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Abstract

We study the weak solvability of a quasilinear reaction-diffusion system nonlinearly coupled
with an linear elliptic system posed in a domain with distributed microscopic balls in 2D. The size
of these balls are governed by an ODE with direct feedback on the overall problem. The system
describes the diffusion, aggregation, fragmentation, and deposition of populations of colloidal
particles of various sizes inside a porous media made of prescribed arrangement of balls. The
mathematical analysis of the problem relies on a suitable application of Schauder’s fixed point
theorem which also provides a convergent algorithm for an iteration method to compute finite
difference approximations of smooth solutions to our multiscale model. Numerical simulations
illustrate the behavior of the local concentration of the colloidal populations close to clogging
situations.
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1 Introduction and problem statement
We study a two-scale system modeling the effective diffusive transport as well as the aggrega-

tion, fragmentation, and deposition of populations of colloidal particles inside porous media. Such
situations arise, for instance, in membrane filtration scenarios [12, 26], papermaking [22], immobi-
lization of colloids in soils [7], or transport of colloidal contaminants in groundwater [32].

We are particularly interested in situations where micro-structural changes due to the deposition
or dissolution of colloids are allowed to take place. This can locally change both the transport
patterns and storage capacity of the medium; see [4, 9, 14, 19, 28, 34] for related cases. This variety
of technological and natural processes is based on the transfer of colloidal particles from liquid
suspension onto stationary surfaces [16]. From this perspective, one can perceive that the porous
media we are considering here behave like materials with reactive internal microstructures (see [8]
for a periodic setting) and, based on [31], they are sometimes classified as media with distributed
microstructures. Additional motivation for this work comes from our own research on reactive flow
in porous media and is linked very much with the work of P. Ortoleva and J. Chadam (see e.g. [6]
and follow up papers), but it is worth mentioning that quite related aspects arise in pharmacy and
medicine like drug delivery, thrombosis formation on arterial walls, evolution of Alzheimer’s disease.
We refer the reader, for instance, to [5, 33, 13] for works in this direction.
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Denoting with u = (u1, ..., uN ) (i = 1, ..., N ) the molar concentrations of colloids of size i (with
N ∈ N the maximal size), its time evolution can be modelled by a quasi-linear parabolic system in
the form of

∂tui − div(Di(u)∇ui) = Fi(u), (1)

where Fi(u) accounts for the aggregation, segregation, and adsorption processes and Di(ui) the
changing permeability as consequence of the micro-structural changes (like clogging) inside the
porous medium itself. While equation (1) is purely macroscopic, the computation of the effective
permeability Di(ui) is done on the micro-scale therefore leading to the two-scale nature of our prob-
lem. This system is a compact and abstract reformulation of a two-scale model for colloidal transport
derived in [21] via asymptotic homogenization (more details are given in Section 2). Structurally sim-
ilar (two-scale model with geometrical changes) models were investigated in, e.g., [11, 25].

In this work, we take a 2D-cross-section of a porous medium and assume the solid matrix of the
cross section to be made up of circles of not-necessarily uniform radius. The growth and shrinkage
of these circles, which represent the underlying micro-structural changes of the porous medium, are
modelled via a scalar quantity governed by an additional ODE. For a similar geometrical setup see,
e.g., [25]. The model and the resulting mathematical problem gets more complicated if we were to
allow for more general geometries (e.g., evolving C2-interfaces) that can not be represented by a
scalar quantity like the radius in our setting. We treat our geometries in 2D mainly for the sake of
simplicity of inequalities and transformations and also because the simulation work is easier to be
handled in 2D compared to 3D, there is no fundamental element in the analysis that is sensitive to
dimensions (like Sobolev embeddings would be for example). As a consequence, the mathematical
analysis part can be extended to 3D with suitable modifications on the upper and lower a priori
bounds on the radii of the balls-like microstructure.

The quasilinear structure of the problem together with the multiscale coupling is non-standard.
Here, we point out that Di and Fi are non-linear operators that are not defined via point wise eval-
uation (in the sense of Di(u)(t, x) = Di(t, x, u(t, x))). In particular, it does not fit directly to the
framework elaborated in, e.g., [2] and it requires an approach that utilizes the underlying coupling
present in the model equations behind the abstract system. A similar two-scale problem allowing for
micro-structural changes was investigated in [20].

In Section 2 we explain our working strategy to prove the existence of weak solutions to the
overall problem. To keep things simple, we consider that the local porosity φ(r) does not degen-
erate. Note however, that it is technically possible to include in the analysis simple degeneracies
(like neighboring microstructures touching in single points [30]), a complete (local) clogging being
however out of reach. Besides the non-degeneracy of the effective parameter, another simplification
is included – the absence of the flow. Note that if the colloidal populations would be immersed in a
fluid flow, then, most likely, besides the balance equations of the linear momentum one would also
have to take into account the charge transport taking place between oppositely charged populations
of particles; see e.g. [15, 27] for more information in this direction.

The paper is organized as follows: In Section 2 we present the model and outline our strategy
for the analysis of our problem. We list the needed mathematical details of the problem so that we
can prove in Theorem 11 the existence of a weak solution. In Section 4, we solve numerically our
multiscale quasilinear problem and discuss the obtained numerical results for realistic parameter
regimes. We add in Section 5 a detailed discussion of the potential of our problem, expected results,
and related aspects.

2 Problem statement and solution strategy
In the following, let S = (0, T ) be the time interval of interest and Ω ⊂ R2 a bounded Lipschitz

domain. In addition, let N ∈ N be a given number indicating the maximal possible size of an
aggregate of colloid particle, where size refers to the number of primary particles making up the
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aggregate. For each i = {1, ..., N}, let ui : S × Ω → [0,∞) (we set u = (u1, ..., uN )) denote the
molar concentration density of aggregates of size i at point x ∈ Ω at time t ∈ S. We take the function
v : S × Ω → [0,∞) to represent the mass density of absorbed material (mass that is in the system
but currently not part of the diffusion and agglomeration process); this mass can be dissolved again
by a Robin-type exchange allowing colloidal populations to re-enter the pore space. This process
of absorption and dissolution is modelled in this context via an Robin-type exchange term (see e.g.
[18]) in the form of

2πr

1− πr2
(aiui − βiv).

Here, the radius function r : S × Ω → (0, rmax) (for some rmax > 0) acts as a measure of the
clogginess of the porous media and 2πr

1−πr2 is the ratio of the size of the boundary between fluid
space and pore to the pore volume.

To describe the aggregation and fragmentation processes taking place inside the pore space of
the medium, we use the Smoluchowski formulation (we point to [1] for a review) given here by

Ri(u) =
1

2

∑
j+l=i

γjlujul − ui
N−i∑
j=1

γjluj .

It is important to note that in the context of porous media the colloidal populations involve a finite size
chain of the cluster, i.e. there will be a population of N -mers where N takes the maximum cluster
size. As a result, we deal with a finite sum here. Interestingly, for many applications a good choice
of such N is rather low; see e.g. [18].

