)
M ′ , . . . , ϕ

(M ′)
M ′ are linked to the nodes x

(M+1)
M ′ , . . . , x

(M ′)
M ′

that are contained by ΓΛ; these basis functions hence yield the boundary values of a
function in Vh. This finite element space Vh then defines

XN,h =

{
vN,h(α, x) = e−iαx1

N∑
j=1

M ′∑
l=1

v
(j,l)
N,hψ

(j)
N (α)ϕ

(l)
M ′(x) : v

(j,l)
N,h ∈ C

}
⊂ L2(WΛ∗ ;H

1
α(ΩΛ

H))

(34)

as well as subspaces Y
(j)
N,h of functions that are constant in α ∈ (α

(j)
N − π/(NΛ), α

(j)
N +

π/(NΛ)],

Y
(j)
N,h =

{
v

(j)
N,h(α, x) =

M ′∑
l=1

v
(j,l)
N,hψ

(j)
N (α)ϕ

(l)
M ′(x) : v

(j,l)
N,h ∈ C

}
⊂ L2(WΛ∗ ;H

1
0 (ΩΛ

H)) (35)

for j = 1, . . . , N , and a corresponding subspace of functions that vanish on ΓΛ,

Ỹ
(j)
N,h =

{
v

(j)
N,h(α, x) =

M ′∑
l=1

v
(j,l)
N,hψ

(j)
N (α)ϕ

(l)
M ′(x) : v

(j,l)
N,h ∈ C, v(j,l)

N,h = 0 if ϕ
(l)
M ′

∣∣∣
ΓΛ
6≡ 0

}
. (36)

Thus, setting

Y 0
N,h = Y

(1)
N,h ⊕ · · · ⊕ Y

(N)
N,h and Ỹ 0

N,h = Ỹ
(1)
N,h ⊕ · · · ⊕ Ỹ

(N)
N,h , (37)

we note that the solution w0 ∈ XN,h to (33) can be represented by a unique element

(w
(j)
0 )Nj=1 in Y 0

N,h as w0 = exp(−iα(·)1)
∑N

j=1 w
(j)
0 . (Here, (·)1 denotes the first component

of the function’s argument.) The inverse Bloch transform J −1
Ω applied to exp(−iα(·)1)w0

that implicitly appears in (33) hence equals the numerical inverse Bloch transform J −1
Ω,N

from (20), applied to
{

exp(−iα
(j)
N (·)1)w

(j)
0 (α

(j)
N , ·)

}N
j=1

,

J −1
Ω (exp(−iα(·)1)w0) = J −1

Ω,N

(
{wN,h(α(j)

N , ·)}Nj=1

)
= J −1

Ω,N

(
{e−iα

(j)
N (·)1w

(j)
0 (α

(j)
N , ·)}Nj=1

)
.
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The latter equation actually shows via (20) how we implement the Bloch transforms in
the form b′ from (33) in our numerical examples.

The Galerkin discretization (33) can now be reformulated via the tuple (w
(j)
0 )Nj=1 ∈ Y 0

N,h

just introduced, ∫ α
(j)
N +π/(NΛ)

α
(j)
N −π/(NΛ)

a′α(w
(j)
0 , v

(j)
0 ) dα + b′

(
{w(`)

0 }`, {v
(`)
0 }`

)
= 0 (38)

for all tuples (v
(1)
0 , . . . , v

(N)
0 ) ∈ Ỹ 0

N,h and j = 1, . . . , N . The boundary conditions (30)
on ΓΛ can be implemented directly at the nodal points of the finite elements: To this

end, consider all nodal points x
(M+1)
M ′ , . . . , x

(M ′)
M ′ on ΓΛ and denote the corresponding basis

function of Vh by ϕ
(m)
M ′ , m = M + 1, . . . ,M ′. The first coordinate of these points hence is

(x
(`)
M ′)1, such that we impose that

2π

NΛ
w

(j)
0 (x

(`)
M ′) =

∫ α
(j)
N +π/(NΛ)

α
(j)
N −π/(NΛ)

eiα
(
x

(`)

M′

)
1(JΩu

i)(α, x
(`)
M ′) dα, 1 ≤ j ≤ N, M + 1 ≤ ` ≤M ′.

