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Abstract

We derive an inside-outside duality for near field scattering data generated by time-
harmonic scattering of acoustic point sources from a sound-soft scatterer. This duality in
particular rigorously characterizes interior Dirichlet eigenvalues of the scattering object by
near field operators for an interval of wave numbers. As a crucial new concept to prove this
duality we exploit the numerical ranges of certain modifications of these near field operators.
We also show that our theoretical results can be numerically used to approximate interior
Dirichlet eigenvalues from multi-frequency near field measurements.

1 Introduction

Recently, there has been some effort to identify interior eigenvalues of unknown scattering
objects from far field data by a technique known as inside-outside duality, see [8, 17, 13].
For scattering from impenetrable scattering objects with, e.g., Dirichlet or Robin Neumann
conditions, this technique yields a rigorous characterization of these eigenvalues, that can also
be exploited numerically, see [20, 21]. In this article, we extend this approach to scattering
problems where near field data measured on some closed measurement surface surounding
the obstacle is available; such a model is relevant for any practical application involving field
measurements taken merely few wavelengths away from the scatterer.

Important ingredients in the derivation of the inside-outside duality in a far field setting
are compactness and normality of the far field operator, the special structure generated by
its eigenvalues, in particular their arrangement in the complex plain, as well as a suitable
factorization of the far field operator. Arguably, a natural approach for a near field setting
would hence be to consider the eigenvalues of the near field operator. While this operator
retains some important properties like compactness and denseness of its range, it fails to be
normal, and, in contrast to the far field operator, its eigenvalues do not lie on a circle in the
complex plane – indeed, they do not show any particular structure at all. This issue is somewhat
related to the problem of deriving a proper factorization for the near field operator, suitable
to construct a factorization method, see [1, 15, 16] for details. Since such a factorization is as
much an ingredient for the inside-outside duality as the structure of the eigenvalues of the near
field operator, we need to deal with both problems.
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To this end, we use an ansatz from [12], where the near field operator defined on a spherical
(or circular) measurement surface is modified by a unitary operator such that the modification
possesses a factorization similar to the well-known factorization of the far field operator, see [14].
In this article we show that these similarities can be used to base the inside-outside duality for
near field data on the inside-outside duality for far field data. A new concept we exploit in this
context is the numerical range of an operator, which helps to overcome several difficulties linked
to the spectral theory of non-selfadjoint operators. Our main result in Corollary 19 then shows
that interior Dirichlet eigenvalues can be characterized by the behavior of any element with
the smallest phase in the numerical range of the modified near field operator: If this smallest
phase tends to zero as the wave number tends to k0 > 0, then k2

0 is a Dirichlet eigenvalue of
the scattering object.

The ansatz in [12] relies on the fact that in spherical coordinates the Helmholtz equation can
be solved explicitly using spherical harmonics and spherical Hankel functions. Consequently,
one can easily transfer outgoing into incoming waves by complex conjugation of the Hankel
function; the corresponding operator is unitary and provides the tool to tackle the above-
mentioned problems linked to the factorization of the near field operator. Naturally, this
spherical setting is crucial for this operator to be simply computable in the basis of spherical
harmonics due to diagonalization, and shows why in most of this paper we work with near field
data measured on a sphere. Nonetheless, in Section 3 we show how to tackle near field data for
general measurement geometries.

Before introducing the setting, let us finally mention that the analytical and numerical
results in this paper transfer straightforwardly to near field obstacle scattering from Neumann
or Robin-type obstacles and as well to transmission problems, see [20, 17] for the corresponding
analysis for far field data. Indeed, we prove the duality statement for near field data relying on
the corresponding duality for far field data, exploiting a trick that is completely independent
of the scattering problem.

In the remainder of this introduction we define first the underlying Dirichlet scattering
problem and second what we understand by near- and far field data. To this end, we suppose
that D ⊂ R3 is the obstacle with Lipschitz boundary and k > 0 the wave number under
consideration. Given boundary data f ∈ H1/2(∂D), we seek a solution u ∈ H1

loc(R3 \D) to the
exterior boundary value problem

∆u+ k2u = 0 in R3 \D, u = −f on ∂D, (1)

that additionally satisfies Sommerfeld’s radiation condition

∂u

∂|x|
(rx̂)− iku(rx̂) = O(1/r2) as r →∞, uniformly in x̂ :=

x

|x|
∈ S1 = {x ∈ R3 : |x| = 1}.

Since the field u is radiating, it is well-known [4, 23] that there exists a unique solution to this
scattering problem for any f ∈ H1/2(∂D) and that the asymptotic behavior of this solution
can be expressed in terms of its far field u∞ : S1 → S1, defined by the first-order expansion

u(x) =
eik|x|

4π|x|
u∞(x̂) +O(|x|−2), x̂ ∈ S1.

When choosing the boundary data f in (1) as the restriction of an incident field ui to ∂D,
the resulting field u is the corresponding scattered field. We consider in the following either
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incident plane waves ui(x, θ) = exp(ik θ · x) with direction θ ∈ S1 or radiating point-sources

ui(x, y) =
eik|x−y|

4π|x− y|
, x 6= y ∈ R3, for source points y 6∈ D. (2)

If the incident field ui is a plane wave with direction θ, we indicate the dependence of the far
field pattern u∞ on the incident direction by writing u∞(x̂, θ) for x̂, θ ∈ S1 and define the far
field operator F : L2(S1)→ L2(S1) by

Fg(x̂) =

∫
S1
u∞(x̂, θ)g(θ) dS(θ), x̂ ∈ S1. (3)

It is well-known that the far field operator is compact and normal and that its eigenvalues λj
lie on a circle of radius 8π2/k with center 8π2i/k in the complex plane C and converge to zero
from the left, i.e., Re (λj) < 0 for j large enough. This allows to write the eigenvalue λj in
polar coordinates,

λj = rje
ϑj for all j ∈ N, (4)

with radius rj ≥ 0 and phase ϑj ∈ (0, π] and to re-sort these eigenvalues in increasing order
according to their phases. (If λj = 0 we artificially set ϑj = π to ensure monotonicity.) The
special structure of the eigenvalues implies that there is one distinct eigenvalue with a smallest
phase ϑ∗, see [20]. Moreover, the inside-outside duality for the Dirichlet scattering problem,
see [20, 8] states that the phase of this eigenvalue converges to zero if and only if the squared
wave number k2 approaches a Dirichlet eigenvalue k2

0 of −∆ from below. The proof is based
on the well-known factorization F = −G∞S∗G∗∞ of F involving the data-to-pattern operator
G∞ : H1/2(∂D)→ L2(S1) mapping boundary data f to the far field u∞ of the radiating solution
to (1), its adjoint G∗∞, and the single-layer operator S = S∂D : H−1/2(∂D) → H1/2(∂D);
crucial ingredients for the inside-outside duality are that the two outer operators G∞ and G∗∞
are adjoint to each other, that G∗∞ has dense range, and that S∗ is coercive. Let us recall
here that the single-layer operator is defined as restriction of the single-layer potential; for an
arbitrary Lipschitz domain Ω ⊂ R3, the latter operator is defined as

SL∂Ω f(x) =

∫
∂Ω

eik|x−y|

4π|x− y|
f(y) dS(y), x ∈ R3 \ ∂Ω,

and maps H−1/2(∂Ω) continuously into H1(BR) for arbitrary balls BR = {x ∈ R3 : |x| < R}
of radius R > 0, see [23].

If the boundary data f in (1) is the restriction of a point source at y ∈ R3 \D, see (2), we
denote the solution to (1) by u(·, y) ∈ H1

loc(R3 \ D). If Γ ⊂ R3 \ D denotes the boundary of
an arbitrary Lipschitz domain ΩΓ c D with connected complement, we define the near field
operator NΓ : L2(Γ)→ L2(Γ) corresponding to incident point sources on Γ and near field wave
measurements on the same surface Γ by

NΓg(x) =

∫
Γ
u(x, y)g(y) dS(y), x ∈ Γ.

