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Abstract

We consider Tikhonov and sparsity-promoting regularization in Banach spaces for
inverse scattering from penetrable anisotropic media. To this end, we equip an ad-
missible set of material parameters with the Lp-topology and use Meyers’ gradient
estimate for solutions of elliptic equations to analyze the dependence of scattered fields
and their Fréchet derivatives on the material parameter. This allows to show conver-
gence of a non-linear Tikhonov regularization against a minimum-norm solution to the
inverse problem, but also to set up sparsity-promoting versions of that regularization
method. For both approaches, the discrepancy is defined via a q-Schatten norm or an
Lq-norm with 1 < q <∞. Numerical reconstruction examples indicate the reconstruc-
tion quality of the method, as well as the qualitative dependence of the reconstructions
on q.

1 Introduction

We consider direct and inverse scattering of time harmonic waves from a penetrable and
anisotropic inhomogeneous medium with density described by a matrix-valued material
contrast parameter Q ∈ Cd×d

div((Idd +Q)∇u) + k2u = 0 in Rd, d = 2, 3. (1)

To this end, we set up weak solution theory for the scattering problem in Lebesgue spaces
Lt with t ≥ 2 to be able to treat contrast functions in Lp with p <∞ in some admissible set.
Our analytic results allow to prove convergence of a sparsity-promoting version of Tikhonov
regularization in Banach spaces for a specifically designed penalty term towards, roughly
speaking, a minimum-norm solution. Numerical examples of contrast reconstructions in
two dimensions show feasibility of the proposed algorithm.

For incident waves ui(x, θ) = exp(ikθ · x) of direction θ ∈ Sd−1 =
{
x ∈ Rd | |x| = 1

}
we seek solutions u(·, θ) to (1) such that the scattered field us(·, θ) = u(·, θ) − ui(·, θ)
additionally satisfies Sommerfeld’s radiation condition,

lim
r→∞

r(d−1)/2

(
∂us

∂r
(rx̂, θ)− ikus(rx̂, θ)

)
= 0 uniformly in all directions x̂ ∈ Sd−1. (2)

By construction, the scattered field in particular solves the Helmholtz equation ∆u+k2u =
0 outside some ball BR = {|x| < R} containing D; such solutions are called radiating in
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the sequel. It is well-known that radiating solutions to the Helmholtz equation have the
asymptotic behavior

us(rx̂, θ) = γd
eikr

r(d−1)/2
u∞(x̂, θ) +O(r−1) as r →∞,

where γ2 = exp(iπ/4)/
√

8πk, γ3 = 1/(4π), and u∞ : Sd−1 × Sd−1 → C is the so-called far
field pattern of the scattered field. This function is analytic in both variables and defines
the far field operator F = FQ : L2(Sd−1)→ L2(Sd−1),

(FQg) (x̂) :=

∫
Sd−1

u∞(x̂, θ)g(θ) dS(θ), x̂ ∈ Sd−1.

The inverse scattering problem we are interested in is to stably approximate the contrast
function Qexa from noisy measurements of the far field pattern u∞, that is, from a noisy
version F εmeas such that ‖Fexa − F εmeas‖ ≤ ε for some noise-level ε. To this end, we show
that different variants of Tikhonov regularization can be employed for this task and in
particular suggest a sparsity-promoting variant of that technique. The latter variant hence
provides a solution Q† such that FQ† = Fexa in the limit as the noise level ε tends to

zero, such that moreover Q† minimizes the sparsity promoting penalty term defining the
Tikhonov functional.

The convergence analysis of minimization-based regularization methods requires Ba-
nach spaces with some smoothness properties that rule out L∞ as a suitable space for
contrasts. Following [11], we use Meyers’ gradient estimates for weak solutions to elliptic
equations to obtain that gradients of weak solutions to (1) actually belong to Lt-spaces
with t > 2. This in turn allows to prove various analytic properties for the solution
to (1) as Lipschitz continuity or directional Gâteaux differentiability that only require
the contrast Q to be measured in some Lp-norm with 2 < p < ∞. While [11] applies
sparsity-promoting regularization methods based on Tikhonov regularization to determine
a conductivity distribution in electrical impedance tomography, the only paper that inves-
tigates corresponding techniques in inverse scattering is [13], where the simpler Helmholtz
equation ∆u+ k2n2u = 0 is tackled.

A specificity of our approach compared to [11, 13] is that we do not only incorporate
penalty terms that are linked to Hilbert spaces but also measure the discrepancy, that is,
the difference between the measured far field data and the computed approximation, in a
Banach-space: We consider either the full range of Schatten classes Sq on the space of linear
operators on L2(Sd−1) for 1 < q < ∞, or defined a norm on the space of measurement
operators by considering the norm of their integral kernels in Lq(Sd−1 ×Sd−1). For q = 2,
both notions coincide. The choice of q significantly influences both reconstruction time
and quality, as we demonstrate numerically.

On the very technical level, the ellipticity of the conductivity equation tackled in [11]
generally makes uniform estimates for solutions to the governing differential equation with
different conductivities arguably easier than for the indefinite Helmholtz equation treated
in this paper. (This problem did not occur in [13] due to the much easier solution theory
in Lt for the setting in that reference.)

To be able to directly rely on a specific bound in Meyers’ seminal work [16], we set up
weak solution theory for (1) in the ball B2R and assume that the support of the contrast
is strictly included in B2R. This assumption is not crucial but avoids technicalities. We
finally remark that our estimates use a generic constant C that might change its value
from one occurrence to the other.

This paper is organized as follows: In Section 2 we recall well-known weak solution
theory for the anisotropic Helmholtz equation, that will be used in Section 3 and Section 4
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to establish Lipschitz continuity and differentiability of the solution operator mapping the
contrast to the scattered field. Section 5 extends these result to the forward operator
mapping the contrast to its far field operator. In Section 6 we present two variants of
Tikhonov regularization. Finally, Section 7 presents several numerical examples computed
using a sparsity-promoting shrinked Landweber iteration or a primal-dual algorithm; the
required adjoint of the derivative of the forward operator is computed in Appendix A.

2 The scattering problem

In this section, we recall weak solution theory in Sobolev spaces W 1,t with t ≥ 2 for the
anisotropic Helmholtz equation (1) subject to the radiation condition (2) for the scattered
field. The latter equation is understood in the distributional sense. After recalling condi-
tions for solvability of that problem in H1, we provide Lt-theory using Meyers’ gradient
estimates. As it leads to somewhat shorter expressions, we actually tackle the scattering
problem for the corresponding scattered fields, which are required to be locally in H1 and
to satisfy the differential equation

div((Idd +Q)∇us) + k2us = − div(Q∇ui) in Rd (3)

weakly in the sense of L2(Rd), subject to the radiation condition (2).

Remark 1. If the material parameter A = Idd +Q is piecewise differentiable, then any
weak solution u and its co-normal derivative ∂u/∂νA := ν>A∇u are continuous over inter-
faces Γ where A jumps: [u]Γ = 0 and [ν>A∇u]Γ = 0, where ν denotes a unit normal to Γ
and [v]Γ denotes the jump of the function v across Γ.

Before recalling the standard L2-based solution approach via Riesz-Fredholm theory,
we introduce a set of contrasts that depends on a fixed parameter λ ∈ (0, 1),

Q :=
{
Q ∈ L∞(B2R,C

d×d)
∣∣∣ λ ≤ 1 + Re(z̄>Qz) ≤ λ−1, −λ−1 ≤ Im(z̄>Qz) ≤ 0

∀z ∈ Cd with |z| = 1 and s.t. supp(Q) b BR

}
.