(39)

For notational simplicity, let us now identify the function v
(j)
0 ∈ Ỹ

(j)
N,h, which is by construc-

tion supported in [α
(j)
N −π/(NΛ), α

(j)
N +π/(NΛ)]×ΩΛ

H , with the element (0, . . . , v
(j)
0 , . . . 0)

in Ỹ 0
N,h, and further set ãj(w, v

(j)
0 ) =

∫ α(j)
N +π/(NΛ)

α
(j)
N −π/(NΛ)

a′α(w, v
(j)
0 ) dα as well as

b̃j({w(`)
0 }`, v

(j)
0 ) = b′

(
{w(`)

0 }`, v
(j)
0

)
for j = 1, . . . , N .

Then we get the following discrete variational problem for (w
(j)
0 )Nj=1 ∈ Y 0

N,h that is equiva-
lent to (38),

ãj(w
(j)
0 , v

(j)
0 ) + b̃j

(
{w(`)

0 }`, v
(j)
0

)
= 0 for j = 1, . . . , N

and all (v
(1)
0 , . . . , v

(N)
0 ) ∈ Ỹ 0

N,h, together with the constraints

w
(j)
0 (x

(`)
M ′) =

NΛ

2π

∫ α
(j)
N +π/(NΛ)

α
(j)
N −π/(NΛ)

eiα
(
x

(`)

M′

)
1(JΩu

i)(α, x
(`)
M ′) dα =: c

(j)
N,h(x

(`)
M ′) (40)

for j = 1, . . . , N and ` = M + 1, . . . ,M ′. The last equation is due to our choice of the
finite element space Vh equivalent to (39).

Numerically, we actually solve a slightly restructured linear system that relies on a
further unknown uh =

∑M ′

j=1 u
(j)
h ϕ

(j)
M ′ ∈ Vh ⊂ H1

0 (ΩΛ
H) that equals the (discrete) inverse

Bloch transform of (w
(1)
0 , . . . , w

(N)
0 ) ∈ Y 0

N,h. In our discretization, the constraint

uh(x) = J −1
Ω,N({exp(−iα

(j)
N (·))w(j)

0 }j)
(20)
=

[
Λ

2π

]1/2 N∑
j=1

g
(j)
N (x1) e−iα

(j)
N x1w

(j)
0 (x) (41)

is added to the linear system as a constraint for (w
(j)
0 )Nj=1 =

(∑M ′

m=1w
(j,m)
N,h ϕ

(m)
M ′

)N
j=1
∈ Y 0

N,h.

(The weight functions g
(j)
N have been explicitly defined in (20).) To this end, recall the
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M ′ nodal points x
(1)
M ′ , . . . , x

(M)
M ′ of the mesh defining the periodic finite element space Vh

that are not on ΓΛ, as well as the M ′ −M nodes x
(M+1)
M ′ , . . . , x

(M ′)
M ′ on ΓΛ. Also recall the

basis functions ϕ
(`)
M ′ of Vh linked to these nodal points by the conditions ϕ

(`)
M ′(x

(m)
M ′ ) = δ`,m.

Abbreviating ϕm = ϕ
(m)
M ′ , the discrete solution W = (w

(1)
0 , . . . , w

(N)
0 ) ∈ Y 0

N,h with w
(j)
0 =∑

mw
(j,m)
N,h ψ

(j)
N ϕm solves the linear system

M∑
m=1

ãj(ϕm, ϕ`)w
(`,m)
N,h +

M∑
m=1

b̃j({ϕn}n), ϕ`)u
(m)
h = 0 for ` = 1, . . . ,M, j = 1, . . . , N,

w
(`,m)
N,h = c

(j)
N,h(x

(`)
M ) for ` = M + 1, . . . ,M ′ j = 1, . . . , N,

u
(m)
h −

[
Λ

2π

]1/2 N∑
j=1

g
(j)
N

(
(x

(m)
M ′ )1

)
e−iα

(j)
N (x

(m)

M′ )1w
(j,m)
N,h = 0 for m = 1, . . . ,M ′. (42)

If we introduce vectors U = (u
(1)
h , . . . , u

(M ′)
h )>, Wj = (w

(j,1)
N,h , . . . , w

(j,M ′)
N,h )>, and Fj =

(F
(`)
j )M

′

`=1 where F
(`)
j = 0 for ` = 1, . . . ,M and F `

j = c
(j)
N,h(x

(`)
M ) for ` = M + 1, . . . ,M ′,

then (42) is equivalent to the quadratic matrix-vector equation
A1 0 · · · 0 C1

0 A2 · · · 0 C2
...

...
...

