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Abstract



The present study investigates essential steps in build-up of models for description of the spread
of infectious diseases. Combining these modules, a SEI3RSD model will be developed, which can take
into account a possible passive immunisation by vaccination as well as different durations of latent
and incubation periods. Besides, infectious persons with and without symptoms can be distinguished.
Due to the current world-wide SARS-CoV-2 pandemic (COVID-19 pandemic) models for description
of the spread of infectious diseases and their application for forecasts have become into the focus of
the scientific community as well as of broad public more than usual. Currently, many papers and
studies have appeared and appear dealing with the virus SARS-CoV-2 and the COVID-19 disease
caused by it. This occurs under medical, virological, economic, sociological and further aspects as well
as under mathematical points of view. Concerning the last-mentioned point, the main focus lies on
the application of existing models and their adaptation to data about the course of infection available
at the current time. Clearly, the aim is to predict the possible further development, for instance
in Germany. It is of particular interest to investigate how will be the influence of political and
administrative measures like contact restrictions, closing or rather re-opening of schools, restaurants,
hotels etc. on the course of infection. The steps considered here for building up suitable models are
well-known for long time. However, understandably they will not be dealt with in an extended way
in current application-oriented works. Therefore, it is the aim of this study to present some existing
steps of modelling without any pretension of completeness. Thus, on the one hand we give assistance
and, on the other hand, we develop a model capable to take already known properties of COVID-19
as well as a later possible passive immunisation by vaccination and a possible loss of immunity of
recovered persons into account.

Keywords: Epidemiologic models, SARS-CoV-2 pandemic, mathematical modelling, qualitative,
solution behaviour

1 Introduction

1.1 About the COVID-19 pandemic

At first, in December 2019 several cases of a serious lung disease occurred in the Chinese city Wuhan.
Shortly after, a new virus of the corona family was identified and its complete genome sequence was
published, see Wikipedia (2020), e.g. Afterwards, the virus has spread in almost all countries. On 11
Mart 2020 the WHO classified this new disease as pandemic. The virus was officially nominated as
SARS-CoV-2, the triggered disease as COVID-19.

Meanwhile, the SARS-CoV-2 pandemic has become a serious challenge for the whole world, its social,
economic, political and first of all medical consequences hardly can be estimated. Studies show that the
virus primarily is quickly spread via droplet infection and by aerosols, especially, if persons get in near
and longer contact. Without any pretension of reasonable completeness we refer to Wikipedia (2020),
Robert Koch-Institut: COVID-19 in Deutschland (2020) for overview and current information as well as
to Adam (2020), Streeck et al. (2020), Groß et al. (2020), Merlot (2020), Lednicky et al. (2020) and the
references cited therein. Besides, we refer to TU Berlin: SARS-CoV-2 blog, Hermann Rietschel Institut
(2020) for fluidic investigations concerning the spread of SARS-CoV-2 in air. In Ahlawat et al. (2020),
the role of relative humidity in airborne transmission of SARS-CoV-2 in indoor environments has been
discussed. In Mitze et al. (2020), the possible protection of masks, including simple ones, against infection
has been studied, see also Chu et al. (2020) for a corresponding meta-analysis. In some meat-processing
plants in Germany and other countries, super-spreading events occurred promoted by special climatic
working conditions, see Günther et al. (2020). Concerning the risk of an infection in trains we refer to Hu
et al. (2020). The spread of infection is promoted by a wide absence of immunity within the population
as well as by not yet existing vaccine and medicines. The initial hope of immunity after a survived
infection could not been strengthened, see Schultheiß et al. (2020). At many laboratories all over the
world, scientist are intensively searching for an adequate vaccine. Scientists of very different disciplines
investigate virus, disease, possible vaccines and medicines, economic, political, social, psychological and
other consequences.

Current data concerning the course of infection are collected and provided by the Johns Hopkins
University in Baltimore, USA, and in Germany by the Robert Koch-Institut (RKI) Robert Koch-Institut:
COVID-19 in Deutschland (2020). The serious situation in many countries caused by the pandemic
has not only challenged the policy but also the scientific community. In some countries the spread of
SARS-CoV-2 could be decelerated by partially deep cuts into the social and economic life. However,
the proceedings of infection locally and temporally differ remarkably in various countries and regions.
After the Chinese region around Wuhan, the virus came to western Europe, at first to Italy, then to
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other European countries, to the USA, Brazil, Russia, India, South Africa and nearly to all countries.
Unfortunately, after a successful deceleration the number of new infections is growing again in many
countries. Now, in August 2020, considering the whole world, the SARS-CoV-2 pandemic goes on and a
point of culmination is not yet reached.

1.2 About modelling of the spread of infectious diseases

Due to the SARS-CoV-2 pandemic, suddenly models describing the spread of infectious diseases are not
only object of research at specialised institutions and of comparatively few scientists, but they have come
highly into the focus of many medics, virologists, economists and mathematicians.

There is a long tradition of investigation of infectious diseases, of their spread within human commu-
nity as well as of a corresponding development of mathematical models for description. Exemplarily we
refer to Hethcote et al. (1981), Hethcote (2000), Busenberg and Cooke (1993), to Schuster (2013) for in-
troduction to biomathematics and modelling in biology and epidemiology, to Krämer and Reintjes (2013)
for medical and epidemiological background as well as to Vynnycky and White (2010) for comprehensive
modelling of infectious diseases.

It is impossible to appreciate here in an adequate manner all these mathematical or highly mathemat-
ically oriented works concerning the pandemic and its possible consequences which have been published
last time. A small overview can be found in Adam (2020). Moreover, we refer to Grimm et al. (2020).
Contrary to standard models, there the individual groups of persons like susceptible and infective ones
are further subdivided to address specific moments in their behaviour. The arising complex model is
strongly tailored to the COVID-19 epidemic in Germany. In Dehning et al. (2020) the authors investi-
gate several possible scenarios after easing existing restrictions of public life. In Hartl and Weber (2020),
the effects of several measures for containment performed in Germany are investigated a posteriori. In
Quaas (2020), some aspects of parameter exploitation from available data are considered, particularly
concerning the reproduction number. Moreover, we refer to Prakash (2020) and Ansumali and Prakash
(2020) for results of a strong lock down to the course of infection. In Bacaër (2020), a mathematical
model has been developed which describes the begin of the SARS-CoV-2 epidemic in France.

1.3 Aims and content of this study

This study is an revised and updated version of the former papers Wolff (2020c), Wolff (2020b). It is
the aim to provide systematically some general components for building-up deterministic models for the
spread of infectious diseases. The approaches summarised here are well-known. However, they could
be an assistance for interested colleagues who do not deal with mathematical modelling every day. In
this study, modelling means building-up models, i.e., the derivation of mathematical descriptions for
real processes, here the spread of infectious diseases, starting with some basic assumptions confirmed by
empirical findings.

Outline of the remaining paper:

(i) In section 2, we investigate some general aspects of modelling the spread of infectious diseases in
human communities. Although this work is also a consequence of the COVID-19 pandemic, our
presentation is not to closely oriented to known specifics of SARS-CoV-2. At the end of this section,
we get a SEI3RSD model, which can take essential items of COVID-19 known today into account.
I3 means, that there are distinguished three classes of infectious persons. Contrary to Grimm et al.
(2020) we only subdivide classes of population with respect to the course of infection and disease,
but not with respect to age or social behaviour. However, the mentioned modular design principle
allows to extend the model in case of necessity.

(ii) In section 4 we deal with some mathematical questions arising from the developed models. In
particular, we investigate some solution behaviour of the corresponding mathematical problems
like unique global solvability and non-negativity of each solution component. Besides this, some
aspects of dimensional analysis and its application to the models are treated.

2 On general models for the spread of infectious diseases

Here we present in short some items of deterministic models for courses of infections in human commu-
nities. We are geared to the review paper by Hethcote (2000) as well as to the books by Vynnycky and
White (2010) and by Schuster (2013), Ch. 5. Concerning epidemiological issues, we only go into details,

3



if this seems to be necessary for general understanding. At some places, we refer to current findings
related to SARS-CoV-2. This allows a reasonable selection of modelling steps in order to develop a basic
model for the spread of SARS-CoV-2 in section 3.

2.1 Basic notations and assumptions

We provide some useful definitions and explications, other ones will be introduced later. Thus, misunder-
standings can be excluded, and we can limit the frame of our study. We follow approximately Vynnycky
and White (2010), pp. xxi - xxvi, and Ch. 1.

2.1.1 Infection and transmission ways

An infection is understood as the invasion of one organism by a smaller one (infecting organism). If
the latter is not harmful, it is called pathogenic agent or pathogen and can cause an infectious disease.
We only consider microscopic pathogens (viruses, bacteria, protozoa) as well as infections in human
communities.

The majority of pathogens effecting humans live only in humans or vertebrate animals, their trans-
mission from one to another host occurs in a variety of ways:

(i) by direct contact (leprosy, e.g.),

(ii) via the respiratory route (influenza, SARS-CoV-2, e.g.),

(iii) via the faecal-oral route (dysentery, e.g.),

(iv) by sexual contact (HIV, gonorrhoea, e.g.)

(v) by contacts with insects (vector-borne infection) (malaria, e.g.)

We note that sexually transmitted diseases require a special modelling, since not all parts of the population
have nearly the same sexual activity. This is not in the focus here. Moreover, the modelling of HIV/AIDS
contains special features, we refer to Vynnycky and White (2010), Ch. 8 and 9.4-9.6, to Weyer and Eggers
(1990) and to the references cited therein.

2.1.2 Adequate contacts and reproduction numbers

In order to model the spread of infectious diseases the term contact needs more explication. Clearly, each
contact between two individuals is a singular event. A pathogen can be transmitted or not. Moreover,
depending on the individuals, a formally equal contact can lead to a transmission or not.

Thus, for a suitable modelling generalisation and averaging are required. For this reason, the concepts
of an adequate contact, contact and reproduction numbers were introduced.

Definition 2.1. (Adequate contacts, reproduction and contact numbers)
(i) A contact is called adequate (also effective), if it leads to a transmission of the pathogen from an

infectious person to another one, and, if the affected individual is susceptible, then an infection is
provoked.

(ii) The basic reproduction number ρ0 is the average number of adequate contacts of an infectious
individual during its infectiousness, if it is introduced into a host population where everyone is
susceptible.

(iii) The contact number σ is the average number of adequate contacts of a typical infectious person
during its infectiousness with all persons.

(iv) The replacement number ρ (also called reproduction number) is the average number of adequate
contacts of an infectious individual during its infectiousness with only susceptible persons.

Here we use the letter ρ instead of R like in Vynnycky and White (2010), Hethcote (2000), to avoid
confusion with the number of recovered persons R (see paragraph 2.1.5). In other words, during an
adequate contact the pathogen is transmitted with the probability one (Weyer and Eggers (1990), p.
66). Sometimes, the result of an adequate contact of an infectious with a susceptible person is called
secondary infection. Thus, one can say that ρ is the number of secondary infections produced by an
infectious person during its infectiousness. Thus, ρ takes into account, that not each adequate contact
produces an infection, because the fraction of susceptible persons generally shrinks in the course of
infection. Therefore, ρ is time-dependent. The basic reproduction number ρ0 is constant, it is related
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to the beginning of an infection course. The contact number σ may be time-dependent. This is the
case, if infectious persons change their contact behaviour voluntarily or due to restrictions mandated by
authorities. Thus, at the beginning, σ equals to ρ0 and ρ. Summarising these thoughts, there holds in
almost all cases

ρ0 = ρ(0) = σ(0), ρ(t) ≤ σ(t) ≤ ρ0 for t ≥ 0.(2.1)

In the case of concrete models one uses generally contact and replacement numbers, σ and ρ, which reflect
the current infection behaviour. Moreover, these current numbers can be related to other quantities
describing the model in a natural way. We return to this in paragraph 2.2.2. As we will see later, ρ0, σ
and ρ are dimensionless quantities, i.e., they do not have any units.

Finally, we note that an adequate contact and hence the contact number are infection-dependent.
A physically equal contact is adequate for one pathogen but not for another one. Clearly, the contact
number depends on the mean duration of infectiousness.

The concept of the contact number averages the different and random behaviour of individuals.

2.1.3 Assumptions concerning population dynamics

When investigating the spread of infectious diseases, generally two mutually influencing processes have
to be considered: The development of the infection itself and the dynamics of the population in which
the infection extends, see Hethcote (2000). The assumptions listed up consecutively must be chosen in
accordance with real proceedings of infections. Moreover, these assumptions should be supported by as
much as possible empirical and medical findings. In Hethcote (2000), many cases of infections occurred
in earlier time or recently are discussed in detail.

(i) (Closed-population model) An assumed constant number of community members (see remark
2.2) seems to be justified, if the infection spreads quickly, approximately within a year, and/or, if
there is a balance between births, migration and non-disease-related deaths. In connection with
disease modelling, these deaths are often referred to as “natural deaths”. The deaths caused by
infection can be listed as an extra class, or, they can be included into the group of (immune)
recovered persons.

(ii) (Dynamic-population model) A variable number of community members should be taken into
account, if the infection leads to many deaths, or, if a big growth of population and/or an essen-
tial migration substantially influence the population balance. Now, it is necessary to consider an
additional equation for the population development, either with given rates of births, deaths and
migration or as a logistic equation (see paragraph 2.2.1.3).