The diffusion-reaction system for the different aggregates is then given via

∂tui − div(Di(r)∇ui) = Ri(u)− 2πr

1− πr2
(aiui − βiv) in S × Ω, (2a)

−Di(r)∇ui · n = 0 on S × ∂Ω, (2b)

ui(0) = ui0 in Ω. (2c)

The effective diffusion matrix (including diffusion, dispersion, and tortuosity effects) Di(r) ∈
R2×2 can be calculated using any solution wk, k = 1, 2, of the cell problem

−∆wk = 0 in S × (Y \B(r)), (2d)

−∇wk · n = ek · n on S × ∂B(r), (2e)

y 7→ w(·, ·, y) is Y -periodic. (2f)

Here, Y = (0, 1)2 denotes the unit cell, B(r) is the closed ball with radius r and center point
a = (1/2, 1/2), and ek the k-th unit normal vector. We have (di > 0 are known constants)

(Di)jk = diφ(r)

∫
Y \B(r)

(∇wk + ek) · ej dz

where φ(r) = 1−πr2
|Ω| denotes the porosity density of the medium. For more details regarding the cell

problem and the effective diffusivity, we refer to [21] where they are established via homogenization.
Finally, the evolution of v is governed by an ODE parametrized in x ∈ Ω

∂tv =
N∑
i=1

(αiui − βiv) in S × Ω, (2g)

v(0) = v0 in Ω. (2h)

3



and the radius function is governed by the following ODE parametrized in x ∈ Ω

∂tr = 2πα
N∑
i=1

(aiui − βiv)) in S × Ω, (2i)

r(0) = r0 in Ω. (2j)

A possible initial choice for the radii r0 is depicted in Figure 1. We point out there also what will
happen at the final time T ; more details on the parameter setup are given in the simulation sections.
What concerns the modeling of the deposition of the colloidal populations, our choice is similar to
one reported in [16].
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Figure 1: Example of r(x1, x2, t = 0) with corresponding r(x1, x2, t = T ) of the same simulation. The
parameter setting is as discussed in Figure 12. Regions with larger circles correspond to low porosity and
permeability.

This accounts for the simple observation that the absorbed material leads to the clogging of the
pore under the fundamental assumption of the growth of the radius is proportional to the amount of
material that is absorbed. For a more concrete argumentation for this particular structure, we again
point to [21].

The overall problem we are considering in this work is then given by equations (2a–2j). Regard-
ing our concept of a weak solution of this system:

Definiton 1 (Weak solution). For a time interval (0, s) ⊂ S, a weak solution to the problem is given
by a set of functions (u, v, w, r) with the regularity

ui ∈ L2((0, s);H1(Ω)) ∩ L∞((0, s)× Ω) such that ∂tui ∈ L2((0, s)× Ω),

w ∈ L2((0, s)× Ω;H1
#(Y )), v ∈W 1,1((0, s);L2(Ω)), r ∈W 1,1((0, s);L2(Ω))

that satisfies equations (2a–2j) in the standard weak Sobolev setting.

Solution strategy. Without yet caring about regularity issues (like smoothness, integrability, mea-
surability) and possible singularities, we want to suggest our solution strategy for the problem given
by equations (2a–2j) and show how it relates to the abstract quasi-linear PDE System 1.

We start with a few comments regarding the particular structure of our problem where we refer
to the subproblems (i)-(iv) for u,w, v, r, viz.

(A) The problem is strongly coupled: (i) depends on u,w, v, r, (ii) on w, r, (iii) on u, v, and (iv)
on r, u, v.
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(B) Problem (i) is parabolic in u, (ii) elliptic in w, (iii) and (iv) are first order ODEs in v and r.

(C) Problem (i) is nonlinear in u and r, (ii) is nonlinear in r, and (iii) and (iv) are linear.

(D) Problem (ii) is not a real free boundary problem, as the underlying domain Y \B(r) depends
only on (t, x) while the derivatives are w.r.t. y.

As a consequence of points (A)–(D), a natural strategy is to first tackle the ODEs and to use them to
inform the cell problem and the parabolic system. In the following, we outline the intermediate steps
involved in getting to the abstract fixed-point problem that will be the starting point for our analysis in
Theorem 11:

Step (a): Looking at the linear ODE vor v (given by equations (2g) and (2h)), we find the char-
acterization of v in terms of u via (setting b =

∑N
i=1 βi)

v(t, x) = e−bt

(
v0(x) +

N∑
i=1

αi

∫ t

0
ebτui(τ, x) dτ

)
.

With this in mind, we can eliminate v for u in our problem by setting v = Lv(u), where Lv is the
abstract solution operator for the v-problem.

Step (b): Similarly, looking at the second ODE (problem (iv)), we have

r(t, x) = r0(x) + 2πα
N∑
i=1

∫ t

0
(aiui(τ, x)− βiv(τ, x)) dτ

With this characterization, we can introduce the corresponding solution operator L̃r via

r = Lr(u, v) = Lr(u,Lv(u)) = L̃r(u).

Step (c): Looking at the cell problem (k = 1, 2)

−∆wk = 0 in S × (Y \B(r)),

−∇wk · n = ek · n on S × ∂B(r),

y 7→ τ(·, ·, y) is Y -periodic,

we expect to get solutions for every given r > 0 such that B(r) ∩ ∂Y = ∅. We introduce the
corresponding solution operator via

w = Lw(r) =
(
Lw ◦ L̃v

)
(u) = L̃w(u).

Step (d): Putting everything together, we can rewrite the parabolic problem

∂tui − div(Di(r, w)∇ui) = Ri(u)− 2πr

1− πr2
(aiui − βiv)

into

∂tui − div
(
Di

(
L̃r(u), L̃w(u)

)
∇ui

)
= Ri(u)− 2πL̃r(u)

1− π(L̃r(u))2
(aiui − βiLv(u))

This highly nonlinear system of PDEs is now given only in terms of the unknown function u. On an
abstract level, we therefore want to investigate parabolic system like

∂tui − div
(
D̂i(u)∇ui

)
= Fi(u) in S × Ω, (3a)

−D̂i(u)∇ui · n = 0 on S × ∂Ω, (3b)

ui(0) = ui0 in Ω (3c)

where

Fi(u) = Ri(u)− 2πL̃r(u)

1− π(L̃r(u))2
(aiui − βiLv(u)).

The exact setting regarding function spaces will be settled in the following section.
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3 Analysis
In this section, we present the detailed fixed-point argument (as outlined in Section 2) for the

non-linear problem given via equations (3a–3c):
The strategy of our proof is a three-step process:

1) For a given function ũ (of sufficient regularity), we establish well-posedness and estimates for
the linear problem given by

∂tui − div
(
D̂i(ũ)∇ui

)
= Fi(ũ) in S × Ω, (4a)

−D̂i(ũ)∇ui · n = 0 on S × ∂Ω, (4b)

ui(0) = ui0 in Ω. (4c)

This is established in Lemma 7.

2) We show that there is a set such that the solution operator for equations (4a–4c) maps that
set onto itself, see Lemma 9. This result is local in time, since we need to keep t small in order
to control the norm of the solution.

3) Finally, we employ Schauder’s fixed point theorem to establish the existence of at least one
solution, see Theorem 11.

For some arbitrary (later to be fixed) M > 0 and s ∈ (0, T ), let

Ts,M = {u ∈ L2((0, s)× Ω)N : ‖ui‖∞ ≤M (i = 1, ..., N)}.

For ease of notation, for any given u of sufficient regularity we will write vu = Lv(u), ru = L̃r(u),
wu = L̃w(u) for the corresponding solution given for the particular subproblem and Yu = Y \B(ru).

3.1 Auxiliary results
We start by collecting some important auxiliary results and estimates that will be needed in the

construction of the actual fixed-point argument.

Function Assumption Reason
r0 1/8 ≤ r0(x) ≤ 1/4 Room for growth and shrinkage
ui0 0 ≤ ui0(x) ≤ M/2 Keeping the solution in Ts,M
v0 0 ≤ v0(x) ≤ Cv Bounding vu

Table 1: Assumptions regarding the initial data.

In a first step, we establish some sufficient conditions for the diffusivity matrix to not degenerate.
Note that at this point it is not clear that this condition can be satisfied; this is shown in Lemma 3.

Lemma 2 (Diffusivity). If u ∈ L2((0, s) × Ω) is chosen such that 0 ≤ 2ru ≤ 1 − ε1 for some small
ε1 > 0, we find that D̂i(u) is symmetric and positive definite, i.e., D̂i(u)ξ · ξ ≥ ci|ξ|2 where the
constants ci > 0 do not depend on u and ξ ∈ R2. In addition, D̂i(u) ∈ L∞((0, s)× Ω) .