As u(·, y) solves (1) for boundary data f defined by f(x) = exp(ik |x−y|)/(4π|x−y|) for x ∈ Γ,
the linear combination u =

∫
Γ u(·, y)g(y) dS(y) solves (1) with f = SLΓ g|∂D. Thus, NΓg equals

the trace of the scattered field corresponding to the incident field SLΓ g.

3



Moreover, u(·, y) ∈ H1
loc(R3 \D) satisfies the homogeneous Helmholtz equation in R3 \D,

such that well-known interior elliptic regularity results imply that u(·, y) ∈ C∞(R3 \D). The
near field reciprocity relation u(x, y) = u(y, x) for x 6= y ∈ R3 \ D, that can be shown using
Green’s second identity, additionally implies that the kernel (x, y) 7→ u(x, y) of NΓ belongs to
C∞(Γ × Γ). Thus, the near field operator is a compact linear operator on L2(Γ); in contrast
to the far field operator it generally fails to be normal (non-normality is further indicated by
our numerical experiments). For this reason, it is not immediately clear whether this operator
possesses eigenvalues at all. Analytically computing the eigenvalues of NΓ when D is the unit
ball shows that the eigenvalues, if they exist, do not need to show any distinct structure at all,
which makes it impossible to sort them in any reasonable way other than according to their
magnitude. Furthermore, as far as we know, there is no obvious factorization of NΓ possessing
the necessary properties for the inside-outside duality; arguably, the most obvious factorization
of NΓ into a triple of three products linking incident with scattered fields is

NΓ =
(

SL∂D|Γ
)
S−1

(
SLΓ|∂D

)
.

However, as the outer operators of this factorization are not adjoint, it cannot be exploited
to prove an inside-outside duality. To circumvent this problem, we generalize a trick from
[12], where, roughly speaking, a unitary operator is composed with NΓ such that the resulting
product possesses a proper factorization. The underlying idea, roughly speaking, is to exploit
that a spherical setting always allows to diagonalize a scattering problem in the basis of spherical
harmonics. In [12], this trick has been exploited to rigorously construct a factorization method
for the near field scattering problem; in the present paper, we exploit it to prove an inside-
outside duality principle for a near field setting.

This rest of the paper is structured in the following way. In Section 2, we modify the
near field operator, defined on a sphere, by multiplication with a unitary operator such that
the resulting product possesses a factorization involving adjoint outer operators. Section 3
shows how to exploit this result for other measurement geometries. In Section 4, we derive a
relation between the far field operator and the modified near field operator, which we will use
in Section 5 to derive an inside-outside duality for near field data using the eigenvalues and the
numerical range of the modified near field operator. In Section 6 we finally suggest a numerical
algorithm to detect the interior eigenvalues from near field data and present several numerical
experiments.

2 The Modified Near Field Operator

In this section, we modify the near field operator NΓ : L2(Γ) → L2(Γ) by, roughly speaking,
composing it with a unitary operator T , such that the resulting product possesses a factorization
with adjoint outer operators and a coercive middle operator. To this end, we assume first, for
simplicity, that Γ = SR = {x ∈ R3 : |x| = R} is a sphere of radius R > 0 and that the Dirichlet
obstacle D is strictly included in the ball BR. In the end of this section we generalize all results
to arbitrary Lipschitz-smooth measurement surfaces.

Recall that the near field operator NR := NSR corresponding to the sphere SR as measure-
ment surface is defined via the radiating solutions u(·, y) ∈ H1

loc(R3 \ D) to (1) for incident
point sources on SR,

N = NR : L2(SR)→ L2(SR), (NRg)(x) =

∫
SR
u(x, y)g(y) dS(y), x ∈ SR. (5)
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While in the this section the wave number k is fixed, the dependence of functions and spaces
both on k > 0 and on the chosen radius R will become important later on; our notation
indicates both quantities whenever necessary.

As a technical preparation, we recall that the spherical harmonics {Y m
n : n ∈ N0, −n ≤

m ≤ n} form a complete orthogonal basis of the space L2(SR) of square-integrable functions
on the sphere SR for arbitrary R > 0, that is, every function g ∈ L2(SR) expands as

g(x) =

∞∑
n=0

n∑
m=−n

gmn Y
m
n (x̂), where gmn =

1

R2

∫
SR
g(x)Y m

n (x̂) dS and x̂ =
x

|x|
. (6)

Using this expansion we define PR : L2(SR)→ `2 by

PR(g) = g, g = {gmn : n ∈ N0, |m| ≤ n} ∈ `2. (7)

(For simplicity, we do not explicitly introduce the corresponding index set of the sequence space
`2.) Its inverse P−1

R : `2 → L2(SR) is then given by P−1
R (g) =

∑
n,m g

m
n Y

m
n . Writing I`2 and

IL2(SR) for the identity operators on `2 and L2(SR), respectively, it is easy to compute that

PRP−1
R = I`2 , P−1

R PR = IL2(SR), P∗R =
1

R2
P−1
R , and (P−1

R )∗ = R2PR.

We use PR to transform both the far field operator F and the near field operator NR into
operators acting on the sequence space `2 by defining

F = P1FP−1
1 and NR = PRNRP−1

R . (8)

Thus, both F and NR are compact operators on `2 representing F and NR in the orthogonal
basis of spherical harmonics. Since any solution u to the scattering problem (1) with boundary
datum f can be expressed in terms of the spherical Hankel functions h(1)

n on any sphere Sρ such
that D b Bρ,

u(x)|Sρ =
∞∑
n=0

n∑
m=−n

bmn (f)h(1)
n (kρ)Y m

n (x̂) with coefficients bmn (f) ∈ C, (9)

the asymptotic expansion of the Hankel function h(1)
n for large arguments shows that the cor-

responding far field pattern is given by

u∞(x̂) =
1

k

∞∑
n=0

n∑
m=−n

1

in+1
bmn (f)Y m

n (x̂).

The lifting NR of NR into `2 now allows to modify the latter operator such that it possesses a
factorization where the outer operators are adjoint to each other: Following the trick from [12],
we define the unitary operator TR : `2 → `2 by

TRg =

{
− h

(1)
n (kR)

h
(1)
n (kR)

gmn : n ∈ N0, |m| ≤ n

}
, (10)

and the compact and linear operator GR : H1/2(∂D)→ `2 by

GR(f) =
{
bmn (f)h(1)

n (kR) : n ∈ N0, |m| ≤ n
}
, (11)
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where the coefficients bmn (f) are defined in (9). The operator TR is well-defined since the
spherical Hankel function cannot vanish for positive arguments and GR is compact, injective
and has dense range in `2 (see [12, Lemma 3.5]). Note that P−1

R GRf is the evaluation of the
solution to (1) on SR. Moreover, [12, Equation (3.7)] shows that the modified near field operator
TRNR can be factorized as

TRNR = −R2 (TRG)S∗(TRGR)∗, i.e., TRPRNRP−1
R = −R2(TRGR)S∗(TRGR)∗. (12)

Lifting TR back into the space L2(SR) yields TR = P−1
R TRPR, a unitary operator on L2(SR)

and the factorization in (12) directly shows that TRNR : L2(SR)→ L2(SR) factorizes into

TRNR = −GRS∗G∗R, where GR = P−1
R TRGR. (13)

This factorization hence features adjoint outer operators due to the replacement of P−1
R GRf ,

evaluating the solution to (1) on SR, by GR = P−1
R TRGR, which conjugates the spherical Hankel

functions in (11) before evaluation. The above-mentioned properties of GR clearly imply that
GR : H1/2(∂D)→ L2(SR) is compact, injective and has dense range in L2(SR).

Remark 1. If Γ = {x2
1/a

2+x2
2/b

2+x2
3/c

2 = 1} is an ellipsoid with semi-principal axes of length
a, b, c > 0, then separability of the Helmholtz equation in ellipsoidal coordinates [2] allows to
transfer the above modification of near field operators on spheres Sρ to near field operators on
ellipsoids, at the expense of drastically increased technicalities.