Generally, in the case of constant population the model which has to be developed becomes easier as
for variable population. For a better overview, at first we deal with a constant number of community
members, in subsection 2.3.3, a variable population is considered in short. In accordance with current
findings about SARS-CoV-2 and with the demographical development at least in Germany, an assumed
constant population seems to be justified.

2.1.4 Assumptions concerning the course of infection

(i) The whole population is divided in several disjoint classes w.r.t. the course of infection. The
temporal development of each class and its interaction with others is described by an own equation.
In the simplest case there are two classes: Persons who are susceptible for the infection and infected
individuals. This approach leads to compartment models.
In section 2.1.5, we deal with this item in detail.

(ii) The specifics of an infection process are taken into account like mean duration of infectiousness of
an individual, delay of infectiousness by a newly infected person (latent period), mean duration of
acquired immunity after an overcome infection.
Detailed explications are given in section 2.2.

(iii) Outer influences on the infection process are considered like vaccinations and their temporal delay
after the begin of infection (see paragraph 3.3), available capacities of intensive care or political
measures to contain further infections, see for instance Grimm et al. (2020), Dehning et al. (2020).

We note, that for modelling one assumes homogeneity within the separate classes of population with
respect to contact behaviour and course of infection. Otherwise, a further subdivision is necessary. In the
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same manner, the durations mentioned above are averaged quantities. The real existing heterogeneity
even within the same class is averaged based on the large number of individuals.

2.1.5 Infection-relevant classes of the population

Depending on specific characteristics of infection the population is divided into disjoint subsets (classes,
compartments) (see remarks 2.2 concerning terms like ‘number’ and ‘fraction’).

(i) The number of persons susceptible for an infection is mostly abbreviated by S. The fraction of S
w.r.t. the whole population is abbreviated by s. This class is also named vulnerable, its members
are potentially at risk by the infection.

(ii) The number of infected persons is named by I, the fraction by ι (Greek iota). (Using i, there arise
difficulties with the dot indicating the time derivation.)
If the model is to be to take a latent period into account, the class of infected is divided into
subclasses in the following way.
(A) The number of exposed persons which had an adequate contact with an infectious infected

individual is abbreviated by E and e, respectively. That means, these persons already have
the pathogen of infection, but cannot yet transmit it to further persons. The mean duration
of disposition in this class is referred to as latent period.

(B) The number of infectious persons is abbreviated by I and ι, respectively. This class contains
former exposed persons which have become infectious after ending of latent period. Via an
adequate contact they can infect susceptible persons. The mean time duration between in-
fection and first appearance of symptoms is named incubation period. The latent period can
be shorter as the incubation one. Besides, the infectious stage can end before the symptoms
disappear.
Depending on concrete circumstances, the class I can be further divided, with regard to time
and/or in parallel. A splitting with respect to time can be done into
(a) a class I1 of infectious persons without symptoms, i.e., before ending the incubation period.

(b) a class I2 of infectious persons with symptoms, i.e., after ending the incubation period.
If necessary, the last class I2 can be divided in parallel into
(α) infectious persons I21 showing only weak or no symptoms. These individuals are not

aware of their disease and danger of infection for others. Therefore, they do not reduce
their contact behaviour, at least not more than it is currently usual.

(β) infectious persons I22 exhibiting distinct symptoms. Thus, they are aware of their
disease and, therefore, they strongly change their contact behaviour or they are hos-
pitalised. Sometimes, a further subdivision in parallel is performed, for instance,
infectious persons (without symptoms) in quarantine can be considered, see Grimm
et al. (2020).

(iii) The number of recovered persons is usually abbreviated by R and r, respectively. Depending on the
concrete disease, recovered individuals may be temporarily or permanently immune or immediately
susceptible again, see Hethcote (2000) and Vynnycky and White (2010) for examples, e.g.

(iv) The number of immune persons is often named byM andm, respectively. Often immune individuals
are included into the class of recovered ones, in particular, if their acquired immunity is permanent.
Persons can be immune via vaccination (passive immunisation) or by birth (or after survived disease)
temporarily or permanently (active immunisation), see Hethcote (2000).

(v) The number of dead persons is usually abbreviated by D and d, respectively. Sometimes, to simplify
the model, this class is included into the recovered or recovered immune persons, because they are
not involved in the further course of infection. However, to get a complete result, dead individuals
should constitute an extra class. This is particularly the case, if the lethality is influenced by outer
circumstances like availability of intensive-care units in hospitals, see Grimm et al. (2020).

A further subdivision of the classes defined above by attributes like age, danger, social state or sex is
discussed in detail in Hethcote (2000) and Vynnycky and White (2010). Moreover, in Grimm et al.
(2020), pursuing this way, the authors develop a suitable as possible specific model for the description of
SARS-CoV-2 epidemic in Germany.

How many classes have to be considered for a concrete model depends on virological and medical
findings, and on how far the models sufficiently well represent the course of infection as well as for which
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purpose they are intended. In Hethcote (2000) and Vynnycky and White (2010) many examples are
discussed.

Concerning the virus SARS-CoV-2, up to now it seems to be assured, that infected persons are already
infectious before showing symptoms. Therefore, the latent period is essentially shorter than the incubation
one. Moreover, there are infected persons showing after the incubation period no or only weak symptoms
and being nevertheless infectious. We refer to Wikipedia (2020), Robert Koch-Institut: COVID-19 in
Deutschland (2020), Streeck et al. (2020), Adam (2020) and the references cited therein. A permanent
immunity after survived disease is not yet assured. Some studies indicate only a temporary immunity,
see Schultheiß et al. (2020) and Wikipedia (2020). Insofar a model for the spread of SARS-CoV-2 should
take the classes S, E, I1, I21, I21, R and D into account. In section 3 we discuss this and present a
corresponding SEI3RSD model. If future findings show an essential difference between the durations of
immunity obtained after surviving the infection and by vaccination, then an additional class of immune
individuals has to be considered.

Based on a division into classes, different models have been investigated. Usually, they are abbreviated
by SI, SIS, SIR, SEIR etc. Sometimes, there are additions like “with delay” or with notes to population
dynamics. We refer to Hethcote (2000), Hethcote et al. (1981), Hethcote and van den Driessche (1995),
Hethcote and van den Driessche (2000), Busenberg and Cooke (1993), Schuster (2013), Vynnycky and
White (2010) and the references cited therein.

Remarks 2.2. (Numbers and fractions)
(i) The number of individuals in classes like S, I etc. are quantities equipped with the dimension

persons, measured for instance by units like one person or thousand persons. However, we note
that the term number is often used for dimensionless quantities in physics and natural sciences.
An important example is the Reynolds number in fluid mechanics. Thus, there may be a source of
confusion. In sections 2.2.2 and 4.1, we deal with these questions in the framework of dimensional
analysis.

(ii) Generally, a fraction is the ratio of two quantities with the same dimension, and thus, it is dimen-
sionless like mass or volume fractions in physics and chemistry. Again, we refer to section 4.1 for
details.

2.2 Modelling of infection and equations for the infected

Now let us come to concrete steps in modelling. At first, it is important to model the infection mechanism
of susceptible persons by infectious infected individuals. Clearly, the medical and virological details of
infection processes are beyond this study, see for instance Vynnycky and White (2010), Ch. 1, and the
references cited therein.

A mathematical modelling can be performed in a discrete manner using difference equations, or in a
continuous way using differential or integral equations. Here, we only pursue the second way. However,
many basic ideas of modelling are the same. Besides the approach with ordinary differential equations
(ODE), in subsection 2.2.3, we deal in short with an alternative approach using an integral equation.
An advantage of differential-equation models is the availability of broadly developed theoretical results
and numerical procedures. For difference-equation models and further aspects of modelling we refer to
Vynnycky and White (2010), Ch. 2.

2.2.1 Approach for I with a differential equation

At first we suppose that infected persons are infectious from the beginning of their infection and that
they remain permanently infectious. Moreover, we assume that there are only susceptible S and infected
I, leading to an SI model.

2.2.1.1 Preparation - exponential growth Like for other comparable growth processes (bacterial
culture, non-controlled chain reaction in nuclear fission) it seems to be plausible assuming an exponential
growth, at least for the beginning, see Heuser (1995), e.g. Let the increment of infected 4I(t) (this is
the number of newly infected persons) during a time period 4t be proportional to the number of already
existing infected I(t) as well as to the considered time period:

4I(t) = I(t+4t)− I(t) = k I(t)4t.(2.2)

k > 0 is the (generally time-dependent) factor of proportionality (see remark 2.3 for time dependence).
If there were I(t) infected individuals at time t, so there are already I(t) + k I(t)4t at time t +4t. As
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it is usual, after division by 4t and performing a limit process for 4t → 0, from (2.2) one obtains the
well-known differential equation

dI

dt
(t) = İ(t) = k I(t) for t ∈ [0,∞[(2.3)

This equation is completed by the initial condition

I(0) = I0(2.4)

with 0 ≤ I0 ≤ N(0), and N = N(t) is the generally time-dependent number of population members.
It is well-known that for constant k the unique global solution of the initial-value problem (2.3), (2.4)

is given by the exponential function

I(t) = I0 exp(k t) for t ∈ [0,∞[(2.5)

See remark 2.4 for further comments.
Clearly, the initial-value problem (2.3), (2.4) has also a unique global solution for a variable continuous

k = k(t), see Heuser (1995), Walter (2000). This solution is given by

I(t) = I0 exp
( ∫ t

0

k(τ) dτ
)

for t ∈ [0,∞[.(2.6)

Due to (2.5), a constant k is not realistic after some time for real processes. Thus, there remains
the task to find out the detailed structure of k for an infection process. We return to this in the next
paragraph 2.2.1.2.

Remark 2.3. (Time dependence and continuity of parameter functions)
(i) In empirical sciences parameters are calculated from measured data, or in some cases, they are

determined by direct measurements. As a rule, one gets discrete values, for instance the maximum
air temperature for each day measured at one chosen place. For further mathematical treatment
often a parameter function is constructed using the obtained discrete values. A simple way to do
this consists in building a step function. The drawback is that step functions are not continuous
at all arguments. The way out is an interpolation to a piece-wise linear continuous function or to
functions exhibiting differentiability of some order.

(ii) For convenience, in this study we assume continuity of arising parameter functions. However, some
mathematical results remain valid under slightly changed conditions for step functions, see remark
4.6 (i). This point plays some role in section 4.

Remarks 2.4. (Exponential growth and decay)
(i) For k < 0 the equation (2.3) describes an exponential decay, for instance radioactive decay.

(ii) Typical issues of exponential growth and decay (with constant k) are doubling time and half-value
time (or half time), respectively. These quantities mean the time duration, during which a growing
quantity reduplicates and a shrinking quantity is divided in half, respectively. Suppose, a growing
quantity reduplicates during the time interval t1, t2 with 0 ≤ t1 < t2 <∞. Then the doubling time
tdop fulfils tdop := t2− t1 = 1/k ln(2) and is only determined by the length t2− t1 of the interval and
not by its position on the real line. An analogous assertion holds for k < 0: The half-value time
thalf is given by thalf := t2 − t1 = −1/k ln(2). If the half-value time is over, a half of the initially
existing radioactive substance has decayed. Moreover, the half-value time is also the mean “life
span” of a radioactive atom. The value exp(k t) (with k < 0) can be interpreted as the probability,
that a radioactive atom is not yet decayed at t. This last thought plays an important role later on
when dealing with latent and incubation periods.

2.2.1.2 Limited growth - non-linear equation for I In real applications, an unlimited exponential
growth predicted by equation (2.5) is no longer observed after some time. Concerning infectious diseases,
after some time an infectious person has also adequate contacts (see definition 2.1 (i)) to already infected
ones. These contacts do not produce new infected individuals. Therefore, a constant proportionality
factor k in (2.3) is not realistic. We change this equation in the following way.

dI

dt
(t) = İ(t) = β(t)

S(t)

N(t)
I(t) für t ∈ [0,∞[,(2.7)
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Instead of k there is the expression β(t)S(t)/N(t) with a positive continuous β. It expresses how many
adequate contacts one infectious individual has during a time unit in the middle with all persons of
the population. Hence, β is also named contact coefficient or contact rate. We prefer the first name. In
paragraph 2.2.2, we discuss the relations of β with the mentioned above contact and reproduction number
(see definition 2.1 (ii)-(iv)). Due to Hethcote (2000), β does not essentially depend on the size of human
population, contrary to infections spread among animals. But there is generally a density dependence of
β, see Vynnycky and White (2010), p.31. That means, if more people live on the same place, the mean
number of contacts grows. Thus, in applications, β is related to the territory considered, for instance for
whole Germany, or only for its capital Berlin.

Here, β has the unit per time like in Hethcote (2000). Contrary to this, in Vynnycky and White
(2010), p. xxi, and Ch. 2, β has the unit per person, due to the difference-equation approach.

The factor S(t)/N(t) = s(t) is the fraction of susceptible persons within the whole population. It
expresses the probability to meet an individual of the class S at time t. Even though β is constant, the
expression β S(t)/N(t) decreases due to a shrinking class S in favour of I. Thus, β(t)S(t)/N(t) is also named
effective contact coefficient or effective contact rate. From the viewpoint of I it can be spoken about
an active effective infection rate. The whole expression on the right-hand side of (2.7) is often named
standard incidence. It states how many cases of infection occur in a time unit.

The equation (2.7) means that for S ≈ N , also at the begin with only some few infective individuals,
the fraction S/N approximately equals to one. Thus, at this time, exponential growth occurs else. If I
grows, this fraction becomes smaller, and the growth of I essentially decelerates. The effective contact
rate in (2.7) tends to zero, at least for constant β and N .