Proof. Its entries are given by

(D̂i(u))jk = diφ(ru)

∫
Yu

(∇wu,k + ek) · ej dz

where ru = L̃iv(u), Yu = Y \B(ru), and wu = (wu,1, wu,2) = Lii(ru). The Di are symmetric since∫
Yu

(∇wu,k + ek) · ej dz =

∫
Yu

(∇wu,k + ek) · (∇wu,j + ej) dz

6



by way of wu,k solving the cell problem.
Via that representation, non negativity is also straightforward to show (we refer to [23, Section

12.5] for a similar argument) as long as φ(ru) is non negative. For the positivity, we have to ensure
that there is some ci > 0 such that φ(ru), |Yu| ≥ ci for all (t, x) ∈ S × Ω. Both hold true if ru is
bounded away from 1/2, i.e, if there is some ε1 > 0 such that 2ru ≤ 1− ε1 for all (t, x) ∈ S × Ω.

Now, regarding the boundedness of Di, we first see that |φ(ru)| ≤ |Ω|−1 when 0 ≤ 2ru ≤ 1− ε1

is satisfied. Due to |Yu| ≤ |Y | = 1, boundedness of Di is clear.

In the following, we will try to establish sufficient conditions for a function u ∈ L2((0, s) × Ω) to
guarantee that the condition 2ru ≤ 1− ε1 is met. Setting

au(t, x) = 2πα
N∑
i=1

(aiui − βivu),

we get

ru(t, x) = r0(x) +

∫ t

0
au(τ, x) dτ. (5)

Lemma 3 (Bounds for r). If M, ε1, ε2 > 0 satisfy

M
(
ebt − 1

)
≤ b

2παa
min{1− 2 sup r0 − ε1, inf r0 − ε2 − 2παbt sup v0} (6)

for all t ∈ (0, s), it holds 2ε2 ≤ 2ru ≤ 1− ε1 for all u ∈ Ts,M .

Proof. For every u ∈ Ts,M , we find that

vu(t, x) = e−bt

(
v0(x) +

N∑
i=1

ai

∫ t

0
ebτui(τ, x) dτ

)
.

As a consequence,

−a
b
M(ebt − 1) ≤ vu(t, x) ≤ v0(x) +

a

b
M(ebt − 1).

This implies

au = 2πα

N∑
i=1

(aiui − βivu) ≤ 2πα
(
aM + aM(ebt − 1)

)
= 2παaMebt

as well as

au ≥ −2πα
(
aM + bv0(x) + aM(ebt − 1)

)
= −2πα

(
bv0(x) + aMebt

)
.

Therefore,

inf r0 − 2πα

(
tb sup v0 +

aM

b
(ebt − 1)

)
≤ ru(t, x) ≤ sup r0 + 2π

αaM

b
(ebt − 1).

As a consequence, 2ε2 < 2ru < 1− ε1 can be ensured by the following two conditions:

M
(
ebt − 1

)
≤ b

2παa
(1− 2 sup r0 − ε1) ,

M
(
ebt − 1

)
≤ b

2παa
(inf r0 − ε2 − 2παbt sup v0).
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Remark 4. The condition 6 required in Lemma 3 can always be met (over some possibly small
time interval (0, s)) for M, ε1, ε2 small enough as long as the initial radius distribution satisfies 2ε2 <
2r0(x) < 1−ε1. Connecting Lemma 3 with Lemma 2 leads to well behaved diffusivities for u ∈ Ts,M .
The additional bound from below in the form of ε2 is needed for the transformation for the cell problem
for wk.

Now, looking at the r.h.s. of our reaction diffusion equation, we have for u ∈ Ts,M (setting
γ = maxi,j γij):

−M2γ

(
N − k + 1

2

)
≤ Rk(u) ≤M2γ

(
N − k + 1

2

)
(1 ≤ k ≤ N). (7)

Due to ru ≤ 1/2 and

2πru
1− πr2

u

≤ π

1− π/4
≤ 15

we arrive at

2πru
1− πr2

u

(aiui − βivu) ≤ 15
(
aiM +

a

b
βiM(ebt − 1)

)
, (8)

and

2πru
1− πr2

u

(aiui − βivu) ≥ −15
(
aiM + βi

(
v0(x) +

a

b
M(ebt − 1)

))
. (9)

As a consequence, for every u ∈ Ts,M , we find that Fi(u) ∈ L∞(S × Ω) for all i = 1, ..., N . In
particular, we find that

sup{‖Fi(u)‖∞ : u ∈ Ts,M} = C (10)

where the constant C depends only s,M .

Lemma 5 (Estimates for the radius). For u(1), u(2) ∈ Ts,M let r(1), r(2) be the corresponding solu-
tions of the radius ODE problem. Then,

∣∣∣r(1) − r(2)
∣∣∣ ≤ C ∫ t

0

(∣∣∣u(1) − u(2)
∣∣∣+

∫ τ

0
ebs
∣∣∣u(1) − u(2)

∣∣∣ ds

)
dτ.

where the constant C > 0 is independent of the particular choice of u(k) (k = 1, 2)

Proof. The radius ODE can be solved by integration (k = 1, 2):

r(k)(t, x) = r0(x) + 2πα

N∑
i=1

∫ t

0
aiu

(k)
i (τ, x)− βiv(k)(τ, x) dτ

where v(k) are given via

v(k)(t, x) = e−bt

(
v0(x) +

N∑
i=1

ai

∫ t

0
ebτu

(k)
i (τ, x) dτ

)
.

Consequently, we can estimate

∣∣∣r(1) − r(2)
∣∣∣ ≤ 2πα

N∑
i=1

∫ t

0

ai ∣∣∣u(1)
i − u

(2)
i

∣∣∣+ βi

N∑
j=1

aj

∫ τ

0
ebs
∣∣∣u(1)
j − u

(2)
j

∣∣∣ ds

 dτ

≤ C
∫ t

0

(∣∣∣u(1) − u(2)
∣∣∣+

∫ τ

0
ebs
∣∣∣u(1) − u(2)

∣∣∣ ds

)
dτ.
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where the constant C > 0 is independent of the particular choice of u(k) (k = 1, 2).

Lemma 6 (Estimates for the cell problem). Let ε2 ≤ r1 ≤ r2 ≤ 1/2(1 − ε1) and let w(i)
k , k, i = 1, 2,

solve

−∆w
(i)
k = 0 in S × Y (i),

−∇w(i)
k · n = ek · n on S × Σ(i),∫

Y (i)

w
(i)
k (y) dy = 0,

y 7→ w
(i)
k (y) is Y -periodic.

Then, the following estimate holds:∣∣∣∣∫
Y (1)

∇w(1)
k · ej dy −

∫
Y (2)

∇w(2)
k · ej dy

∣∣∣∣ ≤ C|r(1) − r(2)|,

where the constant C > 0 might dependent on e1 and e2 but not on the particular choice of r(1) and
r(2). Here, we have set Y (j) = Y \B(r(j)) and Σ(j) = ∂B(r(j)).

Proof. We prove this statement in three steps. First, we introduce a coordinate transform that allows
us to compare the different solutions and, second, go on proving some important energy estimates.
Finally, we use these energy estimates to proof the desired result.

Step1: Transformation: We set a = (1/2, 1/2) and introduce the transformation ξ : Y → Y given
by

ξ(y) =


y, |y − a| ≥ 1/2,

(1− χ(|y − a|))y + χ(|y − a|)
(
r(1)/r(2)(y − a) + a

)
, r(2) ≤ |y − a| ≤ 1/2,

r(1)/r(2)(y − a) + a, |y − a| ≤ r(2)

Here, χ : [r(2), 1/2]→ [0, 1] is a smooth cut-off function with compact support (i.e., χ ∈ C∞0 (r(2), 1/2))
satisfying χ(r(2)) = 1, χ(1/2) = 0, as well as −4/ε1 ≤ χ′(z) ≤ 0. As a result, ξ is a smooth function
as well and satisfies ξ(Y (2)) = Y (1) and nΣ(1)(ξ(y)) = nΣ(2)(y) for all y ∈ Σ(2).

Y (2)

B(r(2))

Y (1)

B(r(1))
ξ : Y (2) → Y (1)

Figure 2: Sketch of the transformation connecting reference cells for different radii r(1) and r(2).