(4)

Thus, λ determines the class of possible material parameters A = Idd +Q such that λ ≤
Re z>A(x)z and |A(x)| ≤ λ−1 for all z ∈ Cd with |z| = 1 and almost every x ∈ Rd. (We
always implicitly extend Q ∈ Q by zero from B2R to all of Rd.) We further endow Q with
the Lp(B2R)d×d-norm for 1 ≤ p ≤ ∞. Note first that for p < ∞, the set Q then has no
interior points for the Lp-topology, since for any Q ∈ Q and any ε > 0, the open Lp-ball
{Q′ ∈ Lp(B2R)d×d | ‖Q − Q′‖Lp(B2R)d×d < ε} is not completely contained in Q. Second,

any Q ∈ Q obviously belongs to all spaces Lp(B2R)d×d for 1 ≤ p ≤ ∞.

Remark 2. We consider contrasts Q on B2R supported in BR since this straightforwardly
allows to directly rely on a specific Meyers’ estimate from [16], avoiding technicalities. (B2R

could be replaced by any bounded domain that strictly contains BR.)

Seeking to solve for the scattered field instead of the total one, we rewrite equation (3)
for all test functions ψ ∈ C∞0 (Rd) in the weak sense by multiplying that equation with ψ,
integrating over B2R, and integrating by parts the divergence term. Thus,∫

B2R

[
(Idd +Q)∇us · ∇ψ̄ − k2usψ̄

]
dx−

∫
∂B2R

∂us

∂ν
ψ̄ dS = −

∫
BR

Q∇ui · ∇ψ̄ dx, (5)

and density of smooth functions in H1(B2R) implies that the latter equation holds for all
ψ ∈ H1(B2R). As the trace operator γ(u) = u|∂B2R

has an unique continuation to a linear
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operator from H1(B2R) into H1/2(∂B2R), see [15, Lemma 3.35], such that us|∂B2R
belongs

toH1/2(∂B2R). Further, (Idd +Q)∇us belongs toH(div, B2R) since us solves (3) in L2(Rd),
such that the trace theorem in H(div, B2R) shows that ∂us/∂ν = ν ·∇us = ν ·(Idd +Q)∇us
belongs to H−1/2(∂B2R). Thus, the boundary integral in (5) is well-defined as a duality
pairing between H±1/2(∂B2R).

We denote by Λ2R : H1/2(∂B2R) → H−1/2(∂B2R) the exterior Dirichlet-to-Neumann
operator, see [17], which maps Dirichlet boundary values φ on ∂B2R to the normal deriva-
tive ∂v/∂ν of the unique radiating solution v to the exterior Dirichlet scattering boundary
problem. More precisely, v ∈ H1

loc(R
d\B2R) is the unique radiating solution to ∆v+k2v = 0

inRd\B2R, and can be written down explicitly in series form using Hankel functions. As us

is a radiating solution to the Helmholtz equation, Λ2R(γ(us)) equals ∂us/∂ν, such that (5)
becomes∫

B2R

[
(Idd +Q)∇us · ∇ψ̄ − k2usψ̄

]
dx−

∫
∂B2R

Λ2R(γ(us))γ(ψ̄) dS = F (ψ) (6)

for all ψ ∈ H1(B2R), with right-hand side F (ψ) = −
∫
BR

Q∇ui ·∇ψ̄ dx. (We omit the trace
operator γ from now on if a restriction to the boundary is obvious.)

To prove existence of solution of (6), we follow [9], see also [3], and rely on an additional
Dirichlet-to-Neumann map Λ∆,2R that maps Dirichlet data on ∂B2R to Neumann data of
the solution to an exterior Dirichlet boundary problem for the Laplace equation. By [3, p.
131] −Λ∆,2R is coercive, −

∫
∂B2R

Λ∆,2R(ψ)ψ̄ dS ≥ c‖ψ‖2
H1/2(∂B2R)

, for all ψ ∈ H1/2(∂B2R).

The sesquilinear forms

s(ϕ,ψ) :=

∫
B2R

[
(Idd +Q)∇ϕ · ∇ψ̄ + ϕψ̄

]
dx−

∫
∂B2R

Λ∆,2R(ϕ)ψ̄ dS,

s1(ϕ,ψ) := (k2 + 1)

∫
B2R

ϕψ̄ dx+

∫
∂B2R

(Λ2R − Λ∆,2R)(ϕ)ψ̄ dS,

allow to reformulate the variational form (6) as

s(v, ψ)− s1(v, ψ) = −
∫
BR

Q∇ui · ∇ψ̄ dx for all ψ ∈ H1(B2R). (7)

Both Λ2R and Λ∆,2R are bounded from H1/2(∂B2R) into H−1/2(∂B2R), such that s and s1

are bounded sesquilinear forms. The coercivity of Λ∆,2R implies that s is coercive,

s(ϕ,ϕ) ≥ ‖ϕ‖2H1(B2R) −
∫
∂B2R

Λ∆,2R(ϕ)ϕ̄dS ≥ C‖ϕ‖2H1(B2R),

for all ϕ ∈ H1(B2R). Moreover, compactness of Λ2R − Λ∆,2R, see [3, p. 131] and the
compact embedding of H1(B2R) in L2(B2R) imply that s1 is a compact sesquilinear form.

By the representation theorem of Riesz there exists a bounded operator S: H1(B2R)→
H1(B2R) and a compact operator S1 such that s(ϕ,ψ) = (Sϕ,ψ)H1(B2R) and s1(ϕ,ψ) =
(S1 ϕ,ψ)H1(B2R) for all ϕ, ψ ∈ H1(B2R). By Lax-Milgram’s lemma, S is further boundedly

invertible. Further introducing r ∈ H1(B2R) such that −
∫
BR

Q∇ui ·∇ψ̄ dx = (r, ψ)H1(B2R)

for all ψ ∈ H1(B2R), the variational formulation (7) can be equivalently rewritten as
S v − S1 v = r in H1(B2R). Multiplying with the inverse S−1 yields v − K v = S−1 r with
a compact operator K := S−1 S1. Thus, Riesz-Fredholm theory implies that uniqueness of
solution to the latter equation implies existence of solution for all right-hand sides.
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Lemma 3. If the only solution to the homogeneous problem corresponding to (6) is the
trivial solution, then that variational problem possesses a unique solution for all bounded
anti-linear functionals F ∈ H1(B2R)∗ and there is CQ independent of F such that

‖v‖H1(B2R) ≤ CQ‖F‖H1(B2R)

[
= CQ‖Q‖L∞(BR)‖ui‖H1(BR) if F (ψ) = −

∫
BR

Q∇ui·∇ψ dx
]
.

(8)

Uniqueness of solution for the variational problem (6) is strongly linked to the unique
continuation property for solutions to that equation. In [9], Hähner shows uniqueness of
solution for contrasts Q that are C1-smooth and supported in domains of class C2; this
result can be generalized to contrasts that are piecewise differentiable on a decomposition
of B2R into finitely many Lipschitz domains.

Corollary 4. If there is a decomposition of B2R =
⋃n
j=1 Ωj of B2R into finitely many

Lipschitz domains Ωj such that Q ∈ Q belongs to C1(Ωj) for j = 1, . . . , n, then the varia-
tional formulation (6) possesses a unique solution v for all bounded anti-linear functionals
F ∈ H1(B2R)∗.