The realistic assumption S/N ≈ 1 for the begin can be applied to linearise the equation (2.7) as well as
the equations (2.8) and (2.39), (2.40) below. Based on this, qualitative investigations can be performed,
see Bacaër (2020) and the references therein.

We note that the contact coefficient β is a parameter of infection course being strongly influenced from
“outside”. It depends on the pathogen‘s properties as well as on social behaviour, namely on contact
manner within a considered population. β can be considerably reduced, voluntarily and by means of
administrative measures. During the COVID-19 pandemic political authorities in many countries have
ordered strong rules concerning limitations of contacts, distances to foreign persons, closings of schools and
universities, churches, restaurants etc. As a result one observes a decreasing β and an end of exponential
growth of accumulated cases in some countries, for instance in Germany. However, an easing of mandated
measures and more carelessness may lead to an increasing β and to essentially more cases, like in Israel
or Australia in July, and now, in August 2020 in some European countries.

The equation (2.7) describes the special situation that all susceptible individuals will be infected in
the course of time, and they will remain infectious (see (2.11)). If a convalescence has to be taken into
account, than this equation has to be changed by

İ(t) = β(t)
S(t)

N(t)
I(t)− γ I(t) for t ∈ [0,∞[,(2.8)

That means, in a time unit the class I loses γ I(t) individuals due to recovery (and loss of infectiousness).
The coefficient γ > 0 is the reciprocal value of the mean infection duration tinf , e.i., tinf = 1/γ. Since the
average duration of infectiousness is disease-specific, an assumed constant tinf (and thus a constant γ)
seems to be plausible. The value exp(−γ t) can be interpreted as the probability that an infected person
is still infectious at time t (see remark 2.4 (ii) and paragraph 2.2.3). And, otherwise, 1 − exp(−γ t) is
the probability that an infected loses its infectiousness at time t. If infectiousness and disease have very
different mean durations, the model could be extended.

If the models are more complex, in (2.7) and (2.8), respectively, one has to divide by N −D instead
of N , where D is the number of persons died by infection, see paragraph 2.3.2.2.

In accordance with our assumption at the beginning of paragraph 2.2.1 there holds

N(t) = I(t) + S(t) for t ∈ [0,∞[.(2.9)

Contrary to (2.7), in the case of equation (2.8), due to the “outflow” γ I(t) the evolution of S and I is
more complex. There will be an equilibrium, see paragraph 4.3.1.

For constant N the equation (2.8) can be divided by N . This yields an equation for the population
fractions ι(t) := I(t)/N and s(t) := S(t)/N:

dι

dt
(t) = ι̇(t) = β(t) s(t) ι(t)− γ ι(t) for t ∈ [0,∞[,(2.10)
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Since the fractions s and ι lie between zero and one, they can be also interpreted as probabilities to meet
a susceptible and an infectious person, respectively, see Hethcote (2000) e.g. We return to fractions in
connection with dimensional analyse in paragraphs 4.1 and 4.3.1.

2.2.1.3 Relation to the logistic equation Substituting S by N − I in (2.7), one gets

İ(t) = β(t)I(t)− β(t)

N(t)
I2(t) for t ∈ [0,∞[.(2.11)

For constant β and N , this is the (classical) logistic equation. For an initial value 0 < I0 < N its solution
grows asymptotically to N . This equation is detailed discussed in many textbooks on ordinary differential
equations and on biomathematics, see for instance Heuser (1995), Walter (2000), Schuster (2013).

2.2.2 Relations to contact and reproduction numbers

In definition 2.1 (ii)-(iv), contact and reproduction numbers are defined independently of concrete infec-
tion models. Generally, theses numbers play an important role in epidemiology.

Now, it is the aim to find out concrete expressions for ρ0, ρ, σ in the case of models with equation (2.8)
for the infectious infected persons. In doing so, there arise some modifications compared with definition
2.1.

At first, we assume a constant contact coefficient β. As described after equation (2.8), let tinf be the
average duration of infectiousness with tinf = 1/γ. Based on definition 2.1 and (2.1), one gets

ρ0 = σ = β tinf =
β

γ
,(2.12)

Thus, for constant β the numbers ρ0 and σ coincide. For a generally variable β = β(t), it is useful to
define the quantities ρ0, σ = σ(t) and ρ = ρ(t) in the following way, bearing (2.12) and (2.8) in mind.

ρ0 = β(0) tinf =
β(0)

γ
, σ(t) = β(t) tinf =

β(t)

γ
, ρ(t) = β(t) tinf

S(t)

N
=
β(t)

γ

S(t)

N
= σ(t)

S(t)

N
.(2.13)

As already stated, ρ0 remains constant in either case. The factor S(t)/N takes into account that the
replacement number ρ counts only adequate contacts with susceptible persons (during the period of
infectiousness). This is the difference to σ, cf. definition 2.1 (iii), (iv).

A detailed inspection shows, that some explanation needs concerning σ and ρ. σ(t) and ρ(t) are indeed
current contact and replacement number, respectively. They explain the average number of adequate
contacts (with all persons and with susceptible ones, respectively) of a new infectious person, assuming
that β(t) (and S(t)/N) remain constant during its infectiousness. Thus, in some sense, σ(t) and ρ(t) are
virtual contact and replacement number, respectively, describing a frozen state. However, just these
numbers play an important role, see paragraphs 4.3.1 and 4.3.2.

Based on definition 2.1, the individual (real) contact and replacement number, σp and ρp, respectively,
of an individual p (still with an averaged contact behaviour) can be calculated by

σp =

∫ τ0(p)+tinf

τ0(p)

β(τ) dτ, ρp =

∫ τ0(p)+tinf

τ0(p)

β(τ)
S(τ)

N
dτ.(2.14)

Here, the mean duration of infectiousness tinf is used, and τ0(p) is the begin of infectiousness of the
individual p. It is thinkable to use an individual tinf (p). At least in this study, these numbers do not
play any role. Even for constant β, the replacement number ρ depends on time.

Equation (2.13) confirms the assertion mentioned above, that the quantities ρ, σ and ρ0 are dimen-
sionless. In other words, they are numbers in the sense of remark 2.2 (i). Note that for more complex
models the expressions for σ and ρ generally differ from (2.13), see remark 3.1 and section 4.3.1.

Equation (2.8) and the last relation in (2.13) allow the following interpretation. The current replace-
ment number ρ(t) is the ratio of inflow β S/N I and outflow γ I of infectious persons, see Quaas (2020),
also for an application of this idea. Thus, the meaning of replacement number can be well explained.

In accordance with many deterministic epidemiologic models an infection within a completely suscep-
tible population can start if and only if there holds

ρ0 > 1(2.15)
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For further discussion and for the question how to determine ρ with the help of available data we refer to
Hethcote (2000), Vynnycky and White (2010) and, especially concerning SARS-CoV-2, to Quaas (2020),
Robert Koch-Institut: COVID-19 in Deutschland (2020), Mikut et al. (2020) and to the references therein.
In connection with dimensional analysis we return to ρ in paragraphs 4.3.1 and 4.3.2.

We close this paragraph with remarks concerning the use of some terms,

Remarks 2.5. (On parameters, numbers and rates)
(i) A parameter and a coefficient are understood as additional quantities in equations or as quantities

formed by them. Parameters can be provided with units, than they have a dimension. If they occur
without units, they are called dimensionless. In the last case, they are also called (characteristic)
numbers or ratios.
As an example, the contact coefficient β in (2.3) has the dimension ‘reciprocal time’, e.i. 1/T . (T
stands for the dimension time.)
The basic reproduction number ρ0, the replacement number ρ and the contact number σ are dimen-
sionless and thus (characteristic) numbers. Note, that in current discussions about the SARS-CoV-2
pandemic sometimes the terms reproduction rate and infection rate are used incorrectly. This may
lead to confusion in the broad public.

(ii) A rate is often understood as a quantity which dimension has the time in the denominator. For
instance, the contact coefficient β is a rate. Moreover, the whole right-hand side β(t) I(t) S(t)/N(t)

of (2.7) is a rate, the total contact rate.

2.2.3 Supplement: Approach for I with an integral equation

The derivations of differential equations (2.3) and (2.7) have been performed under the assumption that
each infected person is infectious from the begin and for all time. Generally, this is not the case. Equation
(2.8) models a finite infectiousness, assuming an exponential decay, cf. remark 2.4 (ii), which does not
need to be the case. Thus, there were developed general approaches containing explicitly stochastic
moments and leading to integral equations for I. In a special case, this is equivalent to differential
equations. We explain this in short and follow Hethcote and van den Driessche (1995), Hethcote and
van den Driessche (2000). Since models with differential equations are in the focus of this study, we do
not want to apply this approach to more complex models like SEIRD ones.

For t ≥ 0 we note by pI(t) the probability that an infected is infectious until time t. We assume:

(i) The infectiousness begins immediately after an adequate contact.

(ii) There are no death cases, neither infection-related nor other ones.

These two assumption are made to focus on essential items. If necessary, the model can be suitably
extended (see remark 2.7 (i), (ii)). Let be pI a (Lebesgue-measurable) function fulfilling

pI(0
+) := lim

t→0, t>0
pI(t) = 1, pI not increasing on [0,∞[, pI(t) ≥ 0 for t ∈ [0,∞[,(2.16) ∫ ∞

0

pI(u) du = ω := tinf <∞.(2.17)

Again, 0 < ω = tinf < ∞ is the average duration of infectiousness (see remark 2.4 (ii) as well as the
explications after (2.8)). For the case ω =∞ we refer to Hethcote and van den Driessche (2000).

We follow Hethcote and van den Driessche (2000) with small changes, allowing furthermore a contin-
uous β = β(t). The approach for infected persons is given by

I(t) = I0pI(t) +

∫ t

0

β(τ)I(τ)
S(τ)

N(τ)
pI(t− τ) dτ.(2.18)

I0pI(t) means the (probable) number of initially infected persons being still infectious at time t. The
integral is the sum of persons infected at t, being (probable) still infectious.

Remark 2.6. Contrary to (2.8), the approach in (2.18) contains explicitly a stochastic moment. However,
let us remark, that the approach in (2.8) contains indirectly a stochastic moment via the concept of
adequate contacts, which is averaged by a generally large number of individuals.

Now we consider two special cases for p.
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2.2.3.1 Exponentially decaying infectiousness Now we assume

pI(t) = exp(−γt) with γ = const. > 0.(2.19)

From condition (2.17) there follows

γ =
1

ω
=

1

tinf
.(2.20)

As it has been mentioned above, γ is the reciprocal mean duration of infectiousness tinf = ω.
In Hethcote et al. (1981), it was proved that under assumption (2.19) the integral approach in (2.18)

is equivalent to the one with differential equation (2.8). A probability pI tending to zero causes a decay
of infective individuals.

2.2.3.2 Infectivity of equal duration Now it is assumed that the common duration of infectious-
ness for all infective persons amounts to 0 < ω < ∞. This corresponds to the function pI referred
to

pI(t) :=

{
1 for t ∈ [0, ω],
0 for t > ω.

(2.21)

Thus, pI fulfils the conditions (2.16), (2.17). However, it is not continuous at t = ω. This may lead
to a non-continuous function I. Inserting (2.21) into (2.18), one gets the following slightly cumbersome
expression.

I(t) :=

{
I0 +

∫ t
0
β(τ) I(τ) S(τ)

N(τ) dτ for 0 ≤ t ≤ ω,∫ t
t−ω β(τ) I(τ) S(τ)

N(τ) dτ for t > ω.
(2.22)

These two integral equations are equivalent to an initial-value problem for a differential equation as well
as to an initial-value problem for a differential equation with delay, more preciously to the problem

İ(t) = βI(t)
S(t)

N(t)
for t ∈ [0, ω[, I(0) = I0,(2.23)

as well as to the problem

İ(t) = β(t)I(t)
S(t)

N(t)
− β(t− ω)I(t− ω)

S(t− ω)

N(t− ω)
für t ≥ ω,(2.24)

I(τ) = Iω(τ) for τ ∈ [0, ω](2.25)

Here, Iω is the solution of problem (2.23). In order to avoid a jump function regularisations can be used
(see remark 2.7 (iii)). If I0 = 0, than I is also continuous in t = ω, however, it is identically zero. We
close this paragraph with additional remarks.

Remarks 2.7. (i) The case of a delayed infectiousness of infected persons has not been considered in
this paragraph. Two possibilities may be offered. At first, one can introduce a further class E of
already infected persons who cannot yet infect others (see paragraph 2.1.5). The further procedure
is analogous, a probability has to be defined which determines how long an individual in E is not
yet infectious. Another possibility would be to continue with the class I as before and define the
function pI differently from (2.16), setting it zero at some initial time interval. Of course, this
violates the monotony condition in (2.16). Moreover, it is not clear, whether the mathematical
results in Hethcote and van den Driessche (1995), Hethcote and van den Driessche (2000) can be
extended to this case.

(ii) Cases of death caused by disease or not can be taken into account by additional exponential terms
within the integral equations for I, see Hethcote and van den Driessche (1995), Hethcote and van den
Driessche (2000).

(iii) The function pI in (2.21) generally has a jump. This could complicate mathematical investigations
and numerical calculations. A resort could be a regularisation, substituting the jump function by
a piece-wise linear and continuous one. Such approach could be

pI(t) :=


1 for 0 ≤ t ≤ ω − ξ,
− 1

2ξ (t− (ω − ξ)) for ω − ξ ≤ t ≤ ω + ξ,

0 für t > ω + ξ.