Calculating the Jacobi matrix for ξ, we see that Dξ = I2 for |y−a| ≥ 1/2 and Dξ =
(
r(1)/r(2)

)2
I2

for |y − a| ≤ r(2). For the transition part, i.e., r(2) ≤ |y − a| ≤ 1/2, we calculate
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∂yiξj(y) = ∂yi
[
y 7→ (1− χ(|y − a|))yj + χ(|y − a|)

(
r(1)/r(2)(yj − 1/2) + 1/2

)]
= δij

(
1 + (r(1)/r(2) − 1)χ(|y − a|)

)
+
(
r(1)/r(2)(yj − 1/2) + 1/2− yj

) yi − 1/2

|y − a|
χ′(|y − a|)

As a consequence, we find that the Jacobian is given by the symmetric matrix

Dξ(y) = a(|y − a|)
(

1 0
0 1

)
+ b(|y − a|)

(
(y1 − 1/2)2 (y1 − 1/2)(y2 − 1/2)

(y1 − 1/2)(y2 − 1/2) (y2 − 1/2)2

)
(11)

where (setting r = r(2) − r(1) ≥ 0)

a(z) =

(
1− r

r(2)
χ(z)

)
, b(z) = −χ

′(z)

z

r

r(2)
.

We can calculate the determinant as

detDξ(y) = a(|y − a|)
(
a(|y − a|) + b(|y − a|)

(
y2

1 − y1 + y2
2 − y2 + 1

) )
.

Since a(|y − a|) > 0, b(|y − a|) ≥ 0 and y2
1 − y1 + y2

2 − y2 + 1 > 0 for all y = (y1, y2) ∈ Y , we find
that

detDξ(y) ≥ inf
r(2)≤|y−a|≤1/2

a2(|y − a|) =

(
r(1)

r(2)

)2

.

This shows that

4ε2
2 ≤

(
ε2

1/2(1− ε1)

)2

≤ detDξ(y) ≤ 1

which implies invertibility of Dξ.

Step 2: Energy estimates. In the following, we set F (y) = Dξ(y) and J(y) = |detF (y)|. We
start with the the weak forms∫

Y (i)

∇w(i)
k · ∇η

(i) dz =

∫
Σ(i)

ek · nΣ(i)η(i) dσ
(
η(i) ∈ H1

#(Y (i)), i = 1, 2
)
.

We take the difference of these two weak forms:

∫
Y (1)

∇w(1)
k · ∇η

(1) dy −
∫
Y (2)

∇w(2)
k · ∇η

(2) dy = ek ·
[∫

Σ(1)

nΣ(1)η(1) dσ −
∫

Σ(2)

nΣ(2)η(2) dσ

]
.

and transform the surface integral on the right-hand side in order to arrive at∫
Σ(1)

nΣ(1)η(i) dσ−
∫

Σ(2)

nΣ(2)η(2) dσ =

∫
Σ(2)

nΣ(1)(ξ(y))η(1)(ξ(y))| detDξ(y)|dσ−
∫

Σ(2)

nΣ(2)η(2) dσ.

By construction, we have nΣ(1)(ξ(y)) = nΣ(2)(y) for all y ∈ Σ(2) leading to

∫
Σ(1)

nΣ(1)η(1) dσ −
∫

Σ(2)

nΣ(2)η(2) dσ =

∫
Σ(2)

(
η(1)(ξ(y)) detDξ(y)− η(2)(y)

)
nΣ(2) dσ

=

∫
Σ(2)

(
η(1)(ξ(y))− η(2)(y)

)
detDξ(y)nΣ(2) dσ

+

∫
Σ(2)

(
detDξ(y)− 1

)
η(2)(y)nΣ(2) dσ

10



For the volume integral on the l.h.s., we get (note that the Jacobian is symmetric)

∫
Y (1)

∇w(1)
k · ∇η

(1) dy −
∫
Y (2)

∇w(2)
k · ∇η

(2) dy

=

∫
Y (2)

detDξ(Dξ)−2∇w(1)
k (ξ) · ∇η(1)(ξ)−∇w(2)

k · ∇η
(2) dy

and, as a consequence,∫
Y (2)

detDξ(Dξ)−2∇w(1)
k (ξ) · ∇η(1)(ξ)−∇w(2)

k · ∇η
(2) dy

=

∫
Σ(2)

(
η(1)(ξ(y))− η(2)(y)

)
detDξ(y)nΣ(2) dσ +

∫
Σ(2)

(
|detDξ(y)| − 1

)
η(2)(y)nΣ(2) dσ.

Now, choosing η̃1 = η(2) = w̃
(1)
k − w

(2)
k =: wk, this leads to

‖∇wk‖2L2(Y (2))
≤
∫
Y (2)

∣∣detDξ(Dξ)−2 − I2

∣∣ ∣∣∣∇w̃(1)
k

∣∣∣ · |∇wk| dy

+

∫
Σ(2)

∣∣∣∣detDξ(y)− 1

∣∣∣∣ |wk| dσ.

For y ∈ Σ(2), i.e., |y − a| = r(2), we have

1− detDξ(y) = 1−

(
r(1)

r(2)

)2

=
(r(2))2 − (r(1))2

(r(2))2
≤ r

r(2)
.

Now, for y ∈ Y2 with |y − a| ≥ 1/2, we have detDξ = 1 and Dξ = I2 and, in the case that
r(2) ≤ |y − a| ≤ 1/2,

∣∣detDξ(Dξ)−2 − I2

∣∣ ≤ |detDξ − 1|
|Dξ|2

+

∣∣(Dξ)−1 − I2

∣∣
|Dξ|

+
∣∣(Dξ)−1 − I2

∣∣
Since |Dξ|2 ≥ detDξ ≥ 4ε2

2 and 1− detDξ(y) ≤ r/r(2):

∣∣detDξ(Dξ)−2 − I2

∣∣ ≤ r

4r(2)ε2
2

+

(
1 +

1

2ε2

) ∣∣(Dξ)−1 − I2

∣∣
Finally, via ∣∣(Dξ)−1 − I2

∣∣ ≤ ∣∣(Dξ)−1
∣∣ |I2 −Dξ| ≤ 2ε2 |I2 −Dξ|

we arrive at (looking at equation (11))

∣∣detDξ(Dξ)−2 − I2

∣∣ ≤ r

r(2)

(
1

4ε2
2

+ 2ε2 + 1 +
1

ε1r(2)

)
Therefore we find that

‖∇wk‖2L2(Y (2))
≤ C(ε1, ε2)r

(∫
Y (2)

∣∣∣∇w̃(1)
k

∣∣∣ · |∇wk| dy +

∫
Σ(2)

|wk| dσ

)
.

Applying Poincaré’s inequality (possible due to the zero average condition) and the trace theorem
leads to the energy estimate

‖wk‖H1(Y (2)) ≤ C̃(ε1, ε2)r, (12)
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where the constant C̃(ε1, ε2) > 0 is independent of r(1) and r(2).

Step 3: Proving the result. Using equation (12), we go on by estimating the following key expres-
sion:

∣∣∣∣∫
Y (1)

∇w(1)
k · ej dy −

∫
Y (2)

∇w(2)
k · ej dy

∣∣∣∣ ≤ ∣∣∣∣∫
Y (1)

∇w(1)
k dy −

∫
Y (2)

∇w(2)
k dy

∣∣∣∣
=

∣∣∣∣∫
Y (2)

detDξ(Dξ)−1∇w̃(1)
k −∇w

(2)
k dy

∣∣∣∣
≤ Ĉ(ε1, ε2)r,

3.2 A fixed-point argument
Now, let ε1, ε2,M

∗, s∗ > 0 and initial conditions r0, v0 be chosen such that 2ε2 ≤ 2ru(t, x) ≤
1− ε1 for all (t, x) ∈ (0, s∗)× Ω and all u ∈ Ts∗,M∗ (this is possible due to Lemmas 2 and 3). Also,
let 0 ≤ ui0(x) ≤ M∗/2. These choices imply F (u) = (F1(u), ..., FN (u)) ∈ L∞((0, s∗) × Ω)N for all
u ∈ Ts∗,M∗ (see equation (10)). In the following, let s ∈ (0, s∗) and M ∈ (0,M∗).