Remark 5. It is well-known that solutions v to (6) can be uniquely extended to radiating
solutions in H1

loc(R
d) of the Helmholtz equation in H1

loc(R
d), see [17]: For the spherical

Hankel function h
(1)
` and the spherical harmonics Y m

` this extension is given by

ṽ(rx̂) =
∞∑
`=0

∑̀
m=−`

vm`
h

(1)
` (2kr)

h
(1)
` (2kR)

Y m
` (x̂), r > R, |x̂| = 1, where vm` =

1

R2

∫
∂B2R

v Y
m
` dS.

(9)
Such extended functions are called radiating extensions of solutions to (6) in B2R in the
sequel, and, by abuse of notation, simply denoted by v as well.

To be able to handle derivatives of scattered fields in Lp-spaces, we give a version of
Meyers’ well-known gradient estimate from [16].

Theorem 6. For the bounded Lipschitz domain B2R ⊂ Rd and for Q ∈ Q and f ∈
Lt(B2R)d let v ∈ H1(B2R) be a weak solution to

div((Idd +Q)∇v) + k2v = −div f in B2R,

i.e. v solves the variational formulation (6) for all ψ ∈ H1
0 (B2R). Then there exists a

constant Tλ ∈ (2,∞) depending on λ and d such that for all t ∈ (2, Tλ) the gradient ∇v
belongs to Lt(B2R)d and satisfies

‖∇v‖Lt(BR)d ≤ C
(

(1 + k2)‖v‖L2(B2R) + ‖f‖Lt(B2R)d

)
, (10)

where C = C(λ, d, t, R). As λ→ 0 (or λ→ 1) the constant Tλ tends to 2 (or ∞).

Proof. In [16, Theorem 2] the original statement is shown more generally for f ∈ Lt(B2R)d

and h ∈ Lr(B2R) with r∗ ≥ t > 2, such that ∇u ∈ L2(B2R) solves

div(A∇u) = div f + h.

The number r∗ is defined by 1
r∗ = 1

r −
1
d if r < d or as any number in (1,∞) else. Since

in our case h = k2u for u ∈ H1(B2R), the choice r = 2 is natural. If d = 2, we can hence
choose an arbitrary r∗ ∈ (1,∞) such that r∗ ≥ t > 2. In three dimensions, the analogous
condition for r∗ is fulfilled: r∗ = 2d/(d− 2) = 6 ≥ t > 2.
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The necessary condition t > 2 enforces t > 2d/(d + 2), which allows to use estimate
(49) of [16, Theorem 2],

‖∇u‖Lt(BR)d ≤ C
(
Rd( 1

t
− 1

2
)−1‖u‖L2(B2R) + ‖f‖Lt(B2R)d +Rd( 1

t
− 1

2
)+1‖h‖L2(B2R)

)
,

and gives the stated result for v = u, h = k2u, and r = 2.

Before considering analytic properties of the contrast-to-solution map in the next sec-
tion, we reformulate the anisotropic Helmholtz equation under investigation for a source
f ∈ L2(B2R), extended by zero to all of Rd, as div((Idd +Q)∇v) + k2v = f in Rd for
a radiating weak solution v ∈ H1

loc(R
d). By [12, Lemma 2.1], v can be represented as a

volume potential defined via

Φk(x) =

{
i
4H

(1)
0 (k|x|), if d = 2,

exp(ik|x|)
4π|x| , if d = 3,

x 6= 0,

which is the radiating fundamental solution to the Helmholtz equation. More precisely,

v = div

∫
BR

Φk(· − y)[Q∇v(y) + f(y)] dy in Rd. (11)

3 The solution operator

To investigate the solution operator mapping the contrast Q and the incident field ui to
the weak solution of the scattering problem (6), we define a sesquilinear form for Q ∈ Q
for all ϕ, ψ ∈ H1(B2R) by

aQ(ϕ,ψ) :=

∫
B2R

[
(Idd +Q)∇ϕ · ∇ψ̄ − k2ϕψ̄

]
dx−

∫
∂B2R

Λ2R(ϕ)ψ̄ dS.

For Q ∈ Q, we assume that the forward problem (6) is solvable for all right-hand sides and
denote by L(Q, ·) : H1(B2R) → H1(B2R) the solution operator mapping f ∈ H1(B2R) to
the solution of the variational problem aQ(v, ψ) = −

∫
B2R

Q∇f ·∇ψ̄ dx for all ψ ∈ H1(B2R).

Choosing f = ui as a solution to the Helmholtz equation in Rd, vQ = L(Q, ui) is hence the
weak solution to the variational formulation (6), i.e.,

aQ(vQ, ψ) = −
∫
BR

Q∇ui · ∇ψ̄ dx for all ψ ∈ H1(B2R) (12)

and the radiating extension of vQ to Rd solves div((Idd +Q)∇v) + k2v = −div(Q∇ui)
weakly in Rd, see (9).

To state a perturbation result for L(Q, ·), note that boundedness of the solution operator
L(Q, ·) implies by Riesz’ representation theorem the existence of a boundedly invertible
operator AQ : H1(B2R)→ H1(B2R) such that

(AQ vQ, ψ)H1(B2R) = aQ(vQ, ψ) for all ψ ∈ H1(B2R). (13)

Lemma 7. Assume that for Q ∈ Q the forward problem (6) is uniquely solvable and let
Q′ be a perturbation of Q, small enough such that

‖Q′‖L∞(B2R)d×d ≤
1

2
‖A−1

Q ‖
−1
H1(B2R)→H1(B2R)

. (14)

Then for all F ∈ H1(B2R)∗ there is a unique v ∈ H1(B2R) solving

aQ+Q′(v, ψ) = F (ψ) for all ψ ∈ H1(B2R). (15)

Thus, the solution operator L(Q+Q′, ·) exists for all Q′ that satisfy (14) and is uniformly
bounded by ‖L(Q+Q′, ui)‖H1(B2R) ≤ C‖ui‖H1(BR), with C = C(Q) independent of Q′.
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Proof. Let Q, Q̃ ∈ Q such that ‖Q − Q̃‖L∞(B2R)d×d ≤ δ for δ < ‖A−1
Q ‖−1. (We omit to

explicitly denote operator norms in this proof.) Define A
Q̃

as the Riesz representation AQ
of a

Q̃
in (13) and note that

∣∣∣((AQ−A
Q̃

)v, ψ)H1(B2R)

∣∣∣ =

∣∣∣∣∫
B2R

(Q− Q̃)∇v · ∇ψ dx

∣∣∣∣
≤ ‖Q− Q̃‖L∞(B2R)‖∇v‖L2(B2R)‖∇ψ‖L2(B2R),

such that ‖AQ−A
Q̃
‖ ≤ ‖Q − Q̃‖L∞(B2R) ≤ δ. Due to the choice of δ there holds that

‖ Id−A−1
Q A

Q̃
‖ ≤ ‖A−1

Q ‖ ‖AQ−A
Q̃
‖ < 1, such that the Neumann series

∞∑
j=0

(
Id−A−1

Q A
Q̃

)j
=
(

Id−(Id−A−1
Q A

Q̃
)
)−1

= A−1

Q̃
AQ,

converges and defines A−1

Q̃
AQ. Thus, A−1

Q̃
exists as a bounded operator on H1(B2R) and its

operator norm is bounded by ‖A−1

Q̃
‖ ≤ ‖A−1

Q ‖/(1− δ‖A−1
Q ‖). Setting Q′ = Q̃−Q and δ =

1/2, the claim follows from the equivalence of (15) and the equation (AQ vQ, ψ)H1(B2R) =
F (ψ)L2(B2R) for all ψ ∈ H1(B2R).