(2.26)
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with some 0 < ξ < ω. Up to t = ω− ξ all infected individuals are infectious, from t = ω+ ξ nobody
is else infectious. Between these points in time, there is a linear decay of infectiousness.

(iv) In Hethcote and van den Driessche (2000), the presentation is more general as here, and mathe-
matical results are presented.

2.3 Completion of models

After dealing with equations for the class I of infectious infected persons, it is now the aim to add further
equations for remaining classes like S, E and R. As a result, we get complete models suitable for several
kinds of infection courses. In this section 2.3, the focus lies on development and reasoning of models.
In connection with mathematical investigations in section 4 the needed equations will be presented in a
compact way as well as completed with initial and other conditions.

2.3.1 SI and SIS models with constant population number

In this paragraph we consider only models described with the two classes S and I. Either the infected
persons remain in I for all time (SI model), or they return to S after survived disease (SIS model).
Therefore, we need a suitable equation for S. We distinguish two basic cases oriented to paragraphs 2.2.1
and 2.2.3.

2.3.1.1 Modelling with differential equations Let us suppose that the evolution of I is given by
the differential equation (2.8). Clearly, the growth rate for I is the loss rate for S. Therefore, it yields

Ṡ(t) = −β(t)
I(t)

N(t)
S(t) + γ I(t) for t ∈ [0,∞[.(2.27)

(Again with a continuous time-dependent β). Contrary to (2.8), now I is in the numerator instead of S.
Of course, there is no mathematical change. However, it is a question of interpretation. The term ahead
S, e.i., −β(t) I(t)/N(t), can be regarded as effective infection rate from the viewpoint of S. Moreover,

besides the sign, it is generally different from the effective contact rate β(t) S(t)
N(t) from the viewpoint of I

(see equation (2.8)).
Neglecting birth and death rates as well as migration, e.i., setting N(t) = N0 = const., or assuming

N = N(t) as given, we get a closed simple SIS model formed by (2.8) and (2.27) together with initial
conditions for S and I. Clearly, for γ ≡ 0 it turns into an SI model. For mathematical and numerical
investigations it is mostly sufficient to solve only one equation, after substituting in (2.27) I by N − S,
for instance.

2.3.1.2 Supplement: Modelling with integral equations As explained in paragraphs 2.2.3 and
2.2.3.1, the approach with a differential equation for I can be regarded as a special case corresponding
to an exponentially decaying infectiousness. Let us repeat equation (2.18) again.

I(t) = I0p(t) +

∫ t

0

β(τ)I(τ)
S(τ)

N(τ)
p(t− τ) dτ.(2.28)

Since there are only the classes S and I, due to N(t) = S(t) + I(t) it yields

S(t) = N(t)−N(0) + S0(1− p(t))−
∫ t

0

β(τ)I(τ)
S(τ)

N(τ)
p(t− τ) dτ.(2.29)

For p ≡ 1 (corresponds to permanent infectiousness and γ ≡ 0) and N(t) = N0 = const. the well-known
SI model (2.8) and (2.27) for γ ≡ 0 easily follows by taking the time derivative. In this simple case, as a
rule, the formulation with differential equations is more convenient.

2.3.2 SIRD, SIRSD, SEIRD and SEIRSD models with constant population number

The following models contain more than two classes. In SIRD and SIRSD models, the class I loses
members to the class R of recovered persons as well as to the class D of infection-died individuals. In
SEIRD and SEIRSD models, there occurs a special class E of already infected, but not yet infectious
persons.

13



2.3.2.1 SIRD and SIRSD models The SIRD model is sometimes called classical epidemiological
model (CEM) and widespread. Assuming that all recovered persons remain permanently immune, the
equation for S is given by (cf. (2.27))

Ṡ(t) = −β(t)
I(t)

N(t)−D(t)
S(t) for t ∈ [0,∞[.(2.30)

As a new issue, N in the denominator is substituted by N−D, since died persons do not have any contacts.
The numbers of individuals in R will not be subtracted from N . Persons from R have furthermore
adequate contacts with I individuals, but these contacts do not lead to infections.

The class I loses members to R and to D. Thus, the equation (2.8) must be changed:

İ(t) = β(t)
S(t)

N(t)−D(t)
I(t)− γ I(t)− δ I(t) for t ∈ [0,∞[.(2.31)

Again, γ > 0, and tinf = 1/γ is the mean duration of infectiousness. In this approach, the last one ends
with the disease, or, the patient is regarded as recovered after his or her infectious period. The term
−γ I(t) describes that infected persons leave class I. Here, a permanent immunity is assumed. δ > 0
is the infection-specific lethality coefficient, 1/δ is the mean life span of infected people related to the
infection. (A general life span is taken into account in paragraph 2.3.3.) Hence, −δ I(t) is the lethality
rate, it describes how many individuals of I die in a time unit caused by infection. The equations for R
and D, respectively, are

Ṙ(t) = γ I(t) for t ∈ [0,∞[,(2.32)

Ḋ(t) = δ I(t) for t ∈ [0,∞[.(2.33)

In summary, the differential equations (2.30) - (2.33) (together with corresponding initial conditions
- see subsection 3.2) describe a SIRD model for an assumed constant population. Thus, it yields

N0 = N(t) = S(t) + E(t) + I(t) +R(t) +D(t), for t ∈ [0,∞[.(2.34)

This leads to

N(t)−D(t) = S(t) + E(t) + I(t) +R(t), for t ∈ [0,∞[.(2.35)

Therefore, if necessary, the denominator in (2.30) and (2.31) can be substituted.

Remark 2.8. Summing up the equations (2.31) - (2.33), one obtains an equation for the sum I+R+D.

İ(t) + Ṙ(t) + Ḋ(t) = β(t)
S(t)

N(t)−D(t)
I(t) for t ∈ [0,∞[.(2.36)

The sum I + R + D represents the whole number of infected individuals, currently and formerly (accu-
mulated cases). Furthermore, via S = N − I − R − D, S can be excluded on the right-hand side. In
applications, equation (2.36) can be used for determining β from measured data, or more precisely from
daily reported numbers of newly infected, recovered and died persons.

(SIRSD model) A loss of immunity of recovered persons can be integrated in the following way.
Assuming a mean duration of immunity timm and setting µ := 1/timm, the term −µR(t) is the rate of
loss for R and of benefit for S. Thus, there must be added −µR(t) on the right-hand side of (2.32),
and µR(t) on the right-hand side of (2.30). Therefore, equations (2.30) and (2.32) are replaced by the
following ones.

Ṡ(t) = −β(t)
I(t)

N(t)−D(t)
S(t) + µR for t ∈ [0,∞[,(2.37)

Ṙ(t) = γ I(t)− µR for t ∈ [0,∞[.(2.38)

2.3.2.2 SEIRD and SEIRSD models Now we consider a more general case. The class S directly
loses members to the class E consisting of infected persons who are not yet infectious. After expiration
of latent period the individuals of E become infectious. Then they belong to an I class. Besides this,
we assume that after overcome infection former infected persons go into class R of recovered individuals.
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Either they remain there being permanently immune or they become susceptible again after some time.
Finally, individuals from I may die by the infection-caused disease.

The equation for S is given by (2.30), assuming a permanent immunity in R.
The special feature of class E is expressed in modelling, too. Individuals from E cannot be (newly)

infected, and they cannot infect others. Thus, E can only grow, if there are adequate contacts between
persons from S and I. Based on (2.8) we can write:

Ė(t) = β(t)
S(t)

N(t)−D(t)
I(t)− εE(t) for t ∈ [0,∞[.(2.39)

Here, ε > 0 is a parameter which can be referred to the reciprocal value of the latent period, e.i., tlat = 1/ε,
see Grimm et al. (2020). The term −εE(t) describes the loss of E to I. This loss is the benefit for I.
Therefore, we can write

İ(t) = εE(t)− γ I(t)− δ I(t) for t ∈ [0,∞[.(2.40)

Again, γ > 0, and tinf = 1/γ is the mean duration of infectiousness. Contrary to the situation in
subsection 2.2 and in paragraph 2.3.2.1, now the infectiousness begins only after the end of latent period.
The term −γ I(t) describes that infected persons leave class I. As above in the previous paragraph, δ > 0
is the infection-specific lethality coefficient. The equations for R and D are the same ones as in (2.32)
and (2.33).

Finally, the differential equations (2.30), (2.32), (2.33), (2.39), (2.40) (together with corresponding
initial conditions - see subsection 3.2) describe a SEIRD model for an assumed constant population.

(SEIRSD model) The difference between SEIRD and SEIRSD models is that recovered persons loss
their immunity. Again, as a consequence, equations (2.30) and (2.32) must be replaced by (2.37) and
(2.38).

2.3.3 Consideration of population development

Now, we want to discuss in short how a variable population number can be taken into account within the
models presented above. There are two possible approaches, see Hethcote and van den Driessche (2000):

(i) The population development is controlled by rates for births, migration and deaths non-caused by
the infection under consideration.

(ii) A modified logistic equation is used.

Here, we only consider the first case in more detail, for the second one more complex we refer to Hethcote
and van den Driessche (2000) and to the references cited therein.

In the case of a variable population number, N = N(t), died persons are not included into N ,
independently of the death reason. The classes of died individuals can be calculated a posteriori.

The temporal course of N is described by a differential equation along with an initial condition.

Ṅ(t) = bN(t)− δnatN(t)− δinfI(t) + rmig(t) for t ∈ [0,∞[,(2.41)

N(0) = N0 > 0.(2.42)

Here are b ≥ 0, δnat ≥ 0 birth and death coefficients related to the whole population, the death coefficient
δinf ≥ 0 is related to infected persons, rmig is the migration rate. All these quantities may be time-
dependent continuous functions. The migration rate can be regarded as difference of immigration and
emigration rate:

rmig(t) = rimmi(t)− remi(t) for t ∈ [0,∞[,(2.43)

with rimmi(t) ≥ 0 and remi(t) ≥ 0. Since individuals of all classes may migrate, one can set (see remark
2.9):

rimmi(t) = rSimmi(t) + rEimmi(t) + rIimmi(t) + rRimmi(t),(2.44)

remi(t) = rSemi(t) + rEemi(t) + rIemi(t) + rRemi(t).(2.45)
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Now we complete the equations for S, E, I and R from SEIRD and SEIRSD models in paragraph
2.3.2.2.

Ṡ(t) = −β(t)
I(t)

N(t)
S(t) + bN(t) + µR(t)− δnat S(t) + rSimmi(t)− rSemi(t) for t ∈ [0,∞[,(2.46)

Ė(t) = β(t) I(t)
S(t)

N(t)
− εE(t)− δnatE(t) + rEimmi(t)− rEemi(t) for t ∈ [0,∞[,(2.47)

İ(t) = εE(t)− γ I(t)− (δnat + δinf ) I(t) + rIimmi(t)− rIemi(t) for t ∈ [0,∞[,(2.48)

Ṙ(t) = γ I(t)− µR(t)− δnatR(t) + rRimmi(t)− rRemi(t) for t ∈ [0,∞[.(2.49)

Here, it has been supposed that all newborns are susceptible (otherwise, an additional class is needed),
and that only infectious infected can die caused by infection.

The initial values S0, E0, I0 and R0 should be meaningfully between 0 and N0 fulfilling the condition

N0 = S0 + E0 + I0 +R0.(2.50)

It is easy to see that the right-hand side of (2.41) for N can be obtained after addition of the right-hand
sides of (2.46) - (2.49). Hence, die condition (2.50) ensures that for an existing unique solution there
holds for all t

N(t) = S(t) + E(t) + I(t) +R(t).(2.51)

Therefore, in the equations (2.46) and (2.47), N can be substituted reducing the whole system of equa-
tions. Via

D(t) = D0 +

∫ t

0

δinf I(τ) dτ +

∫ t

0

δnatN(τ) dτ(2.52)

the number of died persons can be calculated a posteriori.

Remark 2.9. The numbers N , S etc. are all non-negative. Thus, the model allows an unlimited
immigration, but not a suchlike emigration. Strictly speaking, all emigration rates remi, r

S
emi etc. must

be equipped with switch-off functions, which prevent negative values for N , S etc. We drop this here,
because in paragraph 3 there arise an analogous problem connected with the vaccination rate. There, a
suitable switch-off function will be constructed.

3 A SEI3RSD model with possible vaccination
for the description of the spread of SARS-CoV-2

Now it is the aim to develop a model which is better adjusted to so far known findings about SARS-CoV-
2, without aspiring the elaborateness in Grimm et al. (2020). In particular, we do not divide the classes
S, E, R into further subclasses in accordance with social or other aspects.

Some findings relevant for modelling are: Latent and incubation periods differ, infected persons are
infectious after the end of incubation period and there exist infectious infected persons without or only
with light symptoms, see Wikipedia (2020), Robert Koch-Institut: COVID-19 in Deutschland (2020),
e.g. Thus, we introduce the class E and subdivide the class I. Additionally, we take into account
that recovered persons lose their acquired immunity and that susceptible individuals become temporarily
immune via vaccination.

For a better overview we assume a constant population number N = N0. The considerations con-
cerning a variable N in paragraph 2.3.3 can be included without any difficulties, if needed.

3.1 Partition of the class of infectious infected persons

A specific feature of the present model is that the class of infectious infected individuals I is subdivided
(see also paragraph 2.1.5).