We will now look at the linearized problem: For some ũ ∈ Ts,M , we try to find a function u ∈
W ((0, s);H1(Ω)) solving

∂tui − div
(
D̂i(ũ)∇ui

)
= Fi(ũ) in S × Ω, (13a)

−D̂i(ũ)∇ui · n = 0 on S × ∂Ω, (13b)

ui(0) = ui0 in Ω. (13c)

Lemma 7 (Existence result for linearized problem). For each ũ ∈ Ts,M , there is a unique u ∈
W ((0, s);H1(Ω)) solving the problem given by equations (13a–13c). Moreover, the following a
priori estimates are satisfied

‖∂tu‖2L2(S;H1(Ω)∗) + ‖u‖2L∞((0,s);L2(Ω)) + ‖∇u‖2L2((0,s)×Ω)

≤ C

(
‖u0‖2L2(Ω) +

N∑
i=1

‖Fi(ũ)‖L∞((0,s)×Ω)

)

where the constant C > 0 does not depend on ũ, s, and M . Please note that the above estimate
implies boundedness in W ((0, s);H1(Ω)) as well.

Proof. Since ũ ∈ Ts,M , we have Fi(ũ) ∈ L∞((0, s) × Ω) (i = 1, ..., N ). Also, the diffusivity matrix
D̂i(ũ) is uniformly positive definite (i.e., there is ci > 0 such that D̂i(ũ)(t, x)ξ · ξ ≥ ci|ξ|2 for all
(t, x) ∈ (0, s) × Ω and all ξ ∈ R3). Finally, as the Di are also bounded, the existence of a unique
solution follows by standard theory of parabolic PDE.

To search for the needed a priori estimates, we test the weak form with ui. Hence, we are led to

‖ui(t)‖2L2(Ω) + 2ci

∫ t

0
‖∇ui‖2L2(Ω) dτ ≤ ‖ui0‖2L2(Ω) + 2

∫ t

0

∫
Ω
|Fi(ũ)ui| dx dτ (t ∈ (0, s)).

From here, summing over i = 1, ..., N and applying Grönwall’s inequality leads to the desired esti-
mate for u and ∇u. Similarly, taking a test function ϕ ∈ L2((0, s);H1(Ω)) such that ‖ϕ‖ ≤ 1, we
find that

12



〈∂tui, ϕ〉L2((0,s);H1(Ω)∗) ≤
∫

Ω
|Fi(ũ)ϕ|dx+

∫
Ω
|D̂i(ũ)∇ui∇ϕ|dx

thus completing the estimate.

With the solvability of the linarized problem established, we want to investigate under what cir-
cumstances we can ensure that u ∈ Ts,M as well; as this would then naturally lead to a potential
fixed-point scheme. As a first point, any ũ ∈ Ts,M leads to a solution u ∈ W ((0, s);H1(Ω)) which
again leads to the corresponding solution operator

L : Ts,M →W ((0, s);H1(Ω))N .

We now need to show, that s ∈ (0, s∗) and M ∈ (0,M∗) can be chosen such that L[Ts,M ] ⊂ Ts,M .
With the following lemma, we first establish L[Ts,M ] ⊂ L∞((0, s)× Ω)N .

Lemma 8 (Boundedness). For every ũ ∈ Ts,M , the solution of the linearized equation is bounded
by

−t ess sup(Fi(ũ))− ≤ ui ≤ ess supui0 + t ess supFi(ũ).

In particular, we have u ∈ L∞((0, s)× Ω)N .

Proof. By the linearity of the problem, we can decompose the solution ui = πi + ωi, where

∂tπi − div
(
D̂i(ũ)∇πi

)
= 0 in S × Ω,

−D̂i(ũ)∇πi · n = 0 on S × ∂Ω,

πi(0) = ui0 in Ω,

∂tωi − div
(
D̂i(ũ)∇ωi

)
= Fi(ũ) in S × Ω,

−D̂i(ũ)∇ωi · n = 0 on S × ∂Ω,

ωi(0) = 0 in Ω.

Estimating the πi-problems via (πi−Li)+ for Li = ess supui0, we find that πi ≤ Li. Using Duhamel’s
principle, we get ωi(t, x) =

∫ t
0 hi(τ, t, x) dτ where the τ -parametrized function hi solves

∂thi − div
(
D̂i(ũ)∇hi

)
= 0 in S × Ω,

−D̂i(ũ)∇hi · n = 0 on S × ∂Ω,

hi(0) = Fi(ũ(τ, ·)) in Ω.

This implies hi ≤ ess sup(Fi(ũ))+ and, as a consequence ωi ≤ t ess sup(Fi(ũ))+. Finally, we have

ui ≤ ess supui0 + t ess sup(Fi(ũ))+.

Now, since ui0 ≥ 0, we find that πi ≥ 0 as well. Testing with (hi + ess sup(Fi(ũ))−)−, we arrive at
hi ≥ − ess sup(Fi(ũ))− and, as a consequence ωi ≥ −t ess sup(Fi(ũ))−. This shows

ui ≥ −t ess sup(Fi(ũ))−.

In particular, we find that ui ∈ L∞((0, s)× Ω) with

‖ui(t)‖L∞(Ω) ≤ ‖ui0‖L∞(Ω) + t‖Fi(ũ)(t)‖L∞(Ω).

Now, in order to get concrete bounds for the solution u = (u1, ..., uN ), we have to take a closer
look at the right-hand sides: For the Fi(ũ), we have the estimates (given our assumptions on r0, s∗,
and M∗ and using equations (7–9)):

Fi(ũ) ≤M
(
Mγ

(
N +

k + 1

2

)
+ 15

(
ai +

a

b
βi(e

bt − 1)
))

+ 15βiv0(x),

Fi(ũ) ≥ −M
(
Mγ

(
N +

k + 1

2

)
+ 15

(
ai +

a

b
βi(e

bt − 1)
))
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or, more compactly,

‖Fi(ũ)(t)‖L∞(Ω) ≤ 15βi‖v0‖L∞(Ω) +M

(
Mγ

(
N +

k + 1

2

)
+ 15

(
ai +

a

b
βi(e

bt − 1)
))

. (14)

With this estimate at hand, we are now able to establish that L is a self-mapping for a suitable choice
of (s,M).

Lemma 9 (Fixed-point operator). For any M ∈ (0,M∗) there is s ∈ (0, s∗) such that for every
ũ ∈ Ts,M the solution u of the linearized problem also satisfies u = L(ũ) ∈ Ts,M .

Proof. For any given M ∈ (0,M∗), we find that

lim
t→0

t‖Fi(ũ)‖∞ → 0 (i = 1, ..., N).

uniformly for ũ ∈ Ts,M (see inequality 14). As a consequence, it is possible to find s ∈ (0, s∗)
such that s‖Fi(ũ)‖∞ ≤ M/2 for all i = 1, ..., N and for all ũ ∈ Ts,M . This implies u ∈ Ts,M via
Lemma 8.

Please note that Ts,M is a closed subset of L2((0, s)×Ω). In the following lemma we investigate
continuity of the fixed point operator

Lemma 10 (Continuity). The operator

L : Ts,M → L2((0, s)× Ω)

is continuous with respect to the L2-norm.

Proof. Now let ũ, ũ(k) ∈ Ts,M such that ũ(k) → ũ in L2((0, s) × Ω) for k → ∞. In addition, let
u = L(ũ) and u(k) = L(ũ(k)) (k ∈ N) be the corresponding unique solutions to the linearized
problem (see Lemma 7).