Remark 8. (i) It is well-known that the technique of the proof of Lemma 7 allows to
show solvability for all contrasts of the form Q+Q′ with Q′ ∈ L∞(BR)d×d such that
‖Q′‖L∞(BR)d×d < ‖A−1

Q ‖
−1
H1(B2R)→H1(B2R)

.

(ii) Combining the last Lemma 7 with Corollary 4, one can show that the forward prob-
lem (6) is solvable in the union of open L∞-balls around, roughly speaking, all piece-
wise continuously differentiable contrasts Q with radius ‖A−1

Q ‖
−1
H1(B2R)→H1(B2R)

.

Recall now that the constant Tλ > 2 has been defined in Theorem 6 and that ui denotes
a generic solution to the Helmholtz equation ∆ui + k2ui = 0 in Rd.

Theorem 9. For p > 2Tλ/(Tλ − 2) and Q, Q + Q′ ∈ Q such that the solution operator
L(Q, ·) exists and Q′ satisfies (14), there holds that

‖L(Q+Q′, ui)− L(Q, ui)‖H1(B2R) ≤ C‖Q′‖Lp(BR)d×d‖ui‖H1(B2R), (16)

with a constant C that only depends on Q but not on Q′ or on ui.

Proof. Due to Lemma 7, the assumptions on Q and Q′ imply that both solution operators
L(Q, ·) and L(Q + Q′, ·) are bounded on H1(B2R). For the same incident field ui we set
vQ+Q′ = L(Q + Q′, ui) and vQ = L(Q, ui) and denote the radiating extensions (see (9))
of these functions to Rd again by vQ+Q′ and the corresponding total fields by uQ+Q′ =
ui + vQ+Q′ and uQ = ui + vQ. The difference vQ+Q′ − vQ = uQ+Q′ − uQ is the weak,
radiating solution to

div((Idd +Q)∇(uQ+Q′ − uQ)) + k2(uQ+Q′ − uQ) = −div(Q′∇uQ+Q′) in Rd.

Boundedness of the solution operator L(Q, ·) hence shows that ‖uQ+Q′ − uQ‖H1(B2R) ≤
CQ‖Q′∇uQ+Q′‖L2(BR)d . Choosing p and t such that 1/p + 1/t = 1/2, the generalized
Hölder inequality yields

‖Q′∇uQ+Q′‖L2(BR)d ≤ ‖Q′‖Lp(BR)d×d‖∇uQ+Q′‖Lt(BR)d . (17)
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The choice of p and t implies p = 2t/(t − 2) and since by assumption p > 2Tλ/(Tλ − 2)
we have 2Tλ/(Tλ − 2) < 2t/(t− 2). The strict monotonicity of s 7→ 2s/(s − 2) on (2,∞)
consequently implies that t < Tλ, which allows to conclude by Meyers’ estimate (10) that

‖∇uQ+Q′‖Lt(BR)d ≤ C‖uQ+Q′‖L2(B2R). (18)

Due to the assumption on Q′ and Lemma 7, the right-hand side of the latter estimate can
be bounded by

‖uQ+Q′‖L2(B2R) ≤ ‖ui‖H1(B2R) + ‖vQ+Q′‖H1(B2R) ≤ (1 + 2CQ)‖ui‖H1(B2R),

where CQ is the constant from (8). Together, the last four estimates yield the claim.

Remark. The case p = ∞ is not covered by Meyers’ estimate, but could be treated
directly by standard L2-theory from Lemma 3 and Lemma 7. This also holds for all
further statements.

Theorem 9 requires assumption (14) for Q′ merely to bound the norm of uQ+Q′ inde-
pendently of Q′. If one knows a-priori that the norm of solutions to the scattering problem
is uniformly bounded, then assumption (14) can obviously be dropped.

Corollary 10. Assume that ‖L(Q, ·)‖H1(B2R)→H1(B2R) is uniformly bounded for all Q in
a subset Q′ of Q. Then for all p > 2Tλ/(Tλ − 2) there is C∗ > 0 depending on Q′ and p
such that (16) holds for all Q, Q+Q′ ∈ Q′ with C replaced by C∗.

4 Derivative of the solution operator

We now have a glance at the differentiability of the solution operator and therefore fix
the incident field ui in this entire section. We further fix Q ∈ Q such that the solution
operator L(Q, ·) is bounded on H1(B2R) and denote the derivative of L with respect to Q
in direction Q′ ∈ Lp(B2R)d×d by v′ := L′(Q, ui)[Q′], defined by

aQ(v′, ψ) = −
∫
BR

Q′∇
[
L(Q, ui) + ui

]
· ∇ψ̄ dx for all ψ ∈ H1(B2R). (19)

We show in Theorem 12 below that v′ can be interpreted as a Gâteaux derivative of L(Q, ui)
in direction Q′ (see also Remark 13).

Lemma 11. For every Q ∈ Q the mapping Q′ 7→ L′(Q, ui)[Q′] in L(Lp(BR)d×d, H1(B2R))
has the following continuity properties:

(i) For p > 2Tλ/(Tλ − 2), there is C = C(Q) > 0 such that

‖L′(Q, ui)[Q′]‖H1(B2R) ≤ C‖Q′‖Lp(BR)d×d‖ui‖H1(B2R).

(ii) For every p > 2Tλ/(Tλ − 2) there is t ∈ (2, Tλ) and C = C(Q) > 0 such that

‖∇L′(Q, ui)[Q′]‖Lt(BR)d ≤ C‖Q′‖Lp(BR)d×d‖ui‖H1(B2R).

Proof. (i) Lemma 3 implies that ‖L′(Q, ui)[Q′]‖H1(B2R) ≤ C‖Q′∇uQ‖L2(BR)d , where uQ =

L(Q, ui) + ui is the total field whose radiating extension to Rd satisfies the anisotropic
Helmholtz equation div((Idd +Q)∇uQ) + k2u = 0 weakly in Rd (see (9)). Choosing p
and t such that 1/p + 1/t = 1/2, the generalized Hölder inequality further implies that
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‖Q′∇uQ‖L2(BR)d ≤ ‖Q′‖Lp(BR)d×d‖∇uQ‖Lt(BR)d . Again, p = 2t/(t− 2) and, as in the proof
of Theorem 9, Meyers’ estimate (10) yields

‖∇uQ‖Lt(BR)d ≤ C‖uQ‖L2(B2R).

Next, we exploit Lemma 3 to estimate

‖uQ‖L2(B2R) ≤ ‖vQ‖H1(B2R) + ‖ui‖H1(B2R) ≤ C‖Q∇ui‖L2(BR)d + ‖ui‖H1(B2R),

such that ‖uQ‖L2(B2R) ≤
[
1 + C‖Q‖L∞(BR)d×d

]
‖ui‖H1(B2R), and we conclude that

‖L′(Q, ui)[Q′]‖H1(B2R) ≤ C
[
1 + C‖Q‖L∞(BR)d×d

]
‖Q′‖Lp(BR)d×d‖ui‖H1(B2R).