We will later on use the factorization (13) to examine the structure of TRNR more closely.
Before, we show that the latter operator has infinitely many eigenvalues, following a technique
from [3].

Lemma 2. The operator TRNR has an infinite number of eigenvalues tending to zero.

Proof. We restrict TRNR to an operator mapping the orthogonal complement ker(NR)⊥ ⊂
L2(SR) of its kernel ker(NR) into the closure of its range Rg(TRNR) ⊂ L2(SR) by defining
A : ker(NR)⊥ → Rg(TRNR) ⊂ L2(SR) by Ag = TRNRg. As TR is unitary, A is hence injective
and has dense range. Moreover, the factorization (13) implies that TRNR is compact since GR
is compact, such that A is compact, too. We next show that ker(NR) is finite-dimensional, to
conclude that the range of A is infinite-dimensional, too, due to injectivity of A:

If NRg = 0 for some g 6= 0, then the radiating solution u to (1) for f = SLSR g|∂D vanishes
on SR, and hence entirely in R3 \ D, due to the radiation condition and Rellich’s lemma.
Thus, the single-layer potential SLSR g vanishes on ∂D, such that v = SLSR g|D ∈ H1

0 (D)
defines an Dirichlet eigenfunction of the (negative) Laplacian for the eigenvalue k2. As the
corresponding eigenspace is finite-dimensional due to Fredholm theory, there can at most exist
a finite number of linearly independent g generating such eigenfunctions; consequently, ker(NR)
is finite-dimensional.

We next define the subspace of principle functions of A by

P (A) = span
{
g ∈ ker(N)⊥ : (µ Id−A)ng = 0 for some n ∈ N and µ ∈ C

}
⊂ L2(SR).

Assume for a moment that A is a trace class operator and that ImA ≥ 0, i.e., that the
non-selfadjoint part of A is non-negative. Due to [24, Theorem 3.5.1], these two properties
imply that Rg(A) = P (A). We showed above that Rg(A) has infinite dimension and conclude
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that there exist infinitely many linearly independent principle functions. As for each principle
function there exists an associated eigenvalue and an eigenfunction due to Riesz theory, see [18],
the infinitely many linearly independent principle functions guarantee the existence of infinitely
many eigenfunctions of A. By definition of A, any eigenpair (µ, g) satisfies µg = Ag = TRNRg
and hence also TRNR possesses infinitely many eigenvalues. Since TRNR is compact, these
eigenvalues tend to zero.

It remains to show that A is a trace class operator and that Im (A) ≥ 0. The second
property follows immediately from the factorization (13), since for any g ∈ L2(SR) it holds that

Im (Ag, g)L2(SR) = Im (TRNRg, g)L2(SR) = −Im (S∗G∗Rg, G
∗
Rg)L2(∂D) ≥ 0,

where we exploited that the non-selfadjoint part ImS of the single layer operator S is non-
negative, see [16, Lemma 1.14]. Since TR is unitary, it is further sufficient to show that NR

is a trace class operator to prove this property for TRNR. For NR, this is essentially due to
the smoothness of its kernel (x, y) 7→ us(x, y) ∈ C∞(SR × SR), since this smoothness implies
that NR is a bounded linear operator from L2(SR) into any Sobolev space Hs(SR) for arbitrary
s ∈ R. Choosing s > 2 implies that the embedding of Hs(SR) in L2(SR) is a trace class
operator, see [9], and finally proves that NR itself is a trace class operator on L2(SR).

The following corollary shows that any eigenvalue of TRNR is contained in the upper half
of the complex plane.

Corollary 3. If k2 is no Dirichlet eigenvalue of −∆ in D, then all eigenvalues of TRNR are
contained in the upper half {z ∈ C : Im (z) > 0} of the complex plane; if k2 is a Dirichlet
eigenvalue, they are contained in {z ∈ C : Im (z) > 0} ∪ {0}.

Proof. If µ is an eigenvalue to a normalized eigenfunction g, then we compute as in the proof
of Lemma 2 that

Im (µ) = Im (TRNRg, g)L2(SR) = −Im (SG∗Rg, G
∗
Rg)L2(∂D) ≥ 0

due to the factorization (13) of TRNR and the properties of the single-layer operator S, see [16,
Lemma 1.14]: Im (Sf, f)L2(∂S) ≤ 0 for any f ∈ H−1/2(∂D) and the latter expression can only
vanish if either f = 0 or else if k2 is a Dirichlet eigenvalue of D and f is the normal derivative
of a Dirichlet eigenfunction.

3 Transfer to Non-Spherical Measurement Geometries

As a spherical measurement geometry is certainly a serious restriction for the theory introduced
so far, we consider in this section the question how to treat near field operators defined on
other measurement surfaces. Precisely, we consider the near field operator NΓ defined on the
boundary Γ ⊂ R3 \D of some connected C2,1 domain ΩΓ ⊂ R3 such that the complement of
ΩΓ is connected and such that D b ΩΓ. We further fix a radius ρ such that the ball Bρ strictly
contains the Lipschitz domain ΩΓ (and hence also the obstacle D). As usual, the near field
operator defined on the sphere Bρ c ΩΓ is denoted by Nρ (defined as in (5), replacing R by ρ).

As mentioned in the introduction, the crucial property of the operator T from (10), trans-
ferring outgoing to incoming solutions to the Helmholtz equation and vice versa, is linked to
the diagonalization of the Helmholtz equation in spherical coordinates. This motivates to con-
nect NΓ, defined on a non-spherical surface Γ, to a near field operator defined on Sρ. We do
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so by constructing auxiliary operators Q± such that Nρ = Q+NΓQ
−: The operator Q+ maps

the boundary datum of the radiating solution to (1) on Γ to the trace of that solution on Sρ,
whereas Q− maps f ∈ L2(Sρ) to φ ∈ L2(Γ) such that SLSρ f = SLΓ φ holds in H1(ΩΓ). Thus,
transforming NΓ into Q+NΓQ

− = Nρ allows to transfer all results shown above to Nρ, as none
of the arguments in these proofs explicitly or implicitly required the scatterer to be spherical.
Moreover, also all later results on the determination of interior Dirichlet eigenvalues of D via
near field data can hence be applied to NΓ, up to transforming NΓ to Nρ.

Both operators Q± are explicitly constructed in the proof of the subsequent lemma, which
crucially relies on the fact that ΩΓ ⊂ B(0, ρ). After setting up these operators, we will discuss
how to discretize them numerically.

Lemma 4. Assume that ΩΓ is a C2,1 domain.
(a) There exists a compact operator Q− : L2(Sρ)→ L2(Γ) mapping f ∈ L2(Sρ) to φ ∈ L2(Γ)

that SLΓ ◦Q−f = SLSρ f holds in H1(ΩΓ).
(b) The exterior boundary value problem with boundary datum g ∈ L2(Γ),

∆v + k2v = 0 in R3 \ ΩΓ, v|Γ = g, (14)

possesses a unique radiating solution v ∈ L2
loc(R3 \ΩΓ) and the operator Q+ : L2(Γ)→ L2(Sρ),

defined by Q+g = v|Sρ , is compact.
(c) The operators Q+ and Q− are transposed to each other, i.e.,

∫
Sρ f Q

+g dS =
∫

ΓQ
−f g dS

holds for all f ∈ L2(Sρ) and g ∈ L2(Γ).

If k2 is no interior Dirichlet eigenvalue of ΩΓ, and if the boundary datum g in (b) belongs to
H1/2(Γ), then Lemma 4 is classical. Since the wave number is allowed to vary in Section 5 on
the inside-outside duality, we avoid the assumption of k2 being no interior Dirichlet eigenvalue.
This, however, increases the technical difficulties in the proof.

Proof. We rely on boundary integral equations and recall that the single-layer operator SΓ,
defined via the single-layer potential SLΓ by SΓ = SLΓ(·)|∂Ω, is continuous from H−1/2+s(Γ)
into H1/2+s(Γ) for −2 ≤ s ≤ 2, as ΩΓ is C2,1 smooth, see [23, Theorem 7.2]. Further, 〈·, ·〉Γ is
the duality product between H±s(Γ), −3 ≤ s ≤ 3, that extends the inner product of L2(Γ).