Now, the sequence u(k) is bounded in W ((0, s);H1(Ω)) since 0 ≤ ũ(k) ≤ M and the a priori
estimates given by Lemma 7. Since W ((0, s);H1(Ω)) is a reflexive Banach space and since it is
compactly embedded in L2((0, s) × Ω) (Lions-Aubin lemma), there is a subsequence (for ease of
notation, still denoted by u(k)) and a limit function u∗ such that u(k) converges to u∗ strongly and
weakly in L2((0, s)×Ω) and W ((0, s);H1(Ω)), respectively. Without loss of generality, we also have
u(k) → u pointwise almost everywhere over (0, s)×Ω (possibly by choosing a further subsequence).
In the following, we show continuity by establishing that u∗ = u.1

The components of u(k) satisfy (for all ϕ ∈ H1(Ω) and t ∈ (0, s))

〈∂tu(k)
i , ϕ〉H1(Ω)∗ +

∫
Ω
D̂i(ũ

(k))∇u(k) · ∇ϕdx =

∫
Ω
Fi(ũ

(k))ϕdx.

Now, since ũ(k) → ũ in L2((0, s)× Ω)), it holds∫
Ω
Fi(ũ

(k))ϕdx→
∫

Ω
Fi(ũ)ϕdx (ϕ ∈ H1(Ω), i = 1, .., N).

For the diffusion term, we take a look at

∫
Ω

(
D̂i(ũ)∇u∗ − D̂i(ũ

(k))∇u(k)
)
· ∇ϕdx

=

∫
Ω
D̂i(ũ)∇

(
u∗ − u(k)

)
· ∇ϕdx+

∫
Ω

(
D̂i(ũ)− D̂i(ũ

(k))
)
∇u(k) · ∇ϕdx.

1Due to this resulting statement: Every subsequence has a further subsequence converging to u.
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Here, the first term on the right hand side goes to zero due to the weak convergence of u(k) to u∗ in
W ((0, s);H1(Ω)). Looking at the second term, we recall

(
D̂i(ũ)− D̂i(ũ

(k))
)
lm

= di

(
φ(r(0))

∫
Y (0)

(∇w(0)
l + el) · em dz − φ(r(k))

∫
Y (k)

(∇w(k)
l + el) · em dz

)
,

which can be estimated using Lemmas 5 and 6∣∣∣D̂i(ũ)− D̂i(ũ
(k))
∣∣∣ ≤ C ∫ t

0

(∣∣∣ũ− ũ(k)
∣∣∣+

∫ τ

0
ebs
∣∣∣ũ− ũ(k)

∣∣∣ ds

)
dτ.

Here, we have used for the porosity that∣∣∣φ(r(0))− φ(r(k))
∣∣∣ ≤ π2

|Ω|

∣∣∣r(0) − r(k)
∣∣∣ .

Now, since ũ(k) → ũ almost everywhere over (0, s)× Ω, dominated convergence leads to∫
Ω

(
D̂i(ũ)− D̂i(ũ

(k))
)
∇u(k) · ∇ϕdx→ 0

As a consequence, u∗ = u.

Theorem 11 (Existence). The operator

L : Ts,M → L2((0, s)× Ω)

has at least one fixed-point u∗ ∈W ((0, s);H1(Ω)).

Proof. Ts,M is a non-empty, closed, and convex subset of L2((0, s) × Ω) and L is continuous with
respect to the L2((0, s)× Ω) norm (Lemma 10). Moreover, we have L[Ts,M ] ⊂ Ts,M via Lemma 9.
Finally, since L[Ts,M ] ⊂W ((0, s);H1(Ω)) which is compactly embedded in L2((0, s)×Ω) by virtue
of Lions-Aubin’s lemma, we can employ Schauder’s fixed point thorem to conclude the existence of
at least one fixed-point u∗ ∈W ((0, s);H1(Ω)) ∩ Ts,M .

Remark 12. Relying for instance on techniques from [10], we expect the weak solution given by
Theorem 11 to be of higher regularity provided that data (boundary of Ω, initial conditions) are
sufficiently smooth. This could change, however, if we were to allow actual clogging of the porous
medium.

4 Numerical simulation of the two-scale quasilinear problem
4.1 Setup of the model equations and target geometry

The aim is to solve numerically the two-dimensional macroscopic model problem for the species
concentration ui (i ∈ {1, . . . , N}) and v. To focus the attention on physically relevant choices of
parameters, we use the setup described in [16]; see also [18, 21] for more details. Essentially, we
look at a theoretical model describing the dynamics of colloid deposition on collector surfaces, when
both inter-particle, and particle-surface electrostatic interactions are assumed to be negligible. The
numerical range of the used parameters fit to the situations that can relate to the immobilization of
bio-colloids in soils.

The simulation output we are looking after includes approximated space and time concentration
profiles of colloidal populations, spatial distribution of microstructures for given time slices, and esti-
mated amount of deposited colloidal mass. This information helps us detect in a posteriori way the
locations in Ω where deposition-induced clogging is likely to happen.
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We have

∂tui(x, t) = Dijk(x, t)∆xui(x, t) +Ri(u)− L(x, t)

A(x, t)
(aiui(x, t)− βiv(x, t)) ,

describing the diffusion of ui in the macroscopic domain Ω.
The effective diffusion tensor has the form

Dijk(x, t) = diφ(x, t)τjk(x, t),

where the entries
τjk(x, t) =

∫
Y (x,t)

(
δj,k +∇yjwk(z, t)

)
dz,

for all i = 1, . . . , N , j, k = 1, 2.
In addition, the length L and area A functions related to the motion of the boundary (for r < 1/2)

are:

L(x, t) =

∫
Γ(x,t)

ds = 2πr(x, t), A(x, t) =

∫
Y0(x,t)

dy = 1− πr2(x, t), (in 2D) (15a)

Ri(u) =
1

2

∑
i+j=k

αi,jβi,juiuj − uk
∞∑
i=1

αk,iβk,iui. (15b)

Moreover, the cell functions w := (w1(x, y, t), w2(x, y, t)), assumed to have constant mean,
satisfy

−∆ywi = 0, i = 1, 2 in Y0(x, t), (15c)

− n0(x, t) · ∇ywi = 0, on ∂Y, −n0(x, t) · ∇ywi = ni(x, t), on ∂B(r). (15d)

with Γe := ∂Y being the boundary of the cell n0(x, t) = (n1(x, t), n2(x, t)) is the corresponding
normal vector.

Equation (15a) needs to be complemented with corresponding initial and boundary conditions.
In the sequel of this section, we focus the discussion on the case of a two dimensional macroscopic
domain, i.e. x = (x1, x2) ∈ [0, 1]× [0, 1].

We set Robin conditions at the one side of the square

∂ui
∂n

(x1, 0, t) + brui(x1, 0, t) =

{
ubi(x1) > 0 t ∈ [0, t0],

0 t > t0,
, x1 ∈ [0, 1], (15e)

while we impose Neumann boundary conditions for the rest of the boundary
∂ui
∂n

(x1, x2, t) = 0, (15f)

for (x1, x2) such that 0 ≤ x2 ≤ 1 with x1 = 0, 1 or 0 ≤ x1 ≤ 1 with x2 = 0 and with initial conditions

ui(x, 0) = uai (x) ≥ 0. (15g)

Moreover, we have

∂tv(x, t) =

N∑
i=1

αiui(x, t)− βv(x, t), (15h)

with some initial condition
v(x, 0) = va(x) ≥ 0, (15i)

and

r(x, t) ∂tr(x, t) = α

(
N∑
i=1

aiui(x, t)− βv(x, t)

)
L(x, t), (15j)

together with some initial distribution

r(x, 0) = ra(x) > 0, (15k)

for x ∈ [0, 1] × [0, 1]. We discuss in Section 4.2 additional choices of suitable initial and boundary
conditions.
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4.2 Discretization schemes
To treat problem (15) numerically, we need to obtain firstly a numerical approximation for the

cell problems (15c) and determine the shape of the corresponding cell functions w1, w2 posed in
Y0(x, t).

More specifically, we proceed for the various values of r, for ra ≤ r(x, t) ≤ 1/2. We take a
partition of width δr, ra = r0, r1 = r0 + δr, . . . , rM1 = 1/2.