...
...

0 0 · · · AN CN
B1 B2 · · · BN IM




W1

W2
...

WN

U

 =


F1

F2
...
FN
0

 ∈ C(N+1)M ′ , (43)

with complex M ′×M ′-matrices Aj and Cj defined by Aj(m, l) = ãj(ϕm, ϕ`)) for 1 ≤ m ≤
M, 1 ≤ ` ≤M ′ and Aj(m, `) = δm,` else, as well as Cj(m, l) = b̃j(ϕm, ϕ`) for 1 ≤ m, ` ≤M
and Cj(m, l) = 0 else. Further,

Bj = −
[

2π

Λ

]1/2
1

N
diag

[
g

(j)
N

((
x

(1)
M ′

)
1

)
e−iα

(j)
N

(
x

(1)

M′

)
1 , . . . , g

(j)
N

((
x

(M ′)
M ′

)
1

)
e−iα

(j)
N

(
x

(M′)
M′

)
1

]
for j = 1, . . . , N . Of course, after solving this linear system, we have already computed
the discrete inverse Bloch transform uh of the individual solutions (w

(1)
N,h, . . . , w

(N)
N,h) via

U . Multiplying uh ∈ Vh ⊂ H1
0 (ΩΛ

H) by exp(−iαx1) yields an approximation in ΩΛ
H to

the transformed solution uT = u ◦ Φp to the surface scattering problem from the locally
perturbed periodic surface Γp we considered originally. Consequently, u itself can on ΩΛ

H

be approximated via the formula u = uT ◦ Φ−1
p .

When solving the large linear system (43) of size (N + 1)M ′ × (N + 1)M ′, one needs
to employ an iterative method, as direct solvers become inefficient (at least without par-
allelization). We chose the GMRES iteration as solution method and pre-condition it in
two steps:

(1) Construct an incomplete LU decomposition (Lj, Uj) for each M ′×M ′-matrix Aj, for
n = 1, 2, . . . , N . Define the lower triangular matrix L = diag(L1, . . . , LN , IM) and
the upper triangular matrix U = diag(U1, . . . , UN , IM).
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(2) Use the GMRES iteration procedure with (L,U) be the pre-conditioner with a tol-
erance ε > 0 that we typically choose to be ε = 10−6.

This choice certainly is somewhat preliminary as we did not perform large-scale tests agains
other preconditioners, and in particular not against parallelized solvers, to tackle (43).

7 Numerical Examples

In this section, we give some numerical results for the above-presented Bloch transform
based method, discretized in (43), together with error estimates and computation times to
indicate efficiency. We always choose the incident field as the half-space Dirichlet’s Green’s
function

ui(x) := G(x, y) =
i

4

[
H

(1)
0 (k|x− y|)−H(1)

0 (k|x− y′|)
]
, x 6= y ∈ R2

+,

where y′ = (y1,−y2)> is the mirror point of the source point y ∈ R2
+ := {ỹ ∈ R2 : ỹ2 > 0}.

The source point y ∈ R2
+ is in all experiments located below both the periodic and the

locally perturbed surfaces on the one hand, and the x1-axis on the other hand. This
artificial scattering problem then possesses G(·, y) as an explicit solution, which makes the
explicit computation of the error of the resulting solution very simple.