(a) For f ∈ L2(Sρ), we seek a solution to the interior boundary value problem

∆u+ k2u = 0 in ΩΓ, u|Γ = g := SLSρ f
∣∣
Γ
, (15)

in the form u = SLΓ ψ in R3 \ ΩΓ for some ψ ∈ L2(Γ) required to satisfy SΓψ = g in H1(Γ).
Considering SΓ as an operator from H−1/2(Γ) into H1/2(Γ), we know from [20] that non-
zero elements ψ0 in the kernel Λ := ker(SΓ) equal the normal derivative of some Dirichlet
eigenfunction u0 ∈ H1

0 (ΩΓ) of −∆ in ΩΓ; even more, SLΓ is a bijection between Λ and the
corresponding eigenspace, as every eigenfunction can be represented as SLΓ ψ0 for a unique
element in ψ0 ∈ Λ. Computing the adjoint of SΓ with respect to 〈·, ·〉Γ shows that the kernel
of S∗Γ : H−1/2(Γ)→ H1/2(Γ) equals Λ, too.

Considering SΓ as an operator from Hs−1/2(Γ) into Hs+1/2(Γ) for −1 ≤ s ≤ 1, Theorem
7.17 in [23] states that SΓ is a Fredholm operator of index zero and that the kernel Λ of these
operators is independent of s. Consequently, the corresponding adjoints S∗Γ : H−s−1/2(Γ) →
H−s+1/2(Γ) are Fredholm of index zero with kernels all equal to Λ, too.
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The Fredholm alternative hence states that SΓψ = g in H1(Γ) is solvable if and only if
〈ψ0, g〉Γ = 0 for all 0 6= ψ0 ∈ kerS∗Γ = Λ. As ψ0 equals the normal derivative of some Dirichlet
eigenfunction u0 ∈ H1

0 (ΩΓ), Green’s second identity implies that

〈ψ0, g〉Γ =
〈∂u0

∂ν
, SLSρ f

〉
Γ

=
〈 ∂
∂ν

SLSρ f, u0

〉
Γ

= 0 for all f ∈ L2(Sρ). (16)

We conclude that there exists an equivalence class of solutions {ψ + ψ0 : ψ0 ∈ Λ} ⊂ L2(Γ) to
SΓψ = g in H1(Γ). For arbitrary ψ0 ∈ Λ, the traces of the potentials SLΓ(ψ+ψ0) and SLSρ f on
Γ equal each other. Consequently, the difference SLΓ(ψ+ψ0)−SLSρ f either vanishes in ΩΓ or
equals some eigenfunction u1 ∈ H1

0 (ΩΓ) of −∆ with eigenvalue k2. Since u1 = SLΓ ψ1 for some
ψ1 ∈ Λ, we hence choose ψ0 = ψ1 such that SLΓ ψ = SLSρ f in ΩΓ. This choice determines a
linear and bounded solution operator S−Γ : g 7→ ψ + ψ0 from the range of SΓ : L2(Γ)→ H1(Γ)
into L2(Γ), such that f 7→ Q−f = S−Γ ◦ (SLSρ f

∣∣
Γ
) satisfies SLΓQ

−f = SLSρ f in H1(ΩΓ).
Moreover, Q− is compact, because SLSρ is bounded from L2(Sρ) into H3/2(ΩΓ).

(b) If ν denotes the exterior unit normal to ΩΓ, we define the double layer potential by

DLΓ φ(x) =

∫
Γ

∂

∂ν(y)

[
eik|x−y|

4π|x− y|

]
φ(y) dS(y), x ∈ R3 \ Γ,

which yields a bounded operator from H1/2(Γ) into H1
loc(R3 \ Γ). The traces DLΓ φ|±Γ on

Γ from the inside (-) and outside (+) equal ±φ/2 + KΓφ, where the double-layer operator
KΓ : Hs+1/2(Γ)→ Hs+1/2(Γ) is bounded for −2 ≤ s ≤ 2, as ΩΓ is C2,1, see [23, Theorem 7.2].
As ΩΓ is C2,1, DLΓ extends to a bounded operator from H−1/2(Γ) into L2(BR) for all R > 0
and defines distributional solutions to the homogeneous Helmholtz equation in R3 \Γ; the same
statement holds for SLΓ : H−3/2(Γ) → L2(BR), see [5]. These distributional solutions are
smooth away from Γ and radiating at infinity, because the kernel of both potentials is smooth
when evaluated in domains with positive Hausdorff distance to Γ. The traces of these potential
operators on Γ from the inside and outside are again equal to SΓ and ±φ/2 +KΓφ; note that
SΓ : H−3/2(Γ)→ L2(Γ) and KΓ : H−1/2(Γ)→ H−1/2(Γ) are bounded.

We seek a radiating solution to the exterior Dirichlet problem (14) with boundary data
g ∈ L2(Γ) in the form v = DLΓ g− SLΓ ψ for some ψ ∈ H−3/2(Γ), such that ψ needs to satisfy
2SΓψ = −g+2KΓg inH−1/2(Γ). We recall from part (a) that SΓ is a Fredholm operator of index
zero from H−3/2(Γ) into H−1/2(Γ) and that the kernel of adjoint S∗Γ : H1/2(Γ)→ H3/2(Γ) is a
finite-dimensional space Λ given by the normal derivatives of eigenfunctions u0 of the (negative)
Dirichlet Laplacian in ΩΓ with eigenvalue k2. As all eigenfunctions can be represented as
u0 = SLψ0 for a unique ψ0 ∈ Λ, we hence check by Green’s second identity that〈

− g + 2KΓg,
∂u0

∂ν

〉
Γ

= 2

〈
DLΓ g

∣∣∣−
Γ
,
∂u0

∂ν

〉
Γ

= 2

〈
∂

∂ν
DLΓ g, u0

〉
Γ

= 0,

to conclude from Fredholm’s alternative that there exists a solution ψ ∈ H−3/2(Γ) to 2SΓψ =
−f + 2KΓf . Choosing this solution to be linearly independent to non-zero elements in the
kernel Λ of SΓ allows to define a solution operator T : g 7→ ψ, bounded from H−1/2(Γ) into
H−3/2(Γ), such that g 7→ v(g) := DLΓ g−SLΓ ◦Tg is a linear solution operator to (14), bounded
from H−1/2(Γ) into L2

loc(R3 \ ΩΓ). As the kernel functions of SLΓ and DLΓ are smooth away
from their singularity at the origin, the restriction of v(g) to Sρ yields a bounded operator
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f 7→ v|Sρ from H−1/2(Γ) into L2(Sρ), which becomes compact when changing its pre-image
space to L2(Γ).

(c) For simplicity, we merely prove this fact if k2 is not a Dirichlet eigenvalue of −∆ in
ΩΓ, relying on the representations Q− = S−1

Γ ◦ SLSρ and Q+ = SLΓ ◦S−1
Γ . One computes

that
∫
Sρ g SLΓ f dS =

∫
Γ SLSρ g f dS holds for all g ∈ L2(Sρ) and f ∈ L2(Γ), and, analogously,

that
∫

Γ f1 SΓf2 dS =
∫

Γ SΓf1 f2 dS for f1,2 ∈ L2(Γ). As the single-layer operator is hence
self-transposed, we deduce that its inverse S−1

Γ is self-transposed, too. Hence,∫
Sρ
g Q+f dS =

∫
Sρ
g SLΓ ◦S−1

Γ f dS =

∫
Γ

SLSρ g S
−1
Γ f dS =

∫
Γ
S−1

Γ ◦SLSρ g f dS =

∫
Γ
Q−g f dS.

holds for g ∈ C1(Sρ) and f ∈ C1(Γ) (such that all integrals are well-defined). Density of C1(Sρ)
and C1(Γ) in L2(Sρ) and L2(Γ), respectively, then implies the claim.

The following corollary provides the indicated factorization of Nρ.