(i) The class E (of infected, but not infectious persons) loses to the class I1 consisting of individuals
who are already infectious, but they do not have any disease symptoms. The mean length of stay
in I1 equals to the difference between incubation and latent period, tinc and tlat, respectively.
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(ii) After the end of incubation period the class I1 loses parallelly to two further classes, more precisely
to
(a) I21 consisting of furthermore infectious infected persons without or with only weak symptoms.

Thus, the affected are not aware to their illness. The loss of infectiousness is assumed to be
the beginning of recovery after a mean ‘disease duration’ tinf,1 − tinc;

(b) I22 consisting of furthermore infectious infected persons exhibiting stronger symptoms and
feeling ill. Thus, the affected are either in home isolation or in a hospital. Their recovery also
starts with the loss of infectiousness after a mean ‘disease duration’ tinf,2 − tinc.

If the start of recovery and the end of infectiousness do not coincide, then, when indicated, the classes I21
and I22 have to be subdivided further. We drop this here. However, the model allows different lengths
of disease periods.

The partition into I21 and I22 is hence relevant, because it is plausible that the individuals certainly
exhibit different contact behaviour. People with remarkable disease symptoms generally behave more
carefully or are even hospitalised. In both cases one can assume that they infect essentially less susceptible
persons.

3.2 Equations and initial conditions for all classes

Summarising the considerations above, now we write down all equations. For S we present a modified
version of (2.37).

Ṡ(t) = −
(
β1(t)

I1(t) + I21(t)

N(t)−D(t)
+ β22(t)

I22(t)

N(t)−D(t)

)
S(t) + µR(t)− q ϕ(S) for t ∈ [0,∞[.(3.1)

Individuals from I1 and I21 are supposed to have the same contact behaviour. This one of I22 members
essentially differs. From the description of classes I1, I21 and I22 follows the suggestion

β22 < β1.(3.2)

Clearly, this is not required for mathematical reason. The function q ϕ(S) is the vaccination rate con-
sisting of the actual rate q and the control function ϕ(S). In order to focus here on the equations, we
provide more information in paragraph 3.3.

The modified equation for E is given by (cf. (2.39))

Ė(t) =
(
β1(t)

I1(t) + I21(t)

N(t)−D(t)
+ β22(t)

I22(t)

N(t)−D(t)

)
S(t)− εE(t) for t ∈ [0,∞[.(3.3)

As explained above, there holds tlat = 1/ε.
The equation for I1 must indicate that I1 gets growth from E and loses to I21 and I22. This loss

happens in parallel, and so it is only seen in the equations for I21 and I22. Contrary to (2.40) we assume
that individuals from I1 do not die due to infection.

İ1(t) = εE(t)− γ1 I1(t) for t ∈ [0,∞[.(3.4)

There hold γ1 > 0 and 1/γ1 = tinc − tlat. For the classes I21 and I22 the following equations hold.

İ21(t) = (1− α)γ1 I1(t)− γ21 I21(t) for t ∈ [0,∞[,(3.5)

İ22(t) = αγ1 I1(t)− γ22 I22(t)− δ I22(t) for t ∈ [0,∞[,(3.6)

The parameter α fulfils

0 < α < 1. .(3.7)

1− α and α reflect the partition of infectious infected individuals from I1 to I21 and I22 after the end of
incubation period. α is also called manifestation index, since it characterises the fraction of ill persons
with remarkable symptoms. The time duration tinf,1 − tinc is the reciprocal value of γ21, tinf,2 − tinc
correspondingly to γ22. tinf,1 is the point of time of recovery ever since of infection for I1 and tinf,2
correspondingly for I2. The relation tinf,2 > tinf,1 seems to be plausible, but it has no mathematical
relevance. δ > 0 is the lethality coefficient, the model approach is, that only heavily diseased persons die
caused by infection.
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Now, the class R consists of individuals stemming from I21 and I22 as well as of persons immunised
by vaccination. If recovered lose their immunity, they return to S. Thus, the equations for R and D are

Ṙ(t) = γ21 I21(t) + γ22 I22(t)− µR+ q ϕ(S) for t ∈ [0,∞[,(3.8)

Ḋ(t) = δ I22(t). for t ∈ [0,∞[,(3.9)

From the mathematical point of view the parameter β1, β22, µ, ε, α, γ1, γ21, γ22, δ can be time-
dependent and continuous (see (4.1) and (4.2) for more explication). The initial conditions are chosen as
follows.

S(0) = S0 with 0 < S0 < N0,(3.10)

E(0) = E0 with 0 ≤ E0 < N0,(3.11)

I1(0) = I10 with 0 ≤ I10 < N0,(3.12)

I21(0) = I210 with 0 ≤ I210 < N0,(3.13)

I22(0) = I220 with 0 ≤ I220 < N0,(3.14)

R(0) = R0 with 0 ≤ R0 < N0,(3.15)

D(0) = D0 with 0 ≤ D0 < N0.(3.16)

Mostly, one chooses D0 = 0, but this is not mathematically required. The initial values should be
consistent with N0, therefore, we assume

N0 = S0 + E0 + I10 + I210 + I220 +R0 +D0.(3.17)

For the start of an infection there must hold as minimal requirement

E0 + I10 + I210 + I220 > 0(3.18)

Again, this is not an actual mathematical assumption, but a vanishing sum in (3.18) very simplifies the
problem.

Remarks 3.1. (i) (Different durations of immunity) In the model, it is implemented that recovered
and vaccinated susceptible persons have immunity of the same mean duration 1/µ. If this is not
the case, one could consider a further class of “immune after vaccination”. Equally, a further class
could be convenient, if for instance recovered persons are permanently immune and vaccinated ones
only for some time.

(ii) (On contact and replacement number) In paragraph 2.1.2, contact and replacement numbers have
been defined. However, for a better handling, in paragraph 2.2.2 current contact and replacement
numbers have been introduced for a variable contact coefficient β. Hence, for the model under
consideration it seems to be plausible to express σ as follows

σ = β1(tinc − tlat) + β1(1− α)(tinf,1 − tinc) + β22α
tinf,2 − tinc

1 + δ (tinf,2 − tinc)
=(3.19)

=
β1
γ1

+ (1− α)
β1
γ21

+ α
β22

γ22 + δ
.

The first addend represents the I1 individuals, the second one I21 members, and, finally, the third
one is related to I22 individuals, taking the infection-related death coefficient δ into account (see
remark 4.8 for reasoning). Moreover, after incubation period, an infected individual belongs to I22
with the probability α and to I21 with the probability 1−α. Hence, one gets the following (virtual)
replacement number (reproduction number), observing (2.12).

ρ =
{β1
γ1

+ (1− α)
β1
γ21

+ α
β22

γ22 + δ

} S

N −D
.(3.20)

3.3 An approach for the vaccination rate

The term qϕ(S) in (3.1), the vaccination rate, indicates how many persons are vaccinated in a time
unit. The part q is the actual vaccination rate. It is justified, if there are sufficiently many persons
for vaccination. This is surely the case at begin of a vaccination campaign. The part ϕ(S) is a control
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function. If there are no persons to be vaccinated, the vaccination process ends. Otherwise, the function
S would be sometime negative for mathematical reason.

For the actual vaccination rate q we propose a piece-wise linear approach:

q(t) :=


0, for t ∈ [0, t1],
q1

t−t1
t2−t1 , for t ∈ [t1, t2],

q1, for t ∈ [t2,∞[.
(3.21)

with

0 ≤ t1 < t2 <∞, q1 = const. > 0.(3.22)

The formula (3.21) means that for t1 = 0 the vaccination campaign starts with the begin of infection.
In the current case of COVID-19 this is impossible, hence, a begin at t1 > 0 reflects the real situation.
After that, q grows linearly up to the final rate q1, e.i., the limit of capacity is reached. This approach
seems to be realistic for a new vaccine which production has to be start-up and its distribution surely
has to be improved. Clearly, instead of (3.21) other approaches are possible. The constant q1 has the
dimension P/T , persons per time.

The control function ϕ(S) ensures that the vaccination campaign ends, if the number of susceptible
persons comes up to zero. At first we define a dimensionless cut function ϕε for an arbitrarily chosen and
fixed ε > 0 via

ϕε(σ) :=

 1, for σ > ε,
σ
ε , for 0 ≤ σ ≤ ε,
0, for σ < 0.

(3.23)

The slope of ϕε between zero and one is 1/ε. If ε tends to zero, ϕε tends (point-wise, but not uniformly)
to a jump function. Due to its non-continuity in the point zero, we want to avoid it for mathematical
reasons. Finally, we define the term qϕ(S) by

q(t)ϕ(S) := q(t)ϕε(
S

N0
).(3.24)

For reasons of dimensional homogeneity, S/N0 has been chosen as argument of ϕ1. This will be beneficial
later on. From (3.23) and (3.24) we get easily

q(t)ϕ(S) = q(t)


1, for S

N0
> ε,

S
N0 ε

, for 0 ≤ S
N0
≤ ε,

0, for S < 0.

(3.25)

In applications, the threshold value ε > 0 has to be chosen suitably small. Generally, at begin of the
infection course, one can expect S/N0 ≈ 1. Thus, ε should be small, more precisely ε � S/N0, in order
to avoid an essential influence to the model at begin. For mathematical reason the function ϕ(S) is also
defined for negative S. Under mild assumptions the non-negativity of S can be proved (see section 4.2).
Thus, there is no practical consequence in applications.

3.4 General remarks concerning the model

The SEI3RSD model developed above takes several known findings about SARS-CoV-2 and COVID-19
into account. However, it is less complex than the model developed and numerically investigated in
Grimm et al. (2020). If necessary, the modular design principle allows extensions and simplifications of
the model described above.

This model is a continuous one, the arising mathematical task is an initial-Value problem for a system
of ordinary differential equations (ODE). As an advantage, the extensive mathematical instruments on
theory and numerics of ODE are well available. Otherwise, the population is discrete. Therefore, to
correspond possibly well to the reality, “sufficiently large” populations must be assumed. An alternative
to a continuous model is a discrete one based on difference equations, see Vynnycky and White (2010),
e.g. Generally, concerning models of phenomena in empirical sciences, an important task consists in
validation and verification in order to decide, under which conditions the applied models yield sufficiently
good approximations with the reality. In particular, a typical question is whether a SIRD model can
sufficiently well describe a real course of infection, or a SEIRD model must be chosen.
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A general drawback of modelling with ODE is the absence of local dependence of the functions looked
for, here S, E, I1, I21, I22, R and D. However, in many countries the spread of SARS-CoV-2 essentially
differs from region to region. Therefore, the models discussed here only reflect a mean situation, for
instance in Germany or in a single federal land.

A way out with partial differential equations (PDE) containing terms describing local movements of
population parts seems theoretically possible. Surely, there will arise large difficulties in determining
various parameter functions. Instead of population numbers corresponding density functions have to
be used (persons per quadrate kilometre, e.g.). Additionally, there may be non-local effects caused by
travelling excelling daily usual movement in the surrounding field. Hence, it is not a surprise that the
author did not find corresponding references to PDE. In Hethcote (2000) and in Vynnycky and White
(2010), PDE are addressed in short to model a dependence on age.

4 On mathematical investigation of models

Now, it is the aim to investigate the mathematical problem arising from the SEI3RSD model. At first,
we formulate in paragraph 4.1 an equivalent problem in dimensionless quantities. This so-called non-
dimensionalised form may have some advantages. After that, in paragraph 4.2, we prove existence and
uniqueness of a global solution and study its properties. We focus on the SEI3RSD model, although
many results can be applied in modified form to less complex models like SIR ones. Finally, in paragraph
4.3, we discuss some issues related to contact and replacement numbers for some models.

4.1 Formulation of the problem in non-dimensionalised form

Now, we want to deal in more detail with the dimensions of functions and parameters involved in problem
(3.1), (3.3) - (3.6), (3.8) - (3.16). For lack of space, here we do not repeat all equations and initial
conditions, but we write them alike in an equivalent form with dimensionless quantities. This procedure
is also called non-dimensionalisation.

An advantage of this procedure is generally a reduction of the number of parameters determining
the equivalent problem. Sometimes, there can be an advantage in numerical investigations. Moreover,
the influence of parameters and their interplay can be well investigated. For more information we refer
exemplarily to Görtler (1975), Hutter (2003), Hutter and Jöhnk (2004), Zlokarnik (2005) as well as to a
compact presentation in the lecture Wolff (2018) (Chapter 7).

We record that all numbers of persons, S, E, I1, I21, I22, R, D and N0, S0, I0, I210, I220, R0 and D0

have the dimension persons, abbreviated by P , corresponding units may be eP = 1 person as well other
ones like 100 persons. The time derivatives of the functions S, E etc. have the dimension P/T , T being
the dimension time. In connection with epidemics the time is often measured by the unit day. Bearing
in mind these informations, it follows that all parameters β1, β22, µ, ε, γ1, γ21, γ22, δ have the dimension
1/T . α is dimensionless. Of course, the continuous time t has the dimension T , equally tlat, tinc, tinf,1,
tinf,2.

In accordance with the model under consideration, let the parameter functions fulfil (see remark 2.3)

β1, β22, δ ∈ C([0, tex[), β1(t) > 0, β22(t) > 0, δ(t) > 0 for t ∈ [0, tex],(4.1)

µ, ε, γ1, γ21, γ22, δ = const., µ ≥ 0, ε > 0, γ1 > 0, γ21 > 0, γ22 > 0.(4.2)

Here, let tex > 0 or tex =∞, the index ex points to ‘existence interval’.
The choice in (4.1) and (4.2) is motivated by up to now known findings on SARS-CoV-2. The

parameters β1 and β22 strongly depend on human contact behaviour, the lethality coefficient seems
to be influenced by the capacities of health systems in divers countries. The constance of remaining
parameters is not mathematically predicted. The case µ ≡ 0 means permanent immunity. The continuity
requirements in (4.1) allow to deal within the framework of continuously differentiable solutions, see
remark 4.6 (i).