Recall that sinc is the smooth function defined by sinc(t) = sin(t)/t when t 6= 0 and
sinc(0) = 1, fix the period Λ as 2π, set α(j) = j + α ∈ R and

β(j) =

{√
k2 − α(j)2 if α(j) ≤ k,

i
√
α(j)2 − k2 if α(j) > k,

such that the incident field has the form(
JRu

i
)

(α, x) =
1

2π

∑
j∈Z

eiα(j)(x1−y1)+iβ(j)x2sinc(β(j)y2) y2 for x2 > y2. (44)

We give the numerical results for two different periodic surfaces given by

f1(t) = 1 +
sin(t)

4
and f2(t) = 1.9 +

sin(t)

3
− cos(2t)

4
.

For each surface, two perturbations are considered:

g1(t) = exp

(
1

t(t+ 2)

)(
cos

[
π(t+ 2)

2

]
+ 1

)
for − 2 ≤ t ≤ 0 and 0 else, and

g2(t) = exp

(
1

(t+ 1)(t− 1)

)
sin [π(t+ 1)] for − 1 ≤ t ≤ 1 and 0 else.

The surfaces Γ1, Γ2, Γ3 and Γ4 are four locally perturbed periodic surfaces defined by

Γ1,2 = {(x, f1(t) + g1,2(t)) : x ∈ R} and Γ3,4 = {(x, f2(t) + g1,2(t)) : x ∈ R}.
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Figure 1: (a)-(b): The two surfaces Γ1,2 defined by the unctions f1 and perturbations g1

and g2; (c)-(d): The two surfaces Γ3,4 defined by the functions f2 and perturbations g1

and g2. The dotted lines mark the periodic surfaces and the solid lines mark the locally
perturbed ones.

For each surface, we chose H = 4 and evaluated the numerical solutions uN,h on Ω2π
4

for two different source points, i.e., y = (0.5, 0.4)> and y = (−2, 0.2)> and two wave
numbers k = 1 and k = 10 by numerically solving the linear system (43) by the described
preconditioned GMRES algorithm. As mentioned, the exact scattered field equals (minus)
the incident field, which allows to compute relative errors ‖uN,h − u‖L2(Ω2π

4 )/‖u‖L2(Ω2π
4 ).

Table 1 and Table 2 show the relative errors for the numerical solutions for the surface
Γ1, Table 3 and Table 4 shows the results for Γ2, Table 5 and Table 6 show the results for
Γ3, and the results of Γ4 are in Table 7 and Table 8. For each example, the results are
computed for mesh sizes h = 0.16, 0.08, 0.04, 0.02, 0.01 and N = 20, 40, 80, 160, 320.

h = 0.16 h = 0.08 h = 0.04 h = 0.02 h = 0.01

N = 20 8.55E−03 7.39E−03 7.25E−03 7.22E−03 7.21E−03
N = 40 4.83E−03 2.90E−03 2.69E−03 2.66E−03 2.65E−03
N = 80 3.92E−03 1.38E−03 1.03E−03 1.00E−03 9.94E−04
N = 160 3.73E−03 9.56E−04 4.56E−04 4.11E−04 4.07E−04
N = 320 3.68E−03 8.57E−04 2.77E−04 2.36E−04 2.32E−04

Table 1: Relative L2-errors for Example 1 (surface Γ1, source at y = (0.5, 0.4)>, k = 1).

As is shown in Tables 1-8, the relative error decreases in N and h up to error stagnation.
For wave number k = 1, the error caused by N is the dominant one, such that the error
decrease as h gets small is sometimes comparatively small, see Tables 1, 3, 5, and 7. For
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h = 0.08 h = 0.04 h = 0.02 h = 0.01

N = 20 3.79E−01 1.02E−01 3.99E−02 1.35E−02
N = 40 3.80E−01 1.01E−01 2.84E−02 7.20E−03
N = 80 3.81E−01 1.01E−01 2.64E−02 6.02E−03
N = 160 3.81E−01 1.01E−01 2.61E−02 5.82E−03
N = 320 3.81E−01 1.01E−01 2.32E−02 5.78E−03

Table 2: Relative L2-errors for Example 2 (surface Γ1, source at y = (−2, 0.2)>, k = 10).