Corollary 5. For any k > 0, the near field operator Nρ can be factorized as Nρ = Q+NΓQ
−.

Proof. Due to Lemma 4(a), the solutions uρ(·, y) and uΓ(·, y) to (1) that define the kernel of
Nρ and NΓ, respectively, have the same trace on ∂D. Hence, both solutions equal each other.
The construction of Q+ then shows that uρ(·, y)|Sρ equals Q+(uΓ(·, y)|Γ).

Let us now discuss how to numerically cope with Q± in case one aims to compute Nρ from
NΓ. Due to Lemma 4(c), it is obviously sufficient to discretize either Q+ or Q−, as both are
transposed operators; however, both require to discretize a solution operator for a boundary
integral equation and the evaluation of a single layer potential, making this data post-processing
rather costly. Since the application of the operator Tρ to Nρ anyway requires to compute the
expansion (9) of the scattered field on Sρ, it seems, alternatively, attractive to compute Q+

directly in the basis of spherical harmonics to avoid the discretization of an operator inverse.
Such a direct computation is in principle possible: If we suppose that 0 ∈ ΩΓ, then restrictions
of separation-of-variables solutions to the Helmholtz equation

V = {φmn = vmn |Γ : vmn (x) = h(1)
n (k|x|)Y m

n (x̂), n ∈ N0, |m| ≤ n} ⊂ L2(Γ)

form a complete set of linearly independent functions in L2(Γ), see [22]. For the boundary
datum φmn ∈ L2(Γ), the solution to the exterior boundary value problem (14) equals vmn (x) =

h
(1)
n (k|x|)Y m

n (x̂), such that Q+(φmn ) = vmn |Sρ . Since spanV is dense in L2(Γ), knowing Q+ on
V determines Q+ uniquely and, by transposition, Q−, too. However, to exploit this, roughly
speaking, diagonalization of Q+ by this set of functions, one needs represent scattered fields on
Γ via the set of functions in V ; despite the corresponding infinite or truncated linear system
is well-known to be always uniquely solvable, see [22], the condition number of the truncated
system increases rapidly in the truncation index, making systems of merely moderate size
already rather ill-conditioned. This phenomenon is directly linked to instabilities of the so-
called null-field method caused by, roughly speaking, the fact that the expansion (6) does in
general not hold in all of R3 \ ΩΓ, and becomes increasingly important as Γ deviates from a
sphere. Thus, this alternative option for the computation of Q±, attractive at first glance, is
in practice somewhat challenging to use, but in principle allows to bypass the discretization of
the solution operators involved in Q±.
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4 Connecting Near- to Far Field Operators by Factorization

For the remainder of this paper we will merely work with near field operators defined on spheres,
because the case where the measurement surface Γ is non-spherical can be reduced to a sphere
by Corollary 5. Consequently, we fix a radius R and henceforth neglect the subscript R for
better readability, such that, e.g., NR and TRNR become N and TN , respectively.

Since our goal is to prove an inside-outside duality for near field data relying on a corre-
sponding duality for far field data, we derive a connection between the far field operator F and
the modified near field operator TN . For this purpose we introduce a mapping Z, which is
later on used to relate far fields to near fields. For g = {gmn : n ∈ N0, |m| ≤ n} ∈ `2, let

Zg =
{
− kin+1h

(1)
n (kR)gmn : n ∈ N0, |m| ≤ n

}
.

This map is unbounded on `2 since n 7→ |h(1)
n (kR)| is an unbounded sequence, such that we

restrict Z to its domain
dom(Z) = {g ∈ `2 : ‖Zg‖`2 <∞}.

Then Z : `2 ⊃ dom(Z)→ `2 is a well-defined unbounded linear operator.

Remark 6. The domain dom(Z) contains precisely those sequences g = (gmn ) such that

v(x) = k
∑
n∈N0

in+1
n∑

m=−n
gmn h

(1)
n (k|x|)Y m

n (x̂), |x| > R,

is a radiating solution to the Helmholtz equation with trace in L2(SR), see [4, Theorem 2.17].

Lemma 7. The domain dom(Z) is dense in `2, that is, dom(Z) = `2.

Proof. To show that the space dom(Z) is dense in `2, we choose an arbitrary g ∈ `2 and define

gM =

{
gmn for n ≤M, |m| ≤ n,
0 else.

Clearly, gM ∈ dom(Z) for allM ∈ N. Furthermore, for every ε > 0 there existsM = M(ε) ∈ N
such that ‖g − gM‖`2 < ε. This concludes the proof.

The last lemma implies that the operator Z : `2 ⊃ dom(Z) → `2 is densely defined in
`2. We next prove further properties of Z and its adjoint Z∗ : `2 ⊃ dom(Z∗) → `2, before
we exploit these operators in Theorem 10 to establish a connection between the lifted far- and
near field operators F and T N , defined in (8).

Lemma 8. The operator Z : `2 ⊃ dom(Z) → `2 and its adjoint Z∗ : `2 ⊃ dom(Z∗) → `2

are one-to-one and onto and dom(Z) = dom(Z∗). Their inverse operators Z−1 : `2 → `2 and
(Z∗)−1 : `2 → `2 are bounded and even compact on `2 with ranges Rg(Z−1) = Rg((Z∗)−1) =
dom(Z).

Proof. The domain of Z∗ consists of those f = (fmn ) ∈ `2 for which there is a f∗ ∈ `2 such that

(Zg,f)`2 = (g,f∗)`2 for all g ∈ dom(Z),

11



or, equivalently, such that

−k
∑
n∈N0

n∑
m=−n

in+1h
(1)
n (kR)gmn f

m
n = (g,f∗)`2 for all g ∈ dom(Z),

which implies that f∗ = {k (−i)n+1h
(1)
n (kR)fmn : n ∈ N0, |m| ≤ n}. In particular, f∗ exists in

`2 if and only if f ∈ dom(Z) and the adjoint adjoint Z∗ : dom(Z∗)→ `2, defined by Z∗f = f∗,
has the same domain as Z. To show that Z is onto, let f ∈ `2 be arbitrary and set

g =

{
− 1

kin+1h
(1)
n (kR)

fmn : n ∈ N0, |m| ≤ n

}
.

Clearly g ∈ `2 and Zg = f . For injectivity, we simply note that Z is a diagonal operator with
non-trivial entries. The inverse operator Z−1 : `2 → dom(Z) ⊂ `2 is given by

Z−1g =

{
− 1

kin+1h
(1)
n (kR)

gmn : n ∈ N0, |m| ≤ n

}
.

This operator is bounded, since for any g ∈ `2 it holds that

‖Z−1g‖2`2 =
1

k2

∑
n∈N

n∑
m=−n

|h(1)
n (kR)|−2|gmn |2 ≤ c

∑
n∈N

n∑
m=−n

|gmn |2 = c‖g‖2`2 ,

because |h(1)
n (kR)|−2 → 0 for n → ∞. As Z−1 is a diagonal operator with entries converg-

ing to zero, compactness of Z−1 follows from Cantor’s diagonal argument. Bijectivity and
compactness of (Z∗)−1 follow analogously.

Lemma 9. Assume that A : H1/2(∂D) → `2 is a bounded linear operator such that Rg(A) ⊂
dom(Z) and such that ZA : H1/2(∂D)→ `2 is also a bounded operator. Then there holds that
dom ((ZA)∗) ⊃ dom(A∗Z∗) and (ZA)∗g = A∗Z∗g for all g ∈ dom(Z∗).

Proof. Since dom(A∗Z∗) = dom(Z∗) = dom(Z) and dom ((ZA)∗) = `2, it follows that
dom(A∗Z∗) ⊂ dom ((ZA)∗). If g ∈ dom(Z∗), then for all f ∈ H1/2(∂D) we have that

((ZA)∗g, f)L2(∂D) = (g,ZAf)`2 = (Z∗g,Af)`2 = (A∗Z∗g, f)L2(∂D),

which proves the assertion.

Now we link the lifted far- and near field operators F and N with each other.