(ii) For t ∈ (2, Tλ) and p > 2Tλ/(Tλ − 2), Meyers’ estimate (10) yields as in the proof of
part (i) that

‖∇L′(Q, ui)[Q′]‖Lt(BR)d ≤ C
[
‖L′(Q, ui)[Q′]‖L2(B2R) + ‖Q′∇uQ‖Lt(B2R)d

]
, (20)

where, as above, the radiating extension of the total field uQ = L(Q, ui) + ui to Rd solves
div((Idd +Q)∇uQ) + k2u = 0 weakly in Rd (see (9)). The first term in (20) is bounded by
C‖Q′‖Lp(BR)d×d‖ui‖H1(B2R) due to (i), such that it remains to bound the second term: For
arbitrary ε > 0 such that t′ = t+ ε ∈ (t, Tλ), we set p = t′t/(t′ − t) and compute that

‖Q′∇uQ‖tLt(B2R)d =

∫
BR

|Q′|t2|∇uQ|t dx ≤
(∫

BR

|Q′|
tt′
t′−t dx

)1− t
t′ ‖∇uQ‖tLt′ (BR)d

(10)

≤ C‖uQ‖tL2(B2R)

(∫
BR

|Q′|pdx
)1− t

t′
.

Since p(t′ − t)/t′t = 1 and as ‖uQ‖L2(B2R) ≤ C(Q)‖ui‖H1(B2R) due to the proof of (i),

‖Q′∇uQ‖Lt(B2R)d ≤ C‖Q′‖
t′−t
t′t p

Lp(BR)d×d‖uQ‖L2(B2R) ≤ C(Q)‖Q′‖Lp(BR)d×d‖ui‖H1(B2R),

which shows the claimed estimate for ‖∇L′(Q, ui)[Q′]‖Lt(BR)d .

Theorem 12. For p > 2Tλ/(Tλ − 2), the solution operator L is differentiable in the sense
that for every Q,Q+Q′ ∈ Q such that Q′ satisfies (14), it holds that

‖L(Q+Q′, ui)− L(Q, ui)− L′(Q, ui)[Q′]‖H1(B2R) ≤ C‖Q′‖2Lp(BR)d×d‖ui‖H1(B2R),

where C > 0 is independent of Q′ and ui. Thus, if {Q′n}n∈N satisfies (14) for all n ∈ N
as well as ‖Q′n‖Lp(BR)d×d → 0 as n→∞, then

‖L(Q+Q′n, u
i)− L(Q, ui)− L′(Q, ui)[Q′n]‖H1(B2R)

‖Q′n‖Lp(BR)d×d

→ 0 as n→∞.

Proof. For w := L(Q + Q′, ui) − L(Q, ui) − L′(Q, ui)[Q′] we first consider the variational
formulations defining all three terms,

aQ+Q′(L(Q+Q′, ui), ψ) = −
∫
BR

(Q+Q′)∇ui · ∇ψ̄ dx,

aQ(L(Q, ui), ψ) = −
∫
BR

Q∇ui · ∇ψ̄ dx,

aQ(L′(Q, ui)[Q′], ψ) = −
∫
BR

Q′∇[L(Q, ui) + ui] · ∇ψ dx for all ψ ∈ H1(B2R).
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Thus, for all ψ ∈ H1(B2R) there holds

aQ+Q′(w,ψ) = aQ+Q′(L(Q+Q′, ui), ψ)− aQ+Q′(L(Q, ui), ψ)− aQ+Q′(L
′(Q, ui)[Q′], ψ)

= aQ+Q′(L(Q+Q′, ui), ψ)− aQ(L(Q, ui), ψ)−
∫
B2R

Q′∇L(Q, ui) · ∇ψ dx

− aQ(L′(Q, ui)[Q′], ψ)−
∫
B2R

Q′∇L′(Q, ui)[Q′] · ∇ψ dx

= −
∫
BR

(Q+Q′)∇ui · ∇ψ̄ dx+

∫
BR

Q∇ui · ∇ψ̄ dx−
∫
BR

Q′∇L(Q, ui) · ∇ψ dx

+

∫
BR

Q′∇
[
L(Q, ui) + ui

]
· ∇ψ dx−

∫
BR

Q′∇L′(Q, ui)[Q′] · ∇ψ dx

= −
∫
BR

Q′∇L′(Q, ui)[Q′] · ∇ψ dx.

Lemma 7 and Hölder’s inequality for p and t such that 1/t+ 1/p = 1/2 imply that

‖w‖H1(B2R) ≤ 2CQ‖Q′∇L′(Q, ui)[Q′]‖L2(BR)d ≤ CQ‖Q′‖Lp(BR)d×d‖∇L′(Q, ui)[Q′]‖Lt(BR)d .

Finally, Lemma 11(ii) shows that ‖∇L′(Q, ui)[Q′]‖Lt(BR)d ≤ C‖Q′‖Lp(BR)d×d‖ui‖H1(B2R),
which implies the claimed estimate.

Remark 13. For Q′ ∈ L∞(B2R)d×d that satisfies (14), the last theorem shows that Q′ 7→
L′(Q, ui)[Q′] is the Gâteaux derivative of Q 7→ L(Q, ui) at Q in direction Q′. As Q 7→
L(Q, ui) is, however, not defined on an open set in Lp(B2R)d×d, see the discussion below (4),
Q 7→ L(Q, ui) is not Gâteaux differentiable (or Fréchet differentiable) in the Lp-sense and
L′(Q, ui) is not a Gâteaux differential.

Lemma 14. Under the assumptions of Theorem 12, there exists t ∈ (2, Tλ) and C > 0
independent of Q′ and ui such that

‖∇L(Q+Q′, ui)−∇L(Q, ui)‖Lt(BR)d ≤ C‖Q′‖Lp(BR)d×d‖ui‖H1(B2R).

Proof. As in Theorem 9, we exploit that the difference of uQ+Q′ = ui + L(Q+Q′, ui) and
uQ = ui + L(Q, ui) can be extended to a radiating function in Rd that solves

div((Idd +Q)∇(uQ+Q′ − uQ)) + k2(uQ+Q′ − uQ) = −div(Q′∇uQ+Q′).

Consequently, Meyers estimate (10) implies that

‖∇[L(Q+Q′, ui)− L(Q, ui)]‖Lt(BR)d = ‖∇[L(Q+Q′, ui) + ui − L(Q, ui)− ui]‖Lt(BR)d

≤ C
(
‖L(Q+Q′, ui)− L(Q, ui)‖L2(B2R) + ‖Q′∇uQ+Q′‖Lt(B2R)d

)
.

The first term of the right hand side is bounded by Theorem 9, whereas the second one
can be estimated as in the proof of Lemma 11(ii),

‖∇[L(Q+Q′, ui)− L(Q, ui)]‖Lt(BR)d ≤ C‖Q′‖Lp(BR)d×d‖ui‖H1(B2R).

Theorem 15. Under the assumptions of Theorem 12, the map Q 7→ L′(Q, ui) is locally
Lipschitz continuous: There is C > 0 independent of Q′ and ui such that for all P ∈
Lp(BR)d×d there holds

‖L′(Q+Q′, ui)[P ]− L′(Q, ui)[P ]‖H1(B2R) ≤ C‖Q′‖Lp(BR)d×d‖ui‖H1(B2R)‖P‖Lp(BR)d×d .
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Proof. For P ∈ Lp(BR)d×d, wQ+Q′ = L′(Q + Q′, ui)[P ] and wQ = L′(Q, ui)[P ] satisfy
by (19) the variational formulations

aQ+Q′(wQ+Q′ , ψ) = −
∫
BR

P∇
[
L(Q+Q′, ui) + ui

]
· ∇ψ̄ dx and

aQ(wQ, ψ) = −
∫
BR

P∇
[
L(Q, ui) + ui

]
· ∇ψ̄ dx for all ψ ∈ H1(B2R).