h = 0.16 h = 0.08 h = 0.04 h = 0.02 h = 0.01

N = 20 8.98E−03 7.40E−03 7.32E−03 7.32E−03 7.32E−03
N = 40 5.98E−03 2.94E−03 2.69E−03 2.68E−03 2.69E−03
N = 80 5.50E−03 1.61E−03 1.03E−03 9.67E−04 9.97E−04
N = 160 5.45E−03 1.34E−03 5.00E−04 4.04E−04 4.00E−04
N = 320 5.45E−03 1.31E−03 3.76E−04 2.28E−04 2.17E−04

Table 3: Relative L2-errors for Example 3 (surface Γ2, source at y = (0.5, 0.4)>, k = 1).

k = 10, this is the exact opposite, see Tables 2, 4, 6, and 8. When h is small enough
(see the results for h = 0.01 in Figures 1, 3, 5, 7), the relative error decreases faster than
the rate O (N−1) than proved theoretically in Theorem 9. In Tables 9 and 10, we also
show the computation times of our serial code imlemented in MATLAB for Examples 5
and Example 6 computed on a workstation with an INTEL i7-4790 processor (8 cores at
3.60 GHz) and 32 GB RAM. This data excludes the smallest mesh size and the largest
discretization of the Brillouin zone WΛ∗ that we merely treated on a comparatively slow
workstation with significantly larger memory of 264 GB.

Finally, we balance the two error terms in the L2-estimate ‖uN,h−u‖L2(ΩΛ
H) ≤ C[N−1 +

h2] from (22) by choosing h = c0N
−1/2 for c0 = 2/(5

√
5) and N equal to 20, 80, 320.

The (N, h) pairs are hence (20, 0.04), (80, 0.02) and (320, 0.01). Figure 2 shows plots in
logarithmic scale of the relative L2-errors for the eight examples from above. The slopes
for Examples 1, 3, 5, and 7 is roughly about −1.42, for Example 2, 4, 6, and 8 they are
roughly about −1. This means that the numerical results converges at the rate of N−1 or
even faster than shown in Theorem 9.

A The Floquet-Bloch transform

We briefly recall mapping properties of the (Floquet-)Bloch transform JΩ; standard refer-
ences on this topic are [RS78] or [Kuc93], but see also [Fli09, Annexe B]. We define that
transform on smooth functions u : Ω→ C with compact support in Ω by

JΩu(α, x) =

[
Λ

2π

]1/2∑
j∈Z

u ( x1+Λj
x2

) ei Λj α, x = ( x1
x2 ) ∈ Ω, α ∈ R. (45)
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h = 0.08 h = 0.04 h = 0.02 h = 0.01

N = 20 3.78E−01 1.03E−01 2.78E−02 1.43E−02
N = 40 3.77E−01 1.03E−01 2.66E−02 7.20E−03
N = 80 3.78E−01 1.03E−01 2.65E−02 7.16E−03
N = 160 3.78E−01 1.03E−01 2.64E−02 6.96E−03
N = 320 3.78E−01 1.03E−01 2.64E−02 6.92E−03

Table 4: Relative L2-errors for Example 4 (surface Γ2, source at y = (−2, 0.2)>, k = 10).

h = 0.16 h = 0.08 h = 0.04 h = 0.02 h = 0.01

N = 20 8.87E−03 7.80E−03 7.69E−03 7.67E−03 7.67E−03
N = 40 4.91E−03 3.02E−03 2.82E−03 2.80E−03 2.80E−03
N = 80 4.01E−03 1.45E−03 1.08E−03 1.05E−03 1.04E−03
N = 160 3.84E−03 1.06E−03 4.75E−04 4.23E−04 4.21E−04
N = 320 3.81E−03 9.83E−04 2.99E−04 2.21E−04 2.19E−04

Table 5: Relative L2-errors for Example 5 (surface Γ3, source at y = (0.5, 0.4)>, k = 1).