Then since Y0 is determined as the area contained inside the square cell and outside the circle
of radius r, we obtain a sequence of solutions for the cell problem (15c) for each Y0i corresponding
to the radius ri of the partition.

We use a finite element scheme to solve these cell problems. To be precise, we use the MATLAB
finite element package ”Distmesh” (see details in [24]) to triangulate the domain Y0i = Y0(ri).
Furthermore, a solver has been implemented to handle this specific problem (equations (15c)); it
works in a similar fashion as applied in [21].

In Figure 3, we illustrate the numerical solution for this problem for a particular choice of ri.
Specifically, we choose to look at ri = .25.
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Figure 3: Numerical solution of the cell problem (15c) and specifically for w1 with ri = .25.

Having available the numerical evaluation of the cell functions w as approximate solutions to the
cell problems (15c) and (15d), the entries of the diffusion tensor Dijk =

∫
Y0(x,t) di

(
δj,k +∇yjwk

)
,

i = 1, . . . , N , j, k = 1, 2 can be calculated directly and for each (x, t) and consequently for the
corresponding value for r(x, t) and thus for Y0(x, t). Then the corresponding value of Dijk(x, t) is
approximated via linear interpolation.

Next, we solve the system of equations (15a)-(15k). We use a finite difference scheme to solve
the two-dimensional version of the field equation (15a), together with its boundary and initial condi-
tions. More specifically we consider a square domain Ω = [0, 1]× [0, 1].

For this purpose we implement a forward finite difference scheme and for this purpose initially
we consider a uniform partition of the domain Ω, with x = (x1, x2) ∈ Ω, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,
of (M + 1)× (M + 1) points with spacial step δx1 = δx2 = δx, with x1`1 = `1δx, `1 = 0, 1, . . .M ,
x2`2 = `2δx, `2 = 0, 1, . . .M .

Additionally, we take a partition of NT points in the time interval [0, T ], where T is the maximum
time of the simulation, with step δt and tn = nδt, i = 0, . . . NT − 1.

Let Uin`1,`2 the numerical approximation of the species i of the solution of equation (15a) at the
point (x1`1 , x2`2 , tn) of ΩT = Ω × [0, T ], that is ui(x1`1 , x2`2 , tn) ' Ui

n
`1,`2

. Moreover we denote
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by Di
n
`1,`2

the corresponding approximation of the diffusion coefficients Dijk(x1`1 , x2`2 , tn) ' Di
n
`1,`2

and similarly by Vin`1,`2 the approximation for the species v, v(x1`1 , x2`2 , tn) ' V n
`1,`2

.

Finite difference scheme for the model equations. Initially we focus on the appropriate dis-
cretization of the terms in (15a). For the spatial derivatives ∂

∂xs

(
Di(x, t)

∂ui
∂xs

)
, where s = 1, 2 we

apply a discretization of the form

∂
∂x1

(
Di(x, t)

∂ui
∂x1

)
' ∆ (ui(Diuix1))x1 := 1

δx

[
Di

n
`1+ 1

2
,`2

(
Ui

n
`1+1,`2

−Ui
n
`1,`2

δx

)
−Di

n
`1− 1

2
,`2

(
Ui

n
`1,`2

−Ui
n
`1−1,`2

δx

)]
∂
∂x2

(
Di(x, t)

∂
∂x2

)
' ∆ (ui(Diuix2))x2 := 1

δx

[
Di

n
`1,`2+ 1

2

(
Ui

n
`1,`2+1−Ui

n
`1,`2

δx

)
−Di

n
`1,`2− 1

2

(
Ui

n
`1,`2

−Ui
n
`1,`2−1

δx

)]
Di`1+ 1

2
,`2

=
Di`1+1,`2

+Di`1,`2
2 , Di`1− 1

2
,`2

=
Di`1,`2

+Di`1−1,`2
2 ,

Di`1,`2+ 1
2

=
Di`1,`2+1+Di`1,`2

2 , Di`1,`2− 1
2

=
Di`1,`2

+Di`1,`2−1

2 .

Moreover we use a standard forward in time discretization for the time derivative and we conclude
with a finite difference scheme of the form for the species ui’s,

Ui
n+1
`1,`2

= Ui
n
`1,`2 + δt ∆ (Ui(Duix1))x1 + δt ∆ (Ui(Duix1))x1 + δtRi

n
`1,`2 − δtF

n
`1,`2

and for the species v

V n+1
`1,`2

= V n
`1,`2 + δt

N∑
i=1

αiUi
n
`1,`2 − βV

n
`1,`2 ,

where

Ri
n
`1,`2 =

1

2

∑
p+q=s

αp,qβp,qUp
n
`1,`2

Up
n
`1,`2
− Usn`1,`2

∞∑
p=1

αs,pβs,pUp
n
`1,`2

,

and

Fn`1,`2 =
Ln`1,`2
An`1,`2

(
aiUi

n
`1,`2 − βiV

n
`1,`2

)
,

are the approximations of the source terms at the point (x1`1 , x2`2 , tn).
In addition, the functions for the length L(r) and for the area A(r), are approximated, for r ≤ 1/2

by the relations:

Ln`1,`2 = 2πrn`1,`2 , An`1,`2 = 1− π(rn`1,`2)2, (in 2D).

Furthermore, we have the approximate value rn`1,`2 of the radius r given by

rn+1
`1,`2

= rn`1,`2 + δt
1

rn`1,`2
α

(
N∑
i=1

aiUi
n
`1,`2 − βV

n
`1,`2

)
Ln`1,`2 .

4.3 Basic simulation output
In the first set of simulations we consider homogeneous Neumann boundary conditions at the

three edges of the square Ω, namely at x1 = 0, x1 = 1 for 0 ≤ x2 ≤ 1 and at x2 = 1, 0 ≤ x1 ≤ 1.
At the edge x2 = 0, 0 ≤ x1 ≤ 1 we impose Robin boundary conditions given by equation (15e).

That is we consider a scenario of having inflow at this side of Ω for a particular time period, [0, t0]
which stops after some time t0, and we want mainly to observe the deposition process of the colloid
species around the solid cores of the cells. The later can be apparent by the variation in time of the
radius r.
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We take zero distributions as initial conditions (t = 0) for the colloidal populations, while we
consider various specific initial distributions for the radius r.

We consider N = 3 mobile species ui and one immobile species v. Our model needs a
quite large number of parameters. We take them as follows: κ = 1, (d1, d2, d3) = (.3, .5, .99),
(a1, a2, a3) = (.9, .5, .3), (β1, β2, β3) = (1, 1, 1), αi,j = .1, βi,j = 100, i, j = 1, . . . 3, uia(x) =
0, va(x) = 0, ra(x) = .05, 0 ≤ x ≤ 1.

Regarding the choice of boundary condition at (x1, 0), we take the function ubi to be defined as

(ub1, u
b
2, u

b
3) = (ub10x1(i− x1), 0, 0)

with ub10 = 25 for t ∈ [0, t0] and zero for t > t0, with t0 = 2. Moreover, we let br = 0.5, v(x1, x2, 0) =
0, and r(x1, x2, 0) = 0.1.

In addition, we take as final simulation time T = 3 and set the remaining parameters to be
M = 41, R := δt/δx2 = 0.2.

Approximated concentration profiles. In the first of the following graphs, i.e. in Figure 4, concen-
tration profiles of the colloidal population u1 are plotted against space. Similar profiles are exhibited
by the other colloidal populations as well. As general rule, we keep the discussion about what
happens with u1 only as here the effects are more visible. This corresponds also to the physical
situation when most of the mass is contained in the monomer population, while the amount of ob-
servable dimer, trimer, 4-mer populations is considerably lower; see e.g. [18] and references cited
therein.

In the first two frames we have t < t0; hence we can see that there is an inflow in Ω through
one edge and so we can observe the diffusion of u1 taking place in the x2 direction. In the last two
frames taken at times after t0 (hence here the inflow has stopped) we see that the concentration of
u1 near the edge drops possibly due to an activation of the reaction mechanisms. Especially, the
deposition activates and consumes monomers initially involved in diffusion.
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Figure 4: Concentration profiles at different time steps for the species u1.