Thus, w := wQ+Q′ − wQ satisfies

aQ(w,ψ) = −
∫
BR

(
P∇

[
L(Q+Q′, ui)− L(Q, ui)

]
+Q′∇L′(Q+Q′, ui)[P ]

)
· ∇ψ̄ dx.

Thus, Lemma 7 and the generalized Hölder inequality with Lebesgue indices p and t such
that 1/p+ 1/t = 1/2 imply that

‖w‖H1(B2R) ≤ CQ‖P∇[L(Q+Q′, ui)− L(Q, ui)] +Q′∇L′(Q+Q′, ui)[P ]‖L2(BR)d

≤ CQ
[
‖P‖Lp(BR)d×d‖∇[L(Q+Q′, ui)− L(Q, ui)]‖Lt(BR)d

+ CQ‖Q′‖Lp(BR)d×d‖∇L′(Q+Q′, ui)[P ]‖Lt(BR)d

]
.

Lemma 14 bounds ‖∇[L(Q+Q′, ui)−L(Q, ui)]‖Lt(BR)d by C(Q)‖Q′‖Lp(BR)d×d‖ui‖H1(B2R)

and Lemma 11 shows that ‖∇L′(Q + Q′, ui)[P ]‖Lt(BR)d ≤ CQ‖P‖Lp(BR)d×d‖ui‖H1(B2R).
Combining these bounds with the above estimate for w shows the claim, as

‖w‖H1(B2R) ≤ C‖Q′‖Lp(BR)d×d‖P‖Lp(BR)d×d‖ui‖H1(B2R).

In analogy to the potential representation (11), the radiating extension of the derivative
v′ = L′(Q, ui)[Q′] to Rd satisfies

v′ = div

∫
BR

Φk(· − y)
[
Q∇v′(y) +Q′∇

[
L(Q, ui) + ui

]
(y)
]

dy in Rd, (21)

because v′ solves, by definition, the variational formulation (19).

5 The forward operator

In this section, we define the forward operator corresponding to the inverse scattering
problem we are ultimately interested in. This operator maps a contrast function to the
corresponding far field operator. Before defining the forward operator, we first assume
from now on that the solution operator L(Q, ui) is well-defined and bounded on H1(B2R)
for all Q ∈ Q. Due to Lemma 7, this can always be guaranteed by choosing the parameter
λ ∈ (0, 1) defining Q small enough.

Assumption 16. The solution operator L(Q, ui) exists for all Q ∈ Q as a bounded operator
on H1(B2R).

Further, we recall from (11) that the radiating extension of v = L(Q, ui) to Rd satisfies

v = div

∫
BR

Φk(· − y) Q(y)∇
[
v(y) + ui(y)

]
dy in Rd. (22)
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For a direction x̂ ∈ Sd−1, the far field pattern of v∞(x̂) hence equals

v∞(x̂) =

(
div

∫
BR

Φk(· − y) Q(y)∇[v(y) + ui(y)] dy

)∞
(x̂)

= −
∫
BR

(∇yΦk(· − y))∞ (x̂) ·Q(y)∇[v(y) + ui(y)] dy (23)

= −
∫
BR

∇ye−ik x̂·y ·Q(y)∇[v(y) + ui(y)] dy

= ik x̂ ·
∫
BR

Q(y)∇[v(y) + ui(y)]e−ik x̂·y dy, x̂ ∈ Sd−1.

As the latter integral expression is an analytic function in x̂, the far field v∞ is analytic as
well. Let us now introduce, for brevity, the integral operator

V : L2(B2R)d → H2(B2R)d, V f =

∫
BR

Φk(· − y)f(y) dy.

(See [3] for the mapping properties of V .) The total field v + ui restricted to B2R satisfies

v + ui = [Id−div V (Q∇(·))]−1 div V (Q∇ui) + ui = [Id−div V (Q∇(·))]−1ui in H1(B2R).

Thus, we abbreviate the (bounded) inverse of Id−div V (Q∇(·)) on H1(B2R) by SQ and
represent the far field v∞ = L(Q, ui)∞, computed in (23), as

v∞(x̂) = ik

∫
BR

x̂ ·Q(y)∇
(
SQ u

i
)
(y) e−ik x̂·y dy, x̂ ∈ Sd−1.

If we further introduce the integral operator

Z : Lt(BR)d → L2(S2), f 7→ ik

∫
BR

x̂ · f(y) e−ik x̂·y dy, (24)

then there holds that
L(Q, ui)∞ = Z ◦

[
Q∇SQ

(
ui
)]
.

As Q ∈ Q ⊂ L∞(B2R) and SQ
(
ui
)
∈ L2(B2R), the following lemma shows that the com-

position on the right is well-defined and bounded. This is basically due to the smoothing
property of Z, which is a trace class operator, see [8].

Lemma 17. Choose m ∈ N, 1 < t <∞, and f ∈ Lt(B2R)d.

(i) There is C = C(m, t) such that ‖Zf‖Cm(Sd−1) ≤ C(m, t)‖f‖Lt(B2R)d.

(ii) The operator Z is of trace class from Lt(B2R)d into L2(Sd−1).

Proof. (i) The kernel of the integral operator Z is smooth in x̂ and y, such that one easily
shows the claimed bound by partial integration and the Hölder inequality.

(ii) Due to the bounds shown in part (i), Z is bounded from Lt(B2R)d into any Hilbert
space Hm(Sd−1). Choosing m large enough then implies that the embedding of Hm(Sd−1)
in L2(Sd−1) is a trace class operator, see [7]. As those operators form an ideal, the Z is
also trace class operator that maps Lt(B2R) into L2(S2).

We are now ready to rigorously introduce the forward operator that, by definition,
maps contrasts to far field operators. To this end, we consider incident fields in form of
Herglotz wave functions,

vg(x) =

∫
Sd−1

eikx·θg(θ) dS(θ), for x ∈ Rd and g ∈ L2(Sd−1), (25)
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that are well-known entire solutions to the Helmholtz equation in Rd. It is moreover
well-known that g 7→ vg|B2R

is a bounded operation from L2(Sd−1) into H1(B2R), see [3].
Using vg as an incident field then defines a far field operator F = FQ ∈ L2(Sd−1) by
Fg = (L(Q, vg))

∞ for g ∈ L2(Sd−1). As the integral kernel u∞ = u∞Q : Sd−1 × Sd−1 → C

of F(Q) is analytic in both variables, FQ is compact and even belongs to the set S1 of
trace class operators on L2(Sd−1), since its singular values sj(FQ) are summable, i.e.,
‖FQ‖S1 =

∑
j∈N |sj(FQ)| <∞. The embedding `p ⊂ `q for 1 ≤ p < q ≤ ∞ of the sequence

spaces `p further implies that trace class operators belong to the qth Schatten class Sq
for all q ∈ [1,∞), a Banach space of all compact operators on L2(Sd−1) with q-summable
singular values sj(F ), equipped with the norm defined by

‖F‖qSq =
∑
j∈N
|sj(F )|q, for q ≥ 1.

This allows to define the contrast-to-far field mapping,

F: Q → Sq, F(Q)g = Z ◦ (Q∇SQ(vg)) for g ∈ L2(Sd−1), q ≥ 1, (26)

as an operator from Q into the qth Schatten class Sq.

Remark 18.

(i) Due to Lemma 17 with t = 2 and the continuity properties of the solution operator
L, the composition Z ◦

(
Q∇SQ(vg)

)
is well-defined in L2(Sd−1).