The next step is to define a dimensionless time (number) τ (see remark 4.3 (iii)). We choose the
approach

τ := t γ1,(4.3)

and we define the dimensionless functions s, e, ι1, ι21, ι22, r and d in accordance with

s(τ) :=
S(t)

N0
, ι1(τ) :=

I1(t)

N0
, ι21(τ) :=

I21(t)

N0
, ι22(τ) :=

I22(t)

N0
, r(τ) :=

R(t)

N0
, d(τ) :=

D(t)

N0
.(4.4)
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Moreover, we define dimensionless parameters and parameter functions:

β̃1(τ) :=
β1(t)

γ1
, β̃22(τ) :=

β22(t)

γ1
, µ̃ :=

µ

γ1
, ε̃ :=

ε

γ1
,(4.5)

γ̃21 :=
γ21
γ1
, γ̃22 :=

γ22
γ1
, δ̃(τ) :=

δ(t)

γ1
.

These new parameters also fulfil (4.1) and (4.2). Note, that the formal counterpart to γ1 becomes one.
Therefore, the equations (3.1), (3.3) - (3.6), (3.8), (3.9) are equivalent to

ṡ = − β̃1 ι1 + β̃1 ι21 + β̃22 ι22
1− d

s+ µ̃ r − q̃ϕε(s) on [0,∞[(4.6)

ė =
β̃1 ι1 + β̃1 ι21 + β̃22 ι22

1− d
s− ε̃ e on [0,∞[(4.7)

ι̇1 = ε̃ e− ι1 on [0,∞[(4.8)

ι̇21 = (1− α) ι1 − γ̃21 ι21 on [0,∞[(4.9)

ι̇22 = α ι1 − γ̃22 ι22 − δ̃ ι22 on [0,∞[(4.10)

ṙ = γ̃21 ι21 + γ̃22 ι22 − µ̃r + q̃ϕε(s) on [0,∞[(4.11)

ḋ = δ̃ ι22 on [0,∞[.(4.12)

For a better overview we usually do not write the argument τ , derivatives with respect to τ are also
indicated by a dot. The dimensionless function q̃ has the following form.

q̃(τ) :=


0, for τ ∈ [0, τ1],
q̃1

τ−τ1
τ2−τ1 , for τ ∈ [τ1, τ2],

q̃1, for τ ∈ [τ2,∞[.
(4.13)

Moreover, further dimensionless quantities are given by

τ1 := γ1 t1, τ2 := γ1 t2, q̃1 :=
q1

N0γ1
.(4.14)

Taking (3.23), (4.13) and (4.14) into account, the term q̃ϕε(s) is written as

q̃ϕε(s) = q̃

 1, for s > ε,
s
ε , for 0 ≤ s ≤ ε,
0, for s < 0.

(4.15)

Finally, the complete non-dimensionalised problem includes else the adjusted dimensionless initial condi-
tions resulting from (3.10) - (3.16):

s(0) = s0 :=
S0

N0
with 0 < s0 < 1,(4.16)

e(0) = e0 :=
E0

N0
with 0 ≤ e0 < 1,(4.17)

ι1(0) = ι10 :=
I1
N0

with 0 ≤ ι10 < 1,(4.18)

ι21(0) = ι210 :=
I21
N0

with 0 ≤ ι210 < 1,(4.19)

ι22(0) = ι220 :=
I22
N0

with 0 ≤ ι220 < 1,(4.20)

r(0) = r0 :=
R0

N0
with 0 ≤ r0 < 1,(4.21)

d(0) = d0 :=
D0

N0
with 0 ≤ d0 < 1.(4.22)

with a condition equivalent to (3.17):

1 = s0 + e0 + ι10 + ι210 + ι220 + r0 + d0.(4.23)
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The additional condition (3.18) necessary for a release of infection leads to its counterpart

e0 + ι10 + ι210 + ι220 > 0.(4.24)

The mathematical problem (4.6) - (4.12), (4.16) - (4.22) consists in determining seven dimensionless
functions, s, e, ι1, ι21, ι22, r, d which argument is the dimensionless time (number) τ . This problem is
governed by seven (dimensionless) parameter functions in (4.5), by α, by three numbers τ1, τ2, q̃1 and
the threshold value ε induced by the vaccination rate as well as by seven dimensionless initial conditions
s0, e0, ι10, ι210, ι220, r0, d0.

Now, it is the aim to define a solution to the non-dimensionalised problem (4.6) - (4.12), (4.16) -
(4.22) and hence also for the original problem (3.1), (3.3) - (3.6), (3.8) - (3.16). We use mathematical
standard notations for spaces of continuous and continuously differentiable functions with values in R as
well as in Rn (n ∈ N), see Zeidler and Hunt (2013), e.g. For the theory of ordinary differential equations
(ODE) we refer exemplarily to Amann (1995), Heuser (1995), Walter (2000).

Definition 4.1. (Local and global solution to problem (4.6) - (4.12), (4.16) - (4.22)
Let the real numbers s0, e0, ι10, ι210, ι220, r0, d0 fulfil the conditions in (4.16) - (4.22) and (4.23). Besides
(3.7), let (4.1), (4.2) and (3.21) - (3.24) hold.
(i) Let 0 < τex <∞. A (vector) function (s, e, ι1, ι21, ι21, r, d) ∈ C1([0, tex],R7) is called a local solution

to problem (4.6) - (4.12), (4.16) - (4.22), if the equations (4.6) - (4.12) are valid on [0, τex], and if
the initial conditions (4.16) - (4.22) are fulfilled.

(ii) Let τex =∞. A (vector) function (s, e, ι1, ι21, ι21, r, d) ∈ C1([0,∞[,R7) is called accordingly a global
solution to this problem, if the equations are valid on [0,∞[, and if the initial conditions are fulfilled.

(iii) The problem (4.6) - (4.12), (4.16) - (4.22) is called uniquely solvable, if two local solutions defined

on [0, τ
(1)
ex ] and [0, τ

(2)
ex ], respectively, coincide on the interval [0,min{τ (1)ex , τ

(2)
ex }].

The preceding definition contains also assumptions which are not mandatory. However, in doing so,
we do not need to repeat them below. For convenience we define local solutions on closed intervals. This
is also not mandatory. Analogously, local and global solutions to the original problem (3.1), (3.3) - (3.6),
(3.8) - (3.16) can be defined. There holds the following important assertion.

Lemma 4.2. (Relation between solutions to original and transformed problem)
If (s, e, ι1, ι21, ι22, r, d) is a solution to the non-dimensionalised problem (4.6) - (4.12), (4.16) - (4.22) on
[0, τex], then

S(t) = N0 s(t γ1), E(t) = N0 e(t γ1), I1(t) = N0 ι1(t γ1),(4.25)

I21(t) = N0 ι21(t γ1), I22(t) = N0 ι22(t γ1), R(t) = N0 r(t γ1),

D(t) = N0 d(t γ1)

is a solution to the original problem (3.1), (3.3) - (3.6), (3.8) - (3.16) on [0, τex/γ1] and vice versa.

In many cases, the corresponding non-dimensionalised problems are simplifications of the equivalent
original ones. (Here, the non-dimensionalised problem is governed by only seven parameters instead of
eight ones.) As a consequence, theoretical and numerical investigations may be easier, see section 4.3 for
examples.

After dealing with the non-dimensionalised problem, the transformation back to the solution of the
original problem is performed with the simple scaling in (4.25) for all solution components without a
noteworthy effort. We close this paragraph with some remarks.

Remarks 4.3. (i) The choice of a dimensionless time (number), here τ in (4.3), is not unique. Thus,
there are different possibilities for various applications. For instance, in Wolff (2020c), the above
problem is considered with variable parameters, and τ is chosen by τ := t β1(0).
Another approach uses the latent period tlat, setting τ := t/tlat. Again, based on further investiga-
tions, a chosen approach can prove to be more or less convenient.

(ii) As it can be seen in (4.5), the behaviour of the solution of the non-dimensionalised problem does
not depend on the absolute quantities of the parameters, but only on their ratios. This general
finding plays an important role in the model theory, in particular in hydro- and aerodynamics as
well as in heat conduction. We refer to Hutter and Jöhnk (2004), Zlokarnik (2005), e.g.
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(iii) A great advantage of the dimension analyse is, that characteristics of the dimensionless functions,
s, e, ι1, ι21, ι22, r, d like possible maxima or inflection points of the curves depend only on the
dimensionless parameters and (dimensionless) initial values. Based on practical experience, on
theoretical considerations as well as on real and numerical experiments, the real influence of the
characteristic numbers (dimensionless parameters) can be estimated.

4.2 On solution behaviour of the initial-value problem

Based on the SEI3RSD model developed in paragraph 3, the (original) mathematical problem (3.1), (3.3)
- (3.6), (3.8) - (3.16) has arisen. In paragraph 4.1, the corresponding equivalent problem (4.6) - (4.12),
(4.16) - (4.22) has been obtained in a form with dimensionless functions depending on a dimensionless
argument. Now, it is the aim to prove some assertions about existence of a solution to this last problem.
Based on lemma 4.2, the assertions obtained are also ensured for the original problem.

The mathematical theory confirms the nearby conjecture that under not to strong assumptions the
problem (4.6) - (4.12), (4.16) - (4.22) obeys a unique global solution which components only take values
between zero and one. This is the case under the assumptions formulated in definition 4.1.

At first, from the structure of equations (4.6) - (4.12) an important qualitative property of any possible
(local or global) solution follows.

Lemma 4.4. (Constance of the total population number)
Under the assumptions formulated in definition 4.1, each local solution (s, e, ι1, ι21, ι22, r, d) ∈ C1([0, τex],R7)
to problem (4.6) - (4.12), (4.16) - (4.22) fulfils

s(τ) + e(τ) + ι1(τ) + ι21(τ) + ι22(τ) + r(τ) + d(τ) = 1 for τ ∈ [0, τex].(4.26)

Proof. The addition of equations (4.6) - (4.12) yields the following differential equation for the sum
σ := s+ e+ ι1 + ι21 + ι22 + r + d

σ̇ = 0 for τ ∈ [0, τex].(4.27)

Condition (4.23) implies

σ(0) = 1.(4.28)

Thus, the theory of ODE implies that σ ≡ 1 is the unique solution of problem (4.27), (4.28), and,
therefore, (4.26) is proven.

Under condition (4.23) the equations for s and e, e.i. (4.6) and (4.7), can be substituted by the
following equivalent ones.

ṡ = − β̃1 (ι1 + ι21) + β̃22 ι22
s+ e+ ι1 + ι21 + ι22 + r

s+ µ̃ r − q̃ ϕε(s) on [0, τex],(4.29)

ė(t) =
β̃1 (ι1 + ι21) + β̃22 ι22

s+ e+ ι1 + ι21 + ι22 + r
s− ε̃ e on [0, τex],(4.30)

Sometimes, this representations are beneficial. The following theorem confirms what can be expected
from the model. There exists exactly one global solution, and, all its components, e.i., the functions s, e
etc., are non-negative and located between zero and one.

Theorem 4.5. (Existence of unique global solution)
Under the assumptions formulated in definition 4.1 the problem (4.6) - (4.12), (4.16) - (4.22) has exactly
one global solution (s, e, ι1, ι21, ι22, r, d) ∈ C1([0,∞[,R7) fulfilling (4.26). Let (3.2) be given. For an
arbitrarily chosen and fixed τ̂ > 0 we define

β̃τ̂1 := max
τ∈[0,τ̂ ]

{β̃1(τ)}, δ̃τ̂ := max
τ∈[0,τ̂ ]

{δ̃(τ)}.(4.31)
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Then there hold the following inequalities for all τ ∈ [0, τ̂ ]:

0 < s0 exp
(
− (β̃τ̂1 +

q̃1
ε

) τ̂
)
≤ s(τ) ≤ max

{
1,
(
s0 + τ̂ µ̃ exp

(
(β̃τ̂1 +

q̃1
ε

) τ̂
))}

≤ 1,(4.32)

0 ≤ e0 exp(−τ̂ ε̃) ≤ e(τ) ≤ max
{

1, e0 + τ̂ β̃τ̂1 exp(τ̂ ε̃)
}
≤ 1,(4.33)

0 ≤ ι10 exp(−τ̂) ≤ ι1(τ) ≤ max
{

1, ι10 + τ̂ ε̃ exp(τ̂)
}
≤ 1,(4.34)

0 ≤ ι210 exp(−τ̂ γ̃21) ≤ ι21(τ) ≤ max
{

1, ι210 + (1− α) τ̂ γ̃1 exp(τ̂ γ̃21)
}
≤ 1,(4.35)

0 ≤ ι220 exp(−τ̂ (γ̃22 + δ̃τ̂ )) ≤ ι22(τ) ≤ max
{

1, ι220 + α τ̂ γ̃1 exp(τ̂ (γ̃22 + δ̃τ̂ ))
}
≤ 1,(4.36)

0 ≤ r0 exp(−τ̂ µ̃) ≤ r(τ) ≤ max
{

1, r0 +
(
τ̂ (γ̃21 + γ̃22) + τ̂ q̃1

)
exp(τ̂ µ̃)

}
≤ 1,(4.37)

0 ≤ d0 ≤ d(τ) = d0 +

∫ τ

0

δ̃ι22 dσ ≤ max
{

1, d0 + τ̂ δ̃τ̂
}
Leq1.(4.38)

The function d is monotonously increasing.