In Figure 5, we present similar graph for the concentration of u2. As expected, the behaviour is
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similar as for the species u1. Moreover, for the third species u3 during the simulation we notice no
difference in its qualitative behaviour.
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Figure 5: Concentration profiles at different time steps for the species u2.

Regarding the behaviour of the immobile species v pointed out in Figure 6, we observe an initial
distribution in the first two frames t = 0.5, t = 1.5, following the form of the mobile species ui
and an increase inside the domain Ω. After the inflow stops, for instance, see the last two frames
t = 1, 75, t = 3, the distribution of the mass of the deposited species appears to be stationary.

Focusing now in the behaviour of r, we present in Figure 7 time frames of contour plots of
the radius at times ti = 0.75, , 1, 5 , 2, 25 , 3. We observe the expected increase of the radius with
respect to time. Even for t > t0 = 2, after the inflow has stopped to happen, we still have a slight
increase of the radius due to the accumulation of the immobile species around the spherical cores
of the cells.

As final remarks regarding this numerical experiment, the main observables u1, u2, u3, and v
are plotted in Figure 8 against time for fixed locations inside the domain Ω; see specifically the points
(0, 0.5), the center (0.5, 0.5), (0.5, 1) and at the corner (0, 0).

Approximations with non uniform initial radius. In the following experiment we consider for the
same scenario of initial and boundary conditions, (15e), (15f), (15g), a non uniform distribution for
the initial values of the radius r0 = r(x1, x2, 0). Specifically, we consider larger values of the radius
in the form of two peaks centered at the points (0.2, 0.2) and (0.8, 0.8) and with ra having the form

ra = rc + r1 exp
[
−c(x1 − .2)2 − c(x2 − .2)2

]
+ r1 exp

[
−c(x1 − .8)2 − c(x2 − .8)2

]
.

In this context, we take rc = 0.05, r1 = 0.35, c = 60 so that the maximum radius at these two
points is quite large but smaller than one (max r(x1, x2, 0) ' 0.42) as it can be seen in the yellow
area shown in Figure 10. Here we also set M = 41 for the spatial partition and R = 0.25 The rest
of the parameters values are the same as in the previous numerical experiment.

The effect of the non-uniform initial radius distribution is apparent in the evolution of the species
of the model; particularly, this non-uniformity effect can be traced back in the evolution of the popu-
lation u1 as exhibited in Figure 9.
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Figure 6: Mass at different time steps for the deposited species v.

Due to the inflow from the edge x2 = 0, we have now high values in the u1 concentration around
this edge (yellow area) of the domain, while inside the domain we have lower value (blue areas);
this behavior can be seen in the first two frames of the simulation (t = 0.75, t = 1.5). We notice a
gradual increasing perturbation of the symmetric form of u1 around the point (0.2, 0.2) due to the
fact that, precisely at this point, we have large values of r. In the next frames, at (t = 2.25, t = 3)
and particularly at t = 2.25, we observe the concentration of u1 after the time that the inflow in the
domain has stopped (t > t0 and ∂ui

∂n (x1, 0, t) + brui(x1, 0, t) = 0). The dominant mechanisms now
are the diffusion and the surface reaction, i.e. the deposition of material around the cores of the
cells. Thus we observe lower values of u1 (blue and green areas) around the points with larger r
(close to the two initial peaks of r) where there the material has been deposited and higher values
(yellow areas) in between the aforementioned peak points where the values of r are smaller and
deposition is slower. Essentially due to the same mechanism, at the final frame t = 3 at the end of
the simulation, the values of u1 decrease and tend to zero with slower speed within the area close
to the corner (0, 1).

In Figure 10, we present the contour plot of the initial value of r for this experiment. In Figure 11,
we point out the spatial distribution of the radius r = r(x1, x2, T ), where T is the final time of the
simulation. In this case, we observe a behaviour consistent with what happens with the profile of the
colloidal population u1 towards the end of the simulation, i.e. around t = 3. This effect is shown in
Figure 9.

Higher values of r equal to 0.5, where clogging occurs, are taken in the lower part of the domain
near the edge x2 = 0 as well as in the neighbour of the points (0.2, 0.2) and (0.8, 0.8); observe the
yellow areas in Figure 11. In the rest of the domain Ω the radius r attains lower values. This is in
line with the observed behaviour of the concentration profiles of u1 around the end of the simulation.

The evolution of the diffusivity during the experiment is also apparent in Figure 12. We notice
initially low values of it in the areas (blue regions) around the two peaks and higher values in the
intermediate area (yellow region), in the first frame for t = 0.75. As r gradually increases the
corresponding areas with low diffusivity expand as we can see in the second and third frame for
t = 1.5, 2.25, and finally, also for t = 3 at the end of the simulation where we obtain the final map
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Figure 7: Contour plots of the radius r = r(x1, x2, ti) for the time steps ti = 0.75, , 1, 5 , 2, 25 , 3.

of the diffusivity. This contains also information on the tortuosity of the material. The latter frame is
in fact a ”reverse” image of Figure 11 as very low values of D are linked to clogging around the blue
areas where r is large.

It is worthwhile to note that the spatial distribution of the balls-like microstructure that corre-
sponds to the vizualization shown in Figure 11 of the effective transport coefficient is pointed out in
Figure 1. The unavoidable occurrence of clogging is pointed out in all these representations.

5 Discussion
We have proven the existence of a weak solution to a specific coupled multiscale quasilinear

system describing the diffusion, aggregation, fragmentation, and deposition of populations of col-
loidal particles in porous media. The structure of the system was originally derived in [21] and we
kept it here.

Tracking numerically the x-dependence in the shape of the microstructures rises serious compu-
tational problems especially in 3D or even in 2D when working with low-regular shapes. Because of
the strong separation between the macroscopic length scale and the microscopic length scale, such
setting is parallelizable; see [29] for a prestudy in this direction done for a micro-macro reaction-
diffusion problem with x-dependent microstructure arising in the context of transport of nutrients in
plants. The approach used in [29] is potentially applicable here as well. Moreover, what concerns
the discretization techniques used in this framework, a more advanced finite difference scheme,
such as an appropriate version of Du Fort Frankel scheme, can give in principle more flexibility and
accuracy in the numerical computations, e.g. by allowing larger time steps.

Our multiscale model can allow for further relevant extensions in at least twofold direction:
(1) For instance, a particularly interesting development would be to allow for some amount of

stochasticity in the balance laws. In this spirit, the ODE for the growth of the balls induced by the
deposition of the species v could have not only a random distribution of initial positions2 but also
some suitably scaled ”Brownian noise” in the production term mimicking an additional contribution

2This is tractable with the current form of the model.
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Figure 8: Concentration profiles of the species ui, v versus time at different spatial points in the square
domain.

eventually due to a non-uniform deposition of colloids on the boundary of the microstructures (com-
pare with the setting from [3]). The difficulty in this case is that, due to the strong coupling in the
system, the overall problem becomes a quasilinear SPDE, which is much more difficult to handle
mathematically and from the simulation point of view compared with our current purely deterministic
setting.

(2) Another development that would be interesting to follow in the deterministic setup is to at-
tempt a computational efficient hybrid-type modeling. In this context, one idea would be to couple
continuum population models for colloidal dynamics with discrete network models describing the
mechanics of the underlying material (see e.g. the approach proposed in [17] having paper as tar-
get material). Relevant questions would be: What is the counterpart of our equation for the radius
growth of a ball B(r), when the ball is replaced by a point? How does ”continuum” deposition take
place on ”discrete” fixed locations? Are points able to absorb matter in 2D and 3D?

We expect that the non-standard type of couplings suggested in (1) and (2) (i.e. deterministic-
stochastic and continuum-discrete) can potentially be posed in terms of measured-valued balance
equations. We will investigate some of these ideas in follow-up works.
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