Theorem 10. For all g ∈ dom(Z∗) it holds that T Ng = R2ZFZ∗g and for all g ∈ `2 it holds
that Fg = R−2 Z−1T N (Z−1)∗g.

Proof. In a first step, we lift the operators from the factorization F = −G∞S∗G∗∞ to the
sequence space. To this end, we define an operator G∞ : H1/2(∂D)→ `2 by

G∞(f) =

{
1

kin+1
bmn (f) : n ∈ N0, |m| ≤ n

}
, (17)
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where bmn (f) are the coefficients from the expansion (9). Then G∞f = P−1
1 G∞(f) holds for all

f ∈ H1/2(∂D) and G∗∞ = G∗∞(P−1
1 )∗ = G∗∞P1. Thus, the far field operator can be written as

F = −G∞S∗G∗∞ = −P−1
1 G∞S

∗G∗∞P1

and, in particular,
F = −G∞S∗G∗∞. (18)

Next recall the factorization from (12),

T N = −R2 (T G)S∗(T G)∗, (19)

where
T G(f) =

{
−bmn (f)h

(1)
n (kR) : n ∈ N0, |m| ≤ n

}
. (20)

Comparing this to (17) yields ZG∞ = T G and by Lemma 9 we get (T G)∗g = G∗∞Z∗g for all
g ∈ dom(Z∗). Inserting this equation into (19), we obtain

T Ng = −R2 ZG∞S∗G∗∞Z∗g = R2 ZFZ∗g.

Finally setting G∞ = Z−1T G and substituting G∞ into (18) yields the second factorization of
the theorem.

To establish a connection between TN and F , we first lift the operator Z into L2(SR),

Z : L2(S1) ⊃ dom(Z) =
{
P−1

1 g : g ∈ dom(Z)
}
→ L2(SR), Z = P−1

R ZP1.

The adjoint Z∗ of Z is characterized as follows,

Z∗ : L2(SR) ⊃ dom(Z∗) =
{
P−1
R g : g ∈ dom(Z∗)

}
→ L2(S1), Z∗ = P−1

1 ZPR.

Since P1 and P−1
R are isomorphisms, we obtain the following corollaries from Lemmas 7 and 8

and Theorem 10.

Corollary 11. It holds that dom(Z) = L2(S1) and dom(Z∗) = L2(SR).

Corollary 12. The operators Z : L2(S1) ⊃ dom(Z)→ L2(SR) and its adjoint Z∗ : L2(SR) ⊃
dom(Z∗)→ L2(S1) are one-to-one and onto with bounded and compact inverse Z−1 : L2(SR)→
L2(S1) and (Z∗)−1 : L2(S1)→ L2(SR), respectively. The ranges of their inverses are
Rg(Z−1) = dom(Z) and Rg((Z∗)−1) = dom(Z∗).

Theorem 13. For all g ∈ dom(Z∗) it holds that TNg = R2 ZFZ∗g, whereas for all g ∈ L2(S1)
it holds that Fg = R−2 Z−1TN(Z−1)∗g.

Proof. One easily computes that

TNg = P−1
R T NPRg = P−1

R T Ng = R2 P−1
R ZF1Z∗g = R2 P−1

R ZF1Z∗g = R2 ZFZ∗g,

and a similar calculation yields the representation of Fg.
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5 Inside-Outside Duality for Near Field Data

In this section, we state and prove the main result of this paper on the characterization of
interior Dirichlet eigenvalues of the scatterer D via the smallest phase in the numerical range
of TN , thus proving an inside-outside duality for near field data. Let us recall from Corollary 3
that we have already shown that all eigenvalues (µn)n∈N of TN lie in the upper half of the com-
plex plain. Recall further from (4) that we have represented the eigenvalues λj = rj exp(iϑj) of
the far field operator F in polar coordinates and that these eigenvalues are sorted in descend-
ing order according to their magnitude, i.e., |λj | ≥ |λj+1| for j ∈ N. We further introduce the
phases δn ∈ (0, π] of the eigenvalues µn of TN via polar coordinates, too, writing

µn = |µn|eiδn ,

where again we set δn = π if µn = 0. We also sort these eigenvalues by magnitude is descending
order, i.e. |µn| ≥ |µn+1| for all n ∈ N. Although we have no further information about the
structure of these eigenvalues, we can prove that all phases (δn)n∈N are larger than or equal to
the smallest phase ϑ∗ = minj∈N ϑj .

Lemma 14. Let k2 be no Dirichlet eigenvalues of −∆. Let ϑ∗ be the smallest phase among
all the phases of the eigenvalues of the far field operator F and let (δn)n∈N be the phases of the
eigenvalues (µn)n∈N of TN . Then it holds that δn ≥ ϑ∗ > 0 for all n ∈ N.

Proof. Let µn be any eigenvalue of TN with eigenfunction fn and phase δn. Then we use the
characterization of ϑ∗ from [20, Theorem 3] and the factorization of TN from Theorem 13 to
get

cot(ϑ∗) = max
g∈L2(S1)

Re (Fg, g)L2(S1)

Im (Fg, g)L2(S1)
= max

g∈L2(S1)

Re (TN(Z−1)∗g, (Z−1)∗g)L2(SR)

Im (TN(Z−1)∗g, (Z−1)∗g)L2(SR)

= max
f∈L2(SR)

Re (TNf, f)L2(SR)

Im (TNf, f)L2(SR)
≥

Re (TNfn, fn)L2(SR)

Im (TNfn, fn)L2(SR)
= cot(δn)

where we used the denseness of the image of (Z−1)∗ in L2(SR). Note that all expressions in
the last chain of equations are well-defined since Im (Fg, g) and Im (Tf, f) do not vanish. The
assertion now follows from the strictly monotonic decrease of the cotangent.

From now on the dependency of all quantities on the wave number k > 0 becomes important,
which we will indicate by writing, e.g., ϑ∗ = ϑ∗(k), δn = δn(k) and g∗ = g∗(k) for numbers
and vectors, respectively, and by TN = TkNk and F = Fk for operators. Let us first recall the
inside-outside duality for the far field operator F = Fk.

Theorem 15 (Theorem 8 in [20]). Assume that k0 > 0 and that I = (k0 − ε, k0) contains no
wave number k such that k2 is a Dirichlet eigenvalue of −∆ in D. For k ∈ I, the smallest
phase ϑ∗(k) ∈ (0, π) of the eigenvalues of the far field operator satisfies ϑ∗(k) → 0 as k tends
to k0 from below if and only if k2

0 is a Dirichlet eigenvalue of −∆ in D.

We use the last result to formulate a first partial result for near field data.

Corollary 16. Assume that k0 > 0 and that I = (k0 − ε, k0) contains no wave number k such
that k2 is a Dirichlet eigenvalue of −∆ in D and consider, for k ∈ I, the phase δn(k) ∈ (0, π)
of an arbitrary eigenvalue µn(k) of TkNk. If δn(k)→ 0 as k tends to k0 from below, then k2

0 is
a Dirichlet eigenvalue of −∆ in D.
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Proof. As δn(k) → 0 it follows that ϑ∗(k) → 0 for k → k0 by Lemma 14, which proves the
claim due to Theorem 15.

The latter corollary merely states a sufficient condition for k2
0 being a Dirichlet eigenvalue of

−∆ in D. To prove a necessary condition, and thus to arrive at a complete duality statement,
we rely on the numerical range of an operator as further technical tool. If H is a Hilbert space,
then the numerical range W (B) of a bounded linear operator B : H → H is a subset of the
complex plane given by

W (B) = {(Bg, g)H : g ∈ H, ‖g‖H = 1} .
In Lemma 17 we gather some important, well-known results about the numerical range of the
operator B, which can be found in [10, 7, 19, 11]. Let us recall before that the boundary of
W (B) has infinite curvature at one of its points β ∈ ∂W (B) if there is no closed disc contained
inW (B) that contains β. (As an illustrative example, any corner of a polygon hence has infinite
curvature.)