Proof. The proof consists of several steps. At first, the existence of a unique local solution is proven
via a special auxiliary problem. As a result the original problem has exactly one local solution which
components are non-negative on the existence interval and their sum is one. Additionally, the inequalities
in (4.32) - (4.38) are valid. Finally, a suitable a-priori estimate on an arbitrarily chosen interval [0, τ̂ ]
allows the continuation to a unique global solution.
(i) (Construction of an auxiliary problem) To prove the non-negativeness of the components to a
local solutions and to get a good basis for a-priori estimates, we consider a special auxiliary problem. For
this purpose we define two functions:

f(x) :=

{
x, for x ≥ 0,
0, for x < 0,

ψε(s) :=

{
1/s, for s > ε,
1/ε, for s ≤ ε.(4.39)

We change the equations (4.6) - (4.12) in the following way.

ṡ = − β̃1 f(ι1) + β̃1 f(ι21) + β̃22 f(ι22)

f(s) + f(e) + f(ι1) + f(ι21) + f(ι22) + f(r)
s+ µ̃ f(r)− q̃ψε(s) s on [0,∞[(4.40)

ė =
β̃1 f(ι1) + β̃1 f(ι21) + β̃22 f(ι22)

f(s) + f(e) + f(ι1) + f(ι21) + f(ι22) + f(r)
f(s)− ε̃ e on [0,∞[(4.41)

ι̇1 = ε̃ f(e)− ι1 on [0,∞[(4.42)

ι̇21 = (1− α) f(ι1)− γ̃21 ι21 on [0,∞[(4.43)

ι̇22 = α f(ι1)− γ̃22 ι22 − δ̃ ι22 on [0,∞[(4.44)

ṙ = γ̃21 f(ι21) + γ̃22 f(ι22)− µ̃r + q̃ϕε(s) on [0,∞[(4.45)

ḋ = δ̃ f(ι22) on [0,∞[.(4.46)

The initial conditions (4.16) - (4.22) remain without any change. It is immediately clear, that a solution
(s, e, ι1, ι21, ι22, r, d) ∈ C1([0, τex],R7) to the auxiliary problem (4.40) - (4.46), (4.16) - (4.22) fulfilling the
conditions

s(τ) > 0, e(τ) ≥ 0, ι1(τ) ≥ 0, ι21(τ) ≥ 0, ι22(τ) ≥ 0, r(τ) ≥ 0, d(τ) ≥ 0 on [0, τex[,(4.47)

is also a solution to the following problem

ṡ = − β̃1 ι1 + β̃1 ι21 + β̃22 ι22
s+ e+ ι1 + ι21 + ι22 + r

s+ µ̃ r − q̃ϕε(s) on [0,∞[(4.48)

ė =
β̃1 ι1 + β̃1 ι21 + β̃22 ι22
s+ e+ ι1 + ι21 + ι22 + r

s− ε̃ e on [0,∞[(4.49)

ι̇1 = ε̃ e− ι1 on [0,∞[(4.50)

ι̇21 = (1− α) ι1 − γ̃21 ι21 on [0,∞[(4.51)

ι̇22 = α ι1 − γ̃22 ι22 − δ̃ ι22 on [0,∞[(4.52)

ṙ = γ̃21 ι21 + γ̃22 ι22 − µ̃r + q̃ϕε(s) on [0,∞[(4.53)

ḋ = δ̃ ι22 on [0,∞[.(4.54)
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To this last problem we can apply lemma 4.4, hence, the equations (4.48) and (4.49) are equivalent to
equations (4.6) and (4.7) within the original problem (4.6) - (4.12), (4.16) - (4.22). In other words, a
local solution to the auxiliary problem (4.40) - (4.46), (4.16) - (4.22) fulfilling conditions (4.47) is also a
local solution to the original problem (4.6) - (4.12), (4.16) - (4.22).
(ii) (Existence of a local solution to the auxiliary problem) Based on 0 < s0 < 1 and formu-
lated assumptions, the theorem by Picard/Lindelöf ensures a unique local solution (s, e, ι1, ι21, ι22, r, d)
∈ C1([0, τex],R7) to the auxiliary problem (4.40) - (4.46), (4.16) - (4.22) with s > 0 on an existence
interval [0, τex] with τex > 0.
(ii) (Properties of the local solution to the auxiliary problem) Now, we want to prove the as-
sertions in (4.47) for the local solution to the auxiliary problem. These assertions are a consequence of
the special structure of equations (4.40) - (4.46). For a better overview we prove this for the function ι1.
(Later on, we prove the stronger assertions (4.32) - (4.38)). From (4.42) one obtains via the representation
formula for the solution to a linear differential equation of first order:

ι1(τ) =
(
ι10 +

∫ τ

0

ε̃(x) f(e)(x) exp(x) dx
)

exp(−τ) for τ ∈ [0, τex].(4.55)

Hence, there holds ι1 ≥ 0 on [0, τex]. Analogously, the remaining inequalities in (4.47) can be proved.
Thus, the solution (s, e, ι1, ι21, ι22, r, d) ∈ C1([0, τex],R7) to the auxiliary problem (4.40) - (4.46), (4.16)
- (4.22) is also a solution to the problem (4.6) - (4.12), (4.16) - (4.22) under consideration.
Due to (4.23) we can apply lemma 4.4, and the assertion (4.26) holds. Based on the non-negativity of
the functions s, e, ι1, ι21, ι22, r, d, they only have values between zero and one.
(iii) (Proof of the estimates in (4.32) - (4.38) for the local solution) Now, we want to derive an
estimation for the function s, taking into account that the local solution to the auxiliary problem is at
once a local solution to the problem under consideration fulfilling (4.47). From (4.48) for s one obtains
the representation formula for a solution to a linear differential equation of first order:

s(τ) =
{
s0 +

∫ τ

0

µ̃ r(x) exp(

∫ x

0

( β̃1 ι1 + β̃1 ι21 + β̃22 ι22
s+ e+ ι1 + ι21 + ι22 + r

+ q̃ψε(s)
)

dy
)

dx
}
·(4.56)

· exp
(
−
∫ τ

0

( β̃1 ι1 + β̃1 ι21 + β̃22 ι22
s+ e+ ι1 + ι21 + ι22 + r

+ q̃ψε(s)
)

dy
)

for τ ∈ [0, τex].

Taking (4.47), (3.2), r ≤ 1, (4.13) and (4.15) into account, the assertions in (4.32) follow with tex instead
of t̂. In particular, there holds

0 < s0 exp
(
− (β̃τex1 +

q̃1
ε

) τex

)
≤ s(τ) for τ ∈ [0, τex].(4.57)

This estimation is of special importance for the continuation of the local solution. The quantity β̃τex1

is defined analogously to β̃τ̂1 via (4.31). The remaining assertions in (4.32) - (4.38) follow in the same
manner via corresponding representation formulas, for the present with τex instead of τ̂ .
(iv) (Continuation of the local solution to a global one) Let t̂ > tex > 0 be arbitrarily chosen and
fixed. Due to (4.31) the quantities defined there are monotonously increasing for increasing t̂. Hence,
there hold

0 < s0 exp
(
− (β̃ t̂1 +

q̃1
ε

) t̂
)
≤ s0 exp

(
− (β̃τex1 +

q̃1
ε

) τex

)
.(4.58)

We define the number

ηt̂ :=
s0
2

exp
(
− (β̃ t̂1 +

q̃1
ε

) t̂
)
.(4.59)

The right-hand sides of equations (4.40) - (4.46) form a vector function consisting of seven components
depending on (τ, s, e, ι1, ι21, ι22, r, d). On the set

M := [0, t̂]× [ηt̂, 1 + ηt̂]× [− ηt̂
10
, 1 + ηt̂]× · · · × [− ηt̂

10
, 1 + ηt̂](4.60)

this vector function is continuous and Lipschitz continuous with respect to (s, e, ι1, ι21, ι22, r, d), uniformly
with respect to τ ∈ [0, t̂]. Therefore, the local solution on [0, τex] can be continued in finite steps on [0, t̂].
During this continuation procedure, in each step, the local solution of the auxiliary problem is continued
at first. Using the arguments above, this continuation is also a continuation of the original problem.
Besides, analogously, the asserted estimations for the continued solution can be shown. Since t̂ > tex > 0
is arbitrarily chosen, a unique global solution to the original problem exists.
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Remarks 4.6. (i) With some small modifications, the results stated in lemma 4.4 and theorem 4.5
can be obtained under the assumption that the parameter functions are Lebesgue-measurable step
functions instead of continuous ones. In this case, the functions s, e, ι1, ι21, ι22, r, d are absolutely
continuous, and, hence, only differentiable almost everywhere in the sense of the Lebesgue measure,
see Amann (1995), e.g.

(ii) Since s is positive on each finite interval, the remaining functions cannot be equal to one on any
finite interval.

(iii) Positive initial values of e, ι1, ι21, ι22, r, d lead to positive values on finite intervals.

(iv) The essential assertions of theorem 4.5 can also be proven for initial-value problems arising from
other models, for instance from a SIRD model Wolff (2020a). In Wolff (2020c), the above problem
with variable coefficients has been dealt with. The changes are only technical. Above all one can
conjecture, that for more complex models like in Grimm et al. (2020) analogous assertions hold.
However, the technical effort would be considerably larger.

4.3 Some remarks on qualitative behaviour

We end the present study with some remarks on qualitative properties of some models considered above.
The focus lies on a connection with items of the dimensional analysis. An important question is, where
the current contact and replacement number, respectively, occur in the non-dimensionalised equations.
Clearly, there is a lot of papers on qualitative behaviour including numerical examples and discussions of
former real infection courses. We refer to Hethcote (2000), Vynnycky and White (2010), Bacaër (2020)
and to the literature cited therein.

This paragraph is structured as follows. At first, we consider SIRSD and SIRD models. They are of
middle complexity. After that, we deal in short with SIR and SIS models. They are special cases in some
kind, however, they obey some own features. At the end, we consider SEIRSD and SEI3RD models.

Obviously, under corresponding mild assumptions, lemma 4.4 and theorem 4.5 can be easily applied
to the subsequent mathematical problems arising from SIRSD, SIRD, SIR and SIS models. In particular,
all solutions components like S, I etc. are non-negative.

4.3.1 SIRSD and SIRD models

We want to return to the role of the replacement number (reproduction number) in the light of dimension
analyse, see paragraph 2.2.2. For this reason, we consider a SIRSD model given by

Ṡ = −β I

N0 −D
S + µR for t ∈ [0,∞[,(4.61)

İ = β
S

N0 −D
I − γ I − δ I for t ∈ [0,∞[,(4.62)

Ṙ = γ I − µR for t ∈ [0,∞[,(4.63)

Ḋ = δ I for t ∈ [0,∞[.(4.64)

We suppose

β, δ ∈ C([0,∞[), β(t) > 0, δ(t) ≥ 0 for t ≥ 0, µ = const. ≥ 0, γ = const. > 0.(4.65)

Clearly, for µ ≡ 0 one gets a SIRD model. In analogy with (4.3) we define the dimensionless time
(number) τ by

τ := t γ,(4.66)

as well as the dimensionless functions s, ι and r in accordance with (4.4) and the dimensionless parameter
functions

β̃(τ) :=
β(t)

γ
, µ̃ :=

µ

γ
, δ̃(τ) :=

δ(t)

γ
.(4.67)
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τ = 1 corresponds to a mean duration of infection as a new “time unit”. We get the corresponding
equations for s, ι and r:

ṡ = −β̃ ι

1− d
s+ µ̃ r for τ ∈ [0,∞[,(4.68)

ι̇ = β̃
s

1− d
ι− ι− δ̃ ι for τ ∈ [0,∞[,(4.69)

ṙ = ι− µ̃ r for τ ∈ [0,∞[,(4.70)

ḋ = δ̃ ι for τ ∈ [0,∞[,(4.71)

The initial conditions remain as before, cf. (4.16) - (4.22):

s(0) = s0, ι(0) = ι0, r(0) = r0 with 0 < s0, ι0, r0 < 1, d(0) = d0 = 1− s0 − ι0 − r0.(4.72)

Based on lemma 4.4, the denominator 1 − d equals to s + ι + r, and, hence equations (4.68) and (4.69)
can be reformulated without d. For convenience, we repeat all equations and get the equivalent system:

ṡ = −β̃ ι

s+ ι+ r
s+ µ̃ r for τ ∈ [0,∞[,(4.73)

ι̇ = β̃
s

s+ ι+ r
ι− ι− δ̃ ι for τ ∈ [0,∞[,(4.74)

ṙ = ι− µ̃ r for τ ∈ [0,∞[,(4.75)

ḋ = δ̃ ι for τ ∈ [0,∞[,(4.76)

As a consequence, the first three equations do not contain d. They can be solved separately, after that,
d can be obtained via simple integration. If additionally µ ≡ 0, at first, the subsystem for s and ι can be
solved and afterwards r and d can be obtained. This is an advantage for numerical studies.