(ii) As trace class operators form an ideal in the space of all bounded operators, and as
F(Q)g = Z(L(Q, vg)) with a trace class operator Z, the forward operator is a trace
class operator as well, and hence belongs to all spaces Sq for q ≥ 1.

(iii) An alternative to the Sq-norms are Lq-norms for integral operators on the sphere:
Since F(Q)g =

∫
Sd−1 u

∞(·, θ)g(θ) dS(θ) is represented by the far field pattern u∞(·, θ)
of the scattered fields us = L(Q, vg), the Lq-Norm of u∞ defines an operator norm
for F(Q) by ‖F(Q)‖q := ‖u∞‖Lq(Sd−1×Sd−1), 1 < q < ∞. The contrast-to-far field

map Q 7→ F(Q) as defined in (26) is then continuous from Lq
′
(Sd−1) into Lq(Sd−1)

with q′ = q/(q − 1), because g 7→ vg|D is continuous from Lq
′
(Sd−1) into C1(D) for

all q ∈ (1,∞). For q = 2, it is well-known that ‖ · ‖S2 = ‖ · ‖2. The advantage of
the Lq-norms with respect to the implementation of inversion algorithms is that the
computation of adjoints or subdifferentials is straightforward for these spaces. Since
the subsequent theoretic results do not depend on the choice of the discrepancy norm,
we continue to work with the Schatten norms ‖ · ‖Sq , noting that all results holds as
well for the ‖ · ‖q-norms.

The link between the solution operator L and the non-linear forward operator F enables
us to show various properties of F via those of L. To this end, note first that the far field
of the radiating extension of L(Q, vg) depends boundedly and linearly on L(Q, vg), such
that the derivative Q′ 7→ F′(Q)[Q′] ∈ L(Lp(B2R), Sq) with respect to Q ∈ Q of F equals,
by the product rule in Banach spaces, see [23],

F′(Q)[Q′]g = Z ◦
[
Q∇L′(Q, vg)[Q

′] +Q′∇SQ(vg)
]
, since L(Q, vg) = SQ(vg)− vg. (27)

This allows to transfer the results of Theorems 9, 12, and 15 from L to F.

Corollary 19. Choose Q ∈ Q and Q+Q′ ∈ Q such that Q′ satisfies (14), and q ≥ 1.
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(i) If p > 2Tλ/(Tλ − 2) then there is C = C(Q) such that

‖F(Q+Q′)− F(Q)‖Sq ≤ C‖Q′‖Lp(BR)d×d . (28)

(ii) If p > 4Tλ/(Tλ − 2) the far field operator F(Q) is differentiable in the sense that

‖F(Q+Q′)− F(Q)− F′(Q)[Q′]‖Sq ≤ C‖Q′‖2Lp(BR)d×d

for C = C(Q). If {Q′n}n∈N satisfies (14) for all n ∈ N as well as ‖Q′n‖Lp(BR)d×d → 0
as n→∞, then ‖F(Q+Q′n)− F(Q)− F′(Q)[Q′n]‖Sq/‖Q′n‖Lp(BR)d×d → 0.

(iii) The operator F′(Q) is locally Lipschitz continuous with respect to Lp(BR)d×d: There
is C = C(Q) such that ‖F′(Q+Q′)− F′(Q)‖Sq ≤ C(Q)‖Q′‖Lp(BR)d×d.

Proof. The basic ingredient of the proof is the smoothing property of the far field map Z
defined in (24), which is a trace class operator from L2(B2R)d into L2(Sd−1). Choosing
the incident field ui as a Herglotz wave function vg for some g ∈ L2(Sd−1),

‖F(Q+Q′)− F(Q)‖Sq =
∥∥g 7→ Z

[
(Q+Q′)∇SQ+Q′(vg)−Q∇SQ(vg)

] ∥∥
Sq

≤
∥∥g 7→ Z

[
(Q+Q′)∇SQ+Q′(vg)−Q∇SQ(vg)

] ∥∥
S1

(∗)
≤ C

∥∥g 7→ [
(Q+Q′)∇SQ+Q′(vg)−Q∇SQ(vg)

] ∥∥
L(L2(Sd−1), L2(BR)d)

≤ C sup
‖g‖L2=1

[∥∥Q′∇SQ+Q′(vg)
∥∥
Lp(BR)d

+
∥∥Q∇[SQ+Q′(vg)− SQ(vg)]

∥∥
L2(BR)d

]
,

where inequality (∗) follows from Lemma 17(ii) and the fact that the composition of the
trace class operator Z with a bounded and linear operator is of trace class as well. Now
we use again the technique from the proof of Theorem 9, see (17) and (18), to obtain the
bound

‖Q′∇SQ+Q′(vg)‖Lp(BR)d ≤ ‖Q′‖Lp(BR)d×d‖SQ+Q′(vg)‖H1(BR)

together with the estimate ‖SQ+Q′(vg)‖H1(BR) ≤ C‖vg‖H1(B2R) ≤ C‖g‖L2(Sd−1) = C for
the total wave field due to Lemma 7, with a constant C = C(Q) independent of Q′. As
SQ+Q′(vg)− SQ(vg) = L(Q+Q′, vg)− L(Q, vg), Theorem 9 further shows that∥∥Q∇[SQ+Q′(vg)− SQ(vg)]

∥∥
L2(BR)d

≤ C‖Q‖L∞(BR)d×d‖Q′‖Lp(BR)d×d‖vg‖H1(B2R) (29)

such that by plugging the last estimates together we conclude that ‖F(Q+Q′)−F(Q)‖Sq ≤
C(Q)‖Q′‖Lp(BR)d×d . The bounds in (ii) and (iii) are shown analogously, using Theorems 12
and 15 instead of Theorem 9.

As for Theorem 9, the last corollary’s assumption that (14) holds for Q′ can be replaced
by uniformly bounded solution operators, see Corollary 10.

Corollary 20. Assume that ‖L(Q, ·)‖H1(B2R)→H1(B2R) is uniformly bounded for all Q in
a subset Q′ of Q. Then for all p > 2Tλ/(Tλ − 2) there is C∗ > 0 depending on Q′ and p
such that (28) holds for all Q, Q+Q′ ∈ Q′ with C replaced by C∗.

Proof. Instead of Theorem 9, use Corollary 10 to obtain the bound (29) in the last proof.
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6 Non-linear Tikhonov and sparsity regularization

The inverse problem we consider is to stably approximate a contrast Qexa from perturbed
measurements of its far field operator F(Qexa). More precisely, for noisy measurements
F εmeas with noise level ε > 0 such that ‖F(Qexa) − F εmeas‖Sq ≤ ε, we seek to approximate
Q by non-linear Tikhonov regularization. Thus, for some penalty term R we consider the
Tikhonov functional

Jα,ε(Q) :=
1

q
‖F(Q)− F εmeas‖

q
Sq + αR(Q), q ∈ [1,∞), (30)

over some appropriate admissible set of contrasts included in Q. As the functional Jα,ε
requires F(Q) to be well-defined, we suppose for the rest of the paper that the variational
formulation (6) of the forward problem is uniquely solvable for all Q ∈ Q and all incident
fields ui that solve the Helmholtz equation in Rd.

Assumption 21. The variational formulation (6) is uniquely solvable for all Q ∈ Q and
all incident fields ui that solve the Helmholtz equation in Rd, and the norm of the solution
operators L(Q, ·) on H1(B2R) are uniformly bounded for Q ∈ Q.