Lemma 17. (a) The numerical range of B is convex.
(b) If β ∈ W (B) is a boundary point at which ∂W (B) has infinite curvature, then β is an
eigenvalue of B.
(c) The spectrum of B is contained in the closure of the numerical range of B.
(d) If B is compact and normal, then the numerical range is the convex hull of its eigenvalues.

Due to the factorization of TkNk in (13), it is clear that its numerical range W (TkNk) is
contained in the upper half of the complex plane. The factorizations shown in Theorem 13 will
even allow to characterize the smallest phase of all elements of W (TkNk) in Theorem 18 below.
To this end, we will compare the numerical ranges of TkNk and Fk, given by

W (TkNk) =
{

(TkNkf, f)L2(SR) : f ∈ L2(SR), ‖f‖L2(SR) = 1
}

(21)

W (Fk) =
{

(Fkg, g)L2(S1) : g ∈ L2(S1), ‖g‖L2(S1) = 1
}
. (22)

subsequent theorem, recall that λ∗(k) is the eigenvalue of Fk possessing the smallest phase ϑ∗(k)
among the phases of all eigenvalues of Fk (the phase of the origin equals π, by definition).

Theorem 18. If 0 /∈W (TkNk) then the union of the phases of all elements of W (TkNk) is the
interval [ϑ∗(k), π). If 0 ∈ W (TkNk) then the union of the phases of all elements of W (TkNk)
is the interval [ϑ∗(k), π].

Proof. Assume first that 0 /∈W (TkNk). Let us introduce the set

WZ,k =
{

(TkNkf, f)L2(SR) : f ∈ dom(Z∗k), ‖f‖L2(SR) = 1
}
⊂ C

and note that WZ,k is dense in W (TkNk) due to the denseness of dom(Z∗k) in L2(SR) and the
continuity of both TkNk and the inner product of L2(S1). Now we use the factorization of TkNk

from Theorem 13,

WZ,k =
{

(TkNkf, f)L2(SR) : f ∈ dom(Z∗k), ‖f‖L2(SR) = 1
}

=
{
R2 (FkZ

∗
kf, Z

∗
kf)L2(S1) : f ∈ dom(Z∗k), ‖f‖L2(SR) = 1

}
=

{
R2

(Fkg, g)L2(S1)

‖f‖2
L2(SR)

: g = Z∗kf, f ∈ dom(Z∗k), ‖f‖L2(SR) = 1

}

=

{
R2

(Fkg, g)L2(S1)

‖(Z∗k)−1g‖2
L2(SR)

: g ∈ L2(S1), ‖g‖L2(S1) = 1

}
, (23)
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where we exploited that Z∗k is one-to-one and onto from dom(Z∗k) into L2(SR) to obtain the
last equality.

Note that since 0 /∈ W (TkNk), it follows that 0 /∈ WZ,k and therefore no eigenvalue of F
vanishes, due to equation (23). By Lemma 17(d), the numerical range W (Fk) is the convex
hull of the eigenvalues (λn(k))n∈N of Fk. Since the eigenvalues of Fk have phases in the interval
[ϑ∗(k), π) and tend to the origin from the left, we conclude that for any phase in [ϑ∗(k), π)
there is an element of W (Fk) possessing that phase. Now we compare (23) and (22) and note
that to each element γ = (TkNkf, f)L2(SR) in WZ,k there corresponds an element (Fkg, g)L2(S1)

in W (Fk) that possesses the same phase, and vice versa. In particular, the union [ϑ∗(k), π) of
the phases of all elements in W (Fk) equals the union of the phases of all the elements in WZ,k.

Denote now by g∗(k) ∈ L2(S1) an eigenfunction for the eigenvalue λ∗(k) of Fk with the
smallest phase ϑ∗(k). Since ϑ∗(k), which is also the phase of, e.g., the element

γ∗(k) =
(Fkg∗(k), g∗(k))L2(S1)

‖(Z∗k)−1g∗(k)‖2
L2(SR)

∈WZ,k ,

is a distinct lower bound of the phases of the elements of WZ,k, it follows from the density of
WZ,k in W (TkNk) that ϑ∗(k) is also a lower bound of the phases of the elements of W (TkNk).
Since 0 /∈W (TkNk) the union of all phases of this set is indeed [ϑ∗(k), π).
If 0 ∈ W (TkNk), the phase π is included in the set of phases, so that by the same arguments,
the set of phases is [ϑ∗(k), π].

Finally, we formulate an inside-outside duality between the interior eigenvalues of the Lapla-
cian and the smallest phase of the numerical range of the near field operator.

Corollary 19 (Inside-Outside Duality). Assume that k0 > 0 and that I = (k0− ε, k0) contains
no k such that k2 is a Dirichlet eigenvalue of −∆ in D and denote by [δ∗(k), π) the union of
phases of elements from W (TkNk). Then it holds that k2

0 is a Dirichlet eigenvalues of −∆ if
and only if δ∗(k) converges to zero as k approaches k0 from below.

Proof. We have shown in Theorem 18 that the union of phases of elements from W (TkNk) is
the half-open interval [ϑ∗(k), π), such that δ∗(k) equals the smallest phase of the eigenvalues
(λn(k))n∈N of Fk. The assertion now follows directly from the inside-outside duality for far
field data, see [20, Theorem 8].

6 Numerical Examples for Spherical Measurement Geometries

In this section we provide numerical examples to verify the theoretical results from the previous
section. In particular, we show that it is possible to numerically compute the Dirichlet eigen-
values of the negative Laplacian in a domain D from the modified near field operators TkNk in
a spherical setting given, for a a sufficiently dense grid of wave numbers k. For simplicity, we
assume that sources and measurements are done on the sphere SR and drop the index R from
now on; the index k will be dropped whenever this causes no confusion.

From the point of view of applications, we require measured data consisting of an M1×M1

matrix containing measurements (u(yi, yj))
M1
i,j=1 of scattered fields u(·, yj) that are radiating

solutions of the exterior Dirichlet scattering problem

∆u(·, yj) + k2u(·, yj) = 0 in R3 \D, u(·, yj) = −ui(·, yj) on ∂D,
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see (2). In our experiments, we simulate this data set by computing numerical approximations
uappr(·, yj) to the solution u(·, yj) of this problem for the M1 source points yj ∈ SR, relying the
boundary element software package BEM++, see [25]. (We use a single-layer potential ansatz
that is discretized by a Galerkin discretization.)

To indicate how the data matrix (u(yi, yj))
M1
i,j=1 can be understood as an approximation to

the near field operator N = NR, we assume that each of the points {yi : i = 1, . . . ,M1} ⊂ SR
belongs to a patch Γj of a regular surface mesh Γ = {Γj : j = 1, . . . ,M1} of SR consisting
of M1 patches. Then we denote by PM1 the interpolation projection on the space of bounded
functions on SR that are constant on each patch Γj , by PM1 [g](j), the value of PM1 [g] on Γj ,
and by 1Γj : SR → C the indicator function of Γj . For this setting, one can show that

NM1g =

M1∑
i=1

1Γj

M1∑
j=1

usappr(yi, yj)PM1 [g](`) (24)

is a converging finite-dimensional approximation to the near field operator. (An approximation
to FM1 to F is defined analogously, see [20, Section 4].)