Now, we want to get the specific expressions for the basic reproduction number ρ0, contact number σ
and replacement number ρ. We remember the ideas in paragraph 2.2.2. An easy way to find ρ consists
in taking the ratio of inflow and outflow in (4.74) (or in (4.62)). Thus, we get

ρ =
β̃

1 + δ̃

s

s+ ι+ r
=

β

γ + δ

S

S + I +R
.(4.77)

Thus, the (current) contact number σ and the basic reproduction number ρ0 follow in accordance with

σ =
β̃

1 + δ̃
=

β

γ + δ
, ρ0 = σ(0) =

β̃(0)

1 + δ̃(0)
=

β(0)

γ + δ(0)
.(4.78)

As already stated, the quantities ρ0, σ and ρ are dimensionless, ρ0 is always a constant. The following
assertions easily follow.

Corollary 4.7. (Qualitative behaviour of a SIRSD model)
(i) The six parameters β̃, µ̃, δ̃, s0, ι0 and r0 determine the solution to problem (4.73) - (4.76). The

transition to solution of the original problem S, I, R and D takes place only with dilations or
compressions in accordance with lemma 4.2.

(ii) The contact number σ, µ̃ and the lethality number δ̃ (or, equivalently, β̃, µ̃ and δ̃) are the deter-
mining dimensionless parameter functions for the problem (4.73) - (4.76).

(iii) A necessary condition for starting a spreading infection is

ρ0 = σ(0) > 1.(4.79)

A sufficient and necessary condition is given by

ρ(0) = σ(0)
s0

s0 + ι0 + r0
> 1.(4.80)

However, due to s0/s0+ι0+r0 ≈ 1 in many cases, in reality, condition (4.79) is often also sufficient.

(iv) The lethality coefficient δ has only a significant influence, if it has the same magnitude of order as
γ. And, if this is the case, then the spread of infection is essentially braked by death cases. This
can explain, that the evolution led to pathogens which (as a rule) do not have too high lethality.
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(v) The function ι can only grow, so long as the replacement number fulfils ρ(τ) > 1.

(vi) If σ(τ) < 1, then also holds ρ(τ) < 1, and ι decreases.

(vii) If µ = 0, then r can only grow, and s can only fall. The case µ 6= 0 is more complex and needs
detailed investigations.

(viii) Applying a simple SIRD model (i.e., with µ = 0) to COVID-19 and assuming a realistic ρ0 = 3 and
a small lethality coefficient, the function ι grows nearly till 0,66 in the case of a constant β. Thus,
if there is no change of contact behaviour, approximately two-thirds of an initially fully susceptible
population will be infected.

Remark 4.8. (Death-adjusted infectious period)
In simple models like SIS and SIR, the contact number σ fulfils the relation σ(t) = β(t)ω (see formula
(2.12)), where tinf = ω = 1/γ. These models are applied, if infection-related deaths (and generally death
cases) do not play a significant role. However, considering a SIRD model as above, the mean effective
infectious period ωeff (or the mean death-adjusted infectious period, see Hethcote (2000)) is not 1/γ, but
has to be corrected. As a result one obtains

σ(t) = β(t)ωeff = β(t)
ω ωδ
ω + ωδ

.(4.81)

Here, ωδ = 1/δ is the infection-related mean lifetime of an infected person. A reasoning for (4.81) can be
obtained as follows. The function

exp(−(γ + δ)t) = exp(−γ t) exp(−δ t)(4.82)

can be understood as probability that an initially infected person is infectious and alive at time t. Than
the integral

ωeff :=

∫ ∞
0

exp(−(γ + δ)t) dt =
1

γ + δ
=

ω ωδ
ω + ωδ

(4.83)

represents the mean effective infectious period (see formula (2.17)). Thus, besides using the ratio of
inflow and outflow, there is an alternative way to obtain relations (4.77) and (4.78) via a mean effective
duration of infectiousness.

4.3.2 SIRS and SIR models

Obviously, SIRS and SIR models are special cases of SIRSD and SIRD ones. Thus, the assertions in the
preceding paragraph remain valid after slight modifications. However, neglecting the lethality coefficient
δ, and thus d, the contact number σ directly occurs in the equations for s and ι. This can be done, if
δ � γ. Therefore, setting δ ≡ 0 and d ≡ 0, from (4.77) and (4.78) one obtains

ρ = β̃ s =
β

γ

S

N0
= β ω

S

N0
, σ = β̃ =

β

γ
= β ω, ρ0 = σ(0) = β̃(0) =

β(0)

γ
= β(0)ω.(4.84)

Again, we use tinf = ω = 1/γ (ω - mean duration of infectiousness). β̃ and µ̃ remain as before. Therefore,
and taking 1 = s+ ι+ r into account, form (4.73) - (4.75) one obtains

ṡ = −σ ι s+ µ̃ r for τ ∈ [0,∞[,(4.85)

ι̇ = σ s ι− ι for τ ∈ [0,∞[,(4.86)

ṙ = ι− µ̃ r for τ ∈ [0,∞[.(4.87)

Now, the contact number σ directly occurs in (4.85) and (4.86), it plays the role of a “dimensionless
contact coefficient”. Clearly, the assertions (iii), (v) - (vii) of corollary 4.7 remain valid, in (i), (ii), δ̃ and
D must be removed.

In Schuster (2013), Chapter 5.2, the corresponding system (with µ = 0) is studied for the fractions of
S, I and R, named also by s, ι and r, without transforming the time t.

4.3.3 SEIR and SEIRD models

Now, we want to study how important dimensionless numbers influence the infection course in the case
of more complex models. In Bacaër (2020), a special SEIR1R2 model has been investigated, addressing
the begin of the SARS-CoV-2 epidemic in France.
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To focus on main items, we deal at first with the following SEIR model.

ṡ = −β̃ ι s on [0,∞[(4.88)

ė = β̃ s ι− ε̃ e on [0,∞[(4.89)

ι̇ = ε̃ e− ι on [0,∞[(4.90)

ṙ = ι on [0,∞[.(4.91)

We assume (4.3) and (4.4) (without d) and modify (4.5), defining

β̃(τ) :=
β(t)

γ
, ε̃ :=

ε

γ
.(4.92)

Now, there holds 1/γ := tinf − tlat, and 1/ε := tlat remains as before. tinf is the end of infectiousness.
Moreover, the contact and replacement numbers are given by

σ :=
β

γ
= β̃ = β (tinf − tlat), ρ = σ s.(4.93)

For a better overview we drop a possible loss of immunity and vaccination. Besides, infection-related
deaths are included in r. If necessary, these items can be added without any special effort. Obviously,
the system (4.88) - (4.91) is a simplification of (4.6) - (4.12).

We set the initial conditions as in (4.16) - (4.21) and the condition (4.23) with d0 = 0. To avoid trivial
cases, we assume

e0 + ι0 > 0.(4.94)

Due to the special coupling of the equations for e and ι, we add (4.89) and (4.90). Hence, we get a
differential equation for the sum e+ ι:

ė+ ι̇ = σ s ι− ι =
(
σ s− 1

)
ι. on [0,∞[.(4.95)

Thus, for

σ > 1, e0 + ι0 + r0 � 1,(4.96)

the sum e + ι asymptotically grows up so long as ρ = σ s > 1, or, equivalently s > smin := 1/σ. The
growing sum e+ ι allows three cases: (i) e and ι grow, (ii) e grows, ι decreases, (iii) e decreases, ι grows.
These cases are determined by the initial conditions for e and ι.

Let be ι0 > 0. Then, due to theorem 4.5, ι > 0 for all time. Hence, we can re-write the equations
(4.89) and (4.90):

ė = (σ s− ε̃ e
ι
) ι on [0,∞[,(4.97)

ι̇ = (ε̃
e

ι
− 1) ι on [0,∞[.(4.98)

Due to (4.96) and (4.92) it holds

γ

ε
=

1

ε̃
<
β

ε
=
σ

ε̃
.(4.99)

The initial value e0/ι0 of the ratio e/ι determines the begin of the evolution of e and ι. If

1

ε̃
<
e0
ι0
<
β

ε
,(4.100)

then at least for some time after beginning both functions e and ι grow. The asymptotic value of e/ι is
1/ε̃, or, in other words, there holds

e

ι
→ 1

ε̃
=
γ

ε
.(4.101)

The remaining cases

e0
ι0
<

1

ε̃
<
β

ε
, and

1

ε̃
<
β

ε
<
e0
ι0

(4.102)
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imply a growing e and a decreasing ι and a decreasing e and a growing ι, respectively, at least for some
time. Additionally, for these cases the relation (4.101) remains to hold.

The case e0 > 0 can be dealt with analogously, re-writing (4.89) and (4.90) in the following way.

ė = (σ s
ι

e
− ε̃) e on [0,∞[,(4.103)

ι̇ = (ε̃
e

ι
− 1) ι on [0,∞[.(4.104)

And, finally, the asymptotic behaviour of ι/e is given by

e

ι
→ ε̃ =

ε

γ
.(4.105)

Clearly, this is equivalent to (4.101).
Obviously, for σ ≤ 1, the sum e + ι cannot grow, and the infection so does. Depending on initial

values e0 and ι0, one of these two functions can grow for short time.

Remarks 4.9. (SEIRD and SEIRSD models)
(i) Infection-related deaths can be integrated as before in paragraph 4.3.1. The main assertions of this

paragraph remain valid with slight modifications.

(ii) A possible loss of immunity and vaccination can be included without difficulties, since the equations
for e and ι are not touched by these extensions.

4.3.4 SEI3RSD models

Finally, we want to deal with complex models of SEI3R kind. In order to focus, at first we drop d, loss
of immunity and vaccination within the SEI3RSD model presented above in section 3 and paragraph 4.1.
Neglecting d and taking 1 = s+ e+ ι1 + ι21 + ι22 + r into account, we obtain from (4.6) - (4.11):

ṡ = −
(
β̃1 ι1 + β̃1 ι21 + β̃22 ι22

)
s on [0,∞[(4.106)

ė =
(
β̃1 ι1 + β̃1 ι21 + β̃22 ι22

)
s− ε̃ e on [0,∞[(4.107)

ι̇1 = ε̃ e− ι1 on [0,∞[(4.108)

ι̇21 = (1− α) ι1 − γ̃21 ι21 on [0,∞[(4.109)

ι̇22 = α ι1 − γ̃22 ι22 on [0,∞[(4.110)

ṙ = γ̃21 ι21 + γ̃22 ι22 on [0,∞[.(4.111)

The definition of parameters as well as the initial conditions (with d0 = 0) are given as in subsection 4.1.
Contrary to the previous models above, it is not clear, where in the equations contact and replacement

numbers occur. Based on definitions in paragraph 2.2.2 and in remark 3.1, the contact and replacement
number are presented for the full problem. Neglecting d and δ, we obtain:

σ =
β1
γ1

+ (1− α)
β1
γ21

+ α
β22
γ22

= β̃1 + (1− α)
β̃1
γ̃21

+ α
β̃22
γ̃22

,(4.112)

σ =
{β1
γ1

+ (1− α)
β1
γ21

+ α
β22
γ22

}
s =

{
β̃1 + (1− α)

β̃1
γ̃21

+ α
β̃22
γ̃22

}
s.(4.113)

An investigation like for SEIR models before turns out to be more complex. We only sketch some
ideas. The addition of equations (4.107) - (4.110) yields an equation for the sum e+ ι1 + ι21 + ι22:

ė+ ι̇1 + ι̇21 + ι̇22 = β̃1 s ι1 + (β̃1 s− γ̃21) ι21 + (β̃22 s− γ̃22) ι22 on [0,∞[.(4.114)

Thus, the sum e+ ι1 + ι21 + ι22 grows, if

min
{ β̃1
γ̃21

s,
β̃22
γ̃22

s
}
> 1.(4.115)

Note that due to theorem 4.5 all functions s, e, etc. are non-negative. Obviously, condition (4.99) is
only a coarse sufficient one. The term β̃1 s ι1 remains disregarded. A further, more detailed investigation
seems to be sophisticated.
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Alternatively, the equations for e and ι1 can be added:

ė+ ι̇1 = (β̃1 s− 1) ι1 + β̃1 s ι21 + β̃22 s ι22 on [0,∞[.(4.116)

Now, the sum e+ ι1 grows, if

β̃1 s > 1.(4.117)

Again, this is a rough sufficient condition, disregarding the remaining terms in (4.100).
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Zlokarnik, M. (2005). Scale-up - Modellübertragung in der Verfahrenstechnik, 2.Aufl., Wiley-VCH Verlag,
Weinheim, Germany.

33


	Introduction
	About the COVID-19 pandemic
	About modelling of the spread of infectious diseases
	Aims and content of this study

	On general models for the spread of infectious diseases
	Basic notations and assumptions
	Infection and transmission ways
	Adequate contacts and reproduction numbers
	Assumptions concerning population dynamics
	Assumptions concerning the course of infection
	Infection-relevant classes of the population

	Modelling of infection and equations for the infected
	Approach for I with a differential equation
	Relations to contact and reproduction numbers
	Supplement: Approach for I with an integral equation

	Completion of models
	SI and SIS models with constant population number
	SIRD, SIRSD, SEIRD and SEIRSD models with constant population number
	Consideration of population development


	A SEI3RSD model with a possible vaccination for the description of the spreadof SARS-CoV-2
	Partition of the class of infectious infected persons
	Equations and initial conditions for all classes
	An approach for the vaccination rate
	General remarks concerning the model

	On mathematical investigation of models
	Formulation of the problem in non-dimensionalised form
	On solution behaviour of the initial-value problem
	Some remarks on qualitative behaviour
	SIRSD and SIRD models
	SIRS and SIR models
	SEIR and SEIRD models
	SEI3RSD models