(The same transform for functions defined in ΩH is denoted by JΩ as well.) One easily
computes that JΩu(α, ·) is α-quasiperiodic with respect to Λ,

(
JΩu

)(
α, ( x1+Λ

x2
)
)

=

[
Λ

2π

]1/2∑
j∈Z

u
(
x1+Λ(j+1)

x2

)
eiα·Λj = e−iΛαJΩu(α, x) (46)

for x = (x1, x2)> ∈ Ω. Further, JΩu(·, x) is for fixed x a Fourier series in α with basis
functions α 7→ exp(i Λj α) that are Λ∗ = 2π/Λ periodic. Thus, introducing the unit cell
and the Brillouin zone as

WΛ =

(
− Λ

2
,
Λ

2

]
and WΛ∗ =

(
− Λ∗

2
,
Λ∗

2

]
=

(
− π

Λ
,
π

Λ

]
implies that knowledge of (α, x) 7→ JΩϕ(α, x) in WΛ∗×ΩH

Λ (or WΛ∗×ΩΛ) defines the Bloch
transform JΩu(α, x) everywhere in R× ΩH (or R× Ω).

This observation reflects in mapping properties of the Bloch transform. To this end,
recall the Bessel potential spaces Hs(Ω) for s ∈ R, together with their weighted analogues
Hs
r (R) :=

{
ϕ ∈ D′(R) : x1 7→ (1 + |x1|2)r/2ϕ(x1) ∈ Hs(R)

}
for s, r ∈ R, equipped with

their natural norms. The spaces Hs(ΩH) are defined analogously and Hs
r (ΩH) contains all

u ∈ D′(ΩH) such that (1 + |x1|2)r/2u(x) ∈ Hs(ΩH).
For s ∈ R we further rely on the subspace of quasiperiodic functions Hs

α(W ) of D′(R,C)
(see (46) for a definition of α-quasiperiodicity). This space contains all α-quasiperiodic
distributions ϕ with finite norm ‖ϕ‖Hs

α(W ) = (
∑

j∈Z(1+|j|2)s |ϕ̂(j)|2)1/2 for α ∈ WΛ∗ , where
ϕ̂(j) is the jth Fourier coefficient of ϕ (the dual evaluation between ϕ and exp(i(Λ∗j −
α)x1)/| det Λ|1/2). Functions in these spaces can be represented by their Fourier series,

ϕ(x1) =
1

| det Λ|1/2
∑
j∈Z

ϕ̂(j)ei(Λ∗j−α)x1 in Hs
α(W ).
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h = 0.08 h = 0.04 h = 0.02 h = 0.01

N = 20 3.93E−01 1.06E−01 2.88E−02 1.55E−02
N = 40 3.94E−01 1.06E−01 2.78E−02 1.14E−02
N = 80 3.94E−01 1.06E−01 2.77E−02 1.08E−02
N = 160 3.94E−01 1.06E−01 2.77E−02 1.07E−02
N = 320 3.94E−01 1.06E−01 2.32E−02 1.07E−02

Table 6: Relative L2-errors for Example 6 (surface Γ3, source at y = (−2, 0.2)>, k = 10).

h = 0.16 h = 0.08 h = 0.04 h = 0.02 h = 0.01

N = 20 9.23E−03 7.83E−03 7.76E−03 7.76E−03 7.76E−03
N = 40 5.71E−03 3.06E−03 2.83E−03 2.82E−03 2.83E−03
N = 80 5.08E−03 1.61E−03 1.07E−03 1.04E−03 1.04E−03
N = 160 5.01E−03 1.32E−03 4.88E−04 4.03E−04 4.04E−04
N = 320 5.01E−03 1.29E−03 3.48E−04 2.28E−04 1.93E−04

Table 7: Relative L2-errors for Example 7 (surface Γ4, source at y = (0.5, 0.4)>, k = 1).

The analogous spaces for functions defined in ΩH are Hs
α(ΩH

Λ ) = {u ∈ D′(R × (0, H)) :
u is α-quasiperiodic in x1 and belongs to H1(ΩH)} with the usual H1-norm on ΩH .