To further discretize the modification TN to an element g ∈ L2(SR) we develop NM1g
into its coefficients ((NM1g)mn ) for the orthogonal basis of spherical harmonics by numerical
integration on SR and truncate the series expression defining T , see [12, Equation (3.12)], at
M2 ∈ N, such that

(TM2NM1)g(x) =

M2∑
n=0

n∑
m=−n

h(1)
n (kR)

h
(1)
n (kR)

(NM1g)mn

Y m
n (x̂), x ∈ SR. (25)

yields an approximation of TN . This approximation is then discretized by evaluating it for
all indicator functions 1Γj , j = 1, . . . ,M1, at the source points {yi, i = 1, . . . ,M1} to obtain
an M1 ×M1 matrix. For our experiments later on we have chosen M1 = 120 and M2 = 12,
which corresponds to values where the estimates for interior Dirichlet eigenvalues presented
below are insensitive to further increasing these parameters. (Choosing M2 = 12 corresponds
to M2

2 = 144 series terms in (25).)
If the scattering object D is the unit ball B1(0), then the operators N and TN are diagonal-

izable in the basis of the spherical harmonics and their eigenvalues can be explicitly calculated.
In Figure 1(a) we computed these eigenvalues for measurements on S2, i.e., for R = 2, and
compared them to the numerically computed eigenvalues of the approximated near field oper-
ator N120. We note that the numerically computed eigenvalues to N are sufficiently accurate
in the visible norm; however, they do not share any visibly apparent structure. In Figure 1(b)
we computed the analytic eigenvalues of TNk for the same setting and compared them to the
numerically computed eigenvalues of the approximated modified near field operator T12N120.
Although the discretization of T12 visibly increases the inaccuracy of the approximated eigen-
values, one can see that they accumulate at zero from the left, corresponding to the eigenvalues
of the far field operator, and that they lie approximately on a contour in the upper half of the
complex plane. Expanding on that point, we note that the eigenvalues µn of TN and λn of F
are given by

µn = ikR2|h(1)
n (kR)|2 jn(k)

h
(1)
n (k)

and λn =
(4π)2i

k

jn(k)

h
(1)
n (k)

, n ∈ N,
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Figure 1: Eigenvalues in the complex plane for wave number k = 5 and radiusR = 2. Red circles
mark analytically calculated eigenvalues and blue crosses numerically computed eigenvalues of
discretizations. (a) Eigenvalues of the near field operator N and its discretization N120. (b)
Eigenvalues of the modified near field operator TN and its discretization T12N120.

respectively, see [12, Section 3.3] and [16, Section 1.5]. Comparing both expressions, we find that
scaling the radii of the eigenvalues λn by k2 |h(1)

n (kR)|2/(4π)2 precisely yields the eigenvalues
µn. Note that this factor could also be derived from Theorem 10, since g ∈ dom(Z) we have
that ZZ∗g = {k2|h(1)

n (kR)|2gmn , n ∈ N0, |m| ≤ n}. Obviously, the scaling factor does not
change the phases of the eigenvalues. We would further like to point out that even for the
other scatterers considered below the eigenvalues of the discretization of TN retained the same
phases as the eigenvalues of the discretization of F . In particular, the smallest phase among
all eigenvalues of TM2NM1 and FM1 larger than the noise level of these discretization always
agreed roughly up to discretization error.

Finally, we numerically verify the inside-outside duality for near field data. For that purpose
we need to calculate the smallest phase of all the elements of the numerical range of the matrix
representation A of TM2NM1 , given by W (A) = {(Av, v) : v ∈ Cn, ‖v‖ = 1}. The algorithm
we use to compute this numerical range follows [6]. The essential idea is to first rotate A by
multiplying a factor exp(−it) to A and second to decompose the rotation exp(−it)A into its
real and imaginary part, i.e. exp(−it)A = Ht + iKt, with self-adjoint operators

Ht =
exp(−it)A+ (exp(−it)A)∗

2
, Kt =

exp(−it)A− (exp(−it)A)∗

2i
.

We denote by µmax(t) the largest eigenvalue of Ht and by Pt the orthogonal projection from
CM1 onto the eigenspace {v ∈ CM1 : Htv = µmax(t)v} and calculate (not necessarily differ-
ent) eigenvectors v+

t and v−t corresponding to µmax(t), which are also eigenvectors of the (not
necessarily different) smallest and largest eigenvalue of PtKtPt. For t ∈ [0, 2π], the numbers
(Av+

t , v
+
t ) and (Av−t , v

−
t ) then belong to the boundary of the numerical range of A, and W (A)

is the convex hull of all these numbers, see [6, Theorem 3].
Due to numerical inaccuracies, finding the smallest phase in this set is not an obvious task,

as becomes apparent when comparing the numerical ranges of (the matrix representations of)
T12N120 and F120. As a scattering object, we choose the unit cube [0, 1]3 and plot the the
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boundaries of these two numerical ranges in Figure 2(a) and (b). While the boundary of the
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Figure 2: The numerical ranges of F120 and T12N120 for the unit cube as obstacle, wave number
k = 1.5 and measurements taken on the sphere with radius R = 2. (a) Boundary of the
numerical range of F120. Black dots mark the numerically computed eigenvalues of F120. (b)
Boundary of the numerical range of T12N120. Black dots mark the numerically computed
eigenvalues of T12N120.

numerical range of F120 in Figure 2(a) shows that the numerical range is indeed the convex
hull of the eigenvalues of F120, see Lemma 17(d), the inaccuracies in the computation of the
numerical approximation of the operator T12 show up in the plot of the numerical range of
T12N120 in Figure 2(b). In particular, the boundary of the numerical range of T12N120 between
0 and the corner with smallest phase fails to be straight, such that it is not obvious how to
stably determine the element in W (T12N120) possessing the smallest phase.

For this reason, we opted for the simple idea to use that eigenvalue of T12N120 as an indicator
for interior eigenvalues that possesses the smallest phase among all eigenvalues of T12N120 larger
than the discretization error. (The discretization error is estimated via the absolute value
of the smallest negative imaginary part of these eigenvalues.) In all our computations, this
eigenvalue coincided with that boundary point of the numerical range of T12N120 possessing
the smallest phase among all corner-like boundary points where boundary curvature peaks.
This not surprising, since points in the boundary of the numerical range with infinite curvature
are eigenvalues of the corresponding operator by Lemma 17(b).

The subsequent Figure 3 indicates that replacing the smallest phase of the numerical range
by smallest phase of the eigenvalues of T12N120 yields simple-to-compute and accurate indicator
for Dirichlet eigenvalues of the unit sphere and the unit ball. For these particular scattering
objects, we can analytically calculate the square root of the Dirichlet eigenvalues k(j)

B of the
unit ball. For the unit ball B, the eigenvalues are given as positive roots of spherical Bessel
functions and the first three eigenvalues are the squares of

k
(1)
B = π, k

(2)
B ≈ 4.49, k

(3)
B ≈ 5.76.

For the cube C = [0, 1]3 the wave numbers kC at which k2
C is an interior Dirichlet eigenvalue

are given by kC =
√
k1 + k2 + k3 where k1,2,3 is one of the numbers π2(n+ 1)2, n ∈ N0. Hence,
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Figure 3: Phases of the eigenvalues of T12,kN120,k for varying wave number k. Near field data is
measured on the sphere S2 of radius two. (a) Scattering from the unit ball B1(0). Blue circles
mark position of the exact square roots kB to Dirichlet eigenvalues. (b) Scattering from the unit
cube [0, 1]3. Blue circles mark position of the exact square roots kC to Dirichlet eigenvalues.

the first three Dirichlet eigenvalues are the square of the numbers

k
(1)
C =

√
3π ≈ 5.44, k

(2)
C =

√
6π ≈ 7.70, k

(3)
C = 3π ≈ 9.42.

Indeed, one can see in Figure 3 that the smallest phase converges to zero if and only if k2
0 is a

Dirichlet eigenvalue.
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Figure 4: (a) The non-convex scattering object. (b) Phases of the eigenvalues of TNM (k) for
varying wave number k. The blue circle on the 0-axis marks the extrapolated position of the
square root of the Dirichlet eigenvalue.

Finally, we provide an example for a non-convex scatterer D for which the Dirichlet eigen-
values of −∆ are not known analytically; the object is plotted in Figure 4(a) and, roughly
speaking, consists of the unit square with a smaller cylinder on top. Due to numerical inac-
curacies at larger wave numbers, we only aim to approximate the smallest wave number k0
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such that k2
0 is a Dirichlet eigenvalue. For this purpose, we take the last two smallest phases

before the first phase jump at about 5.25, see Figure 4(b), and linearly extrapolate the line
through these points with the 0-axis. This technique, which showed to yield stable results in
[21], then provides the approximation k0 ≈ 5.19 for the smallest Dirichlet eigenvalues of the
plotted domain.
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