Due to Lemma 7, the first part of the latter assumption can always be guaranteed by
choosing the parameter λ ∈ (0, 1) that defines the set Q in (4) close enough to one, as (6) is
uniquely solvable if Q is the identity matrix. The second part can be guaranteed by merely
considering contrasts in Q ∩X for some space X ⊂ L∞(B2R)d×d that embeds compactly
into L∞(B2R)d×d.

Before presenting the Tikhonov regularization framework in detail, we first show Lip-
schitz continuity of the discrepancy E(Q) := ‖F(Q)− F εmeas‖Sq .

Theorem 22. If Assumption 21 holds, then |E(Q) − E(Q + Q′)| ≤ C‖Q′‖Lp(BR)d×d for
p > 2Tλ/(Tλ − 2) for all elements Q and Q+Q′ of Q.

Proof. For all contrasts Q and Q+Q′ in Q the reverse triangle inequality for norms implies
that |E(Q)−E(Q+Q′)| ≤ ‖F(Q)−F(Q+Q′)‖Sq . By Assumption 21, Corollary 20 bounds
the last right-hand side uniformly in Q and Q′ by ‖F(Q)−F(Q+Q′)‖Sq ≤ C‖Q′‖Lp(BR)d×d

for any choice of p > 2Tλ/(Tλ − 2). Thus, E is Lipschitz continuous on Q with respect to
Lp(BR)d×d for p > 2Tλ/(Tλ − 2).

Fixing p > 2Tλ/(Tλ−2), let us now set p∗ = dp/(p+d), such that 1 < p∗ < d. Sobolev’s
embedding theorem then implies that W 1,p∗(B2R)d×d embeds compactly into Lp(B2R)d×d;
moreover, the Sobolev inequality ‖Q‖Lp(B2R)d×d ≤ C‖Q‖W 1,p∗ (B2R)d×d holds for all Q ∈
W 1,p∗(B2R)d×d. Note that functions in W 1,p∗(B2R)d×d are in general discontinuous (an
embedding into Hölder spaces would require p∗ > d). We consider in the sequel the space
W 1,p∗

0 (BR)d×d of functions that vanish on ∂BR and extend those by zero to all of Rd, such

that the intersection of W 1,p∗
0 (BR)d×d with Q is well-defined. (By abuse of notation, we

do not denote this extension explicitly.)
Non-linear Tikhonov regularization is classically based on the assumption that the

penalty term R is coercive in the space of interest Lp(BR)d×d, such that weak conver-
gence results can be obtained for a minimizing sequence. If R is even coercive in a space
compactly embedded in Lp(BR)d×d, then one directly obtains strong convergence of the
minimizing sequence.

Theorem 23 (Tikhonov regularization). If we choose the penalty term R of the Tikhonov
functional Jα,ε as R(Q) = ‖Q‖p∗

W 1,p∗ (BR)d×d, then Jα,ε possesses a minimizer in Q ∩
W 1,p∗(BR)d×d. If εn → 0 as n→∞ and if one chooses αn = αn(εn) such that 0 < αn → 0
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and 0 < ε2
n/αn → 0, then every sequence of minimizers of Jαn,εn contains a subsequence

that weakly converges to solution Q† ∈W 1,p∗(BR)d×d∩Q such that F(Q†) = F(Qexa) holds
in Sq and Q† minimizes the W 1,p∗(BR)d×d-norm amongst all solution to the latter equation.

As the proof of Theorem 23 is well-known, see, e.g., [20] or the proof of Theorem 25
below, we directly present a sparsity-promoting alternative based on a wavelet basis of
W 1,p∗ , see [21]. Assume that ψMo ∈ Cn(R), n ∈ N, is a compactly supported (mother)
wavelet with scaling function ψFa, and that the corresponding one-dimensional wavelets
are associated to a multi-resolution analysis. Define d-dimensional n-wavelets as usual
by setting ψm(x) =

∏d
r=1 ψFa(xr − mr) for m ∈ Zd and x = (x1, . . . , xd)

> ∈ Rd. For
{Fa,Mo}d∗ = {G ∈ {Fa,Mo}d : at least one component of G equals Mo} we further set

ψGm(x) =
d∏
r=1

ψGr(xr −mr), m ∈ Zd, G = (Gr)
d
r=1 ∈ {Fa,Mo}d∗, x ∈ Rd,

introduce G0 = {(Fa, . . . ,Fa)} and Gj = {Fa,Mo}d∗ for j ∈ N, and define n-wavelets on
Rd by

ψj,Gm (x) =

{
ψm(x) for j = 0, G = {(Fa, . . . ,Fa)}, and m ∈ Zd,
2(j−1)/2ψGm(2j−1x) for j ∈ N, G ∈ Gd, and m ∈ Zd.

We finally define wavelet coefficients of functions Q ∈ L1(Rd)d×d by

Qj,Gm =

(∫
Rd

Q`,`′ψ
j,G
m dx

)d
`,`′=1

∈ Cd×d. (31)

Examples for suitable wavelets include the well-known Daubechies wavelets, see [4, 5];
however, the following result holds as well for differently constructed Meyer wavelets, see
Chapter 3.1.5 in [21], in particular Theorem 3.12.

Theorem 24 (See [21, Theorem 3.5]). For 1 ≤ p∗ < ∞ and the above-defined n-wavelets
Ψj,G
m such that n ∈ N satisfies n > max(1, 2d/p∗ + d/2 − 1) there holds that the set of

functions {ψj,Gm } is an unconditional basis in W 1,p∗(Rd). Further, there are constants
A,B > 0 such that for all Q ∈W 1,p∗(Rd)d×d there holds

A‖Q‖W 1,p∗ (Rd)d×d ≤
( ∑
j∈N0

2j(p∗−d)
∑
G∈Gj

∑
m∈Zn

2jdp∗/2
∣∣Qj,Gm ∣∣p∗)1/p∗

≤ B‖Q‖W 1,p∗ (Rd)d×d .

(32)

In the following, we use the representation of the W 1,p∗-norm in (32) for contrasts
Q ∈W 1,p∗

0 (BR)d×d that are extended by zero to all of Rd and, to this end, abbreviate the
series in (32) by

∑
j,G,m. For all numbers 1 ≤ r ≤ p∗ and all sequences (aj)j∈N in `p∗(N)

there holds that
(∑∞

j=1 |aj |p∗
)1/p∗ ≤ (∑∞j=1 |aj |r

)1/r
. Fix such r ∈ [1, p∗] and choose any

sequence of weights (ωj)j∈N0 ⊂ R∞ such that ωj ≥ 2j(1−d/p∗+d/2)r. Then the functional

Rr(Q) :=
1

r

∑
j,G,m

ωj
∣∣Qj,Gm ∣∣r ≥ 1

r

∑
j,G,m

2j(1−d/p∗+d/2)r
∣∣Qj,Gm ∣∣r

≥ 1

r

( ∑
j,G,m

2j(p∗−d+dp∗/2)
∣∣Qj,Gm ∣∣p∗)r/p∗ ≥ Ar

r
‖Q‖rW 1,p∗ (BR)d×d

(33)

bounds the rth power of the W 1,p∗-norm of Q ∈W 1,p∗
0 (BR)d×d from above.

Recall now that F(Qexa) and F εmeas ∈ Sq model exact and noisy measurements, respec-
tively, with noise level ‖F(Qexa) − F εmeas‖Sq ≤ ε. Given the above setting, the following
result follows straightforwardly from standard non-linear regularization theory [19, 20].
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Theorem 25 (Sparsity regularization). For 1 ≤ r ≤ p∗ = dp/(p + d), the functional
Jα,ε with R = Rr from