Next, we consider all distributions in D′(R × ΩH) that are Λ∗-periodic in their first
variable α and quasiperiodic in the first component x1 of their second variable x, the
quasiperiodicity being equal to the first variable. For integers r ∈ N and s ∈ R, these
distributions define norms

‖ψ‖2
H`

0(WΛ∗ ;Hs
α(ΩH)) =

∑̀
γ=1

∫
WΛ∗

‖∂γαψ(α, ·)‖2
Hs
α(ΩH) dα , (47)

and Hilbert space Hr
0(WΛ∗ ;H

s
α(ΩH)) as set of those distributions with finite

H`
0(WΛ∗ ;H

s
α(ΩH))-norm. Interpolation in ` and a duality argument allow to define these

spaces for all ` ∈ R.
For a regularity result, we actually also require the family of spaces W 1,p

0 (WΛ∗ ; H̃
1
α(ΩΛ

H))
for 1 ≤ p < ∞, that are defined by replacing the Hr-norm in α by a W 1,p-norm; the pth
power of the norm of these spaces equals

‖w‖p
W 1,p

0 (WΛ∗ ;H̃1
α(ΩΛ

H))
=

∫
WΛ∗

[
‖w(α, ·)‖p

H̃1
α(ΩΛ

H))
+ ‖∂αw(α, ·)‖p

H̃1
α(ΩΛ

H))

]
dα , 1 ≤ p <∞.

For all spaces introduced so far involving ΩH , ΩH
Λ , Ω, or ΩΛ it is convenient to define the

closure of smooth functions that vanish in a neighborhood of Γ or ΓΛ in the norms defined
above; the corresponding subspaces are then denoted by H̃s

α(ΩH
Λ ), Hr

0(WΛ∗ ; H̃
s
α(ΩH)), and

so on.

Theorem 11. The Bloch transform JΩ extends to an isomorphism between Hs
r (ΩH) and

Hr
0(WΛ∗ ;H

s
α(ΩΛ

H)) as well as between H̃s
r (ΩH) and Hr

0(WΛ∗ ; H̃
s
α(ΩΛ

H)) for all s, r ∈ R.
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h = 0.08 h = 0.04 h = 0.02 h = 0.01

N = 20 4.36E−01 1.19E−01 3.19E−02 1.64E−02
N = 40 4.36E−01 1.19E−01 3.09E−02 1.23E−02
N = 80 4.37E−01 1.19E−01 3.08E−02 1.17E−02
N = 160 4.37E−01 1.19E−01 3.07E−02 1.15E−02
N = 320 4.37E−01 1.19E−01 2.64E−02 1.15E−02

Table 8: Relative L2-errors for Example 8 (surface Γ4, source at y = (−2, 0.2)>, k = 10).

h = 0.16 h = 0.08 h = 0.04 h = 0.02

N = 20 0.74 3.3 25 277
N = 40 1.5 7.4 55 580
N = 80 3.7 19 126 1242
N = 160 9.3 55 316 2740

Table 9: Solution time in seconds for Example 3 (surface Γ3, source at y = (0.5, 0.4)>,
k = 1).

Further, JΩ is an isometry for s = r = 0 with inverse

(
J −1

Ω w
)

( x1+Λj
x2

) =

[
Λ

2π

]1/2 ∫
WΛ∗

w(α, x)e−iαΛj dα for x ∈ ΩΛ
H . (48)

We actually merely consider the inverse Bloch transform in ΩΛ
H , where the exponential

factor in the latter integral can be omitted.

Finally, we introduce Sobolev spaces on ΓH and ΓΛ
H = {x ∈ ΓH : x1 ∈ WΛ} ⊂ ΓH by

identifying ΓH with R and ΓΛ
H with WΛ. The resulting spaces are then denoted by Hs

r (ΓH),
Hs
α(ΓΛ

H), and Hr
0(WΛ∗ ;H

s
α(ΓΛ

H)) for s, r ∈ R. For s = ±1/2 it is well-known that these are
natural trace spaces of volumetric H1-spaces, see [McL00].
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h = 0.08 h = 0.04 h = 0.02

N = 20 8.4 43 341
N = 40 20 95 691
N = 80 46 217 1500
N = 160 120 531 6524

Table 10: Solution time in seconds for Example 6 (surface Γ3, source at y = (−2, 0.2)>,
k = 10).
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Figure 2: The relative L2-errors for the eight considered examples with h = c0N
−1/2

plotted in logarithmic scale over N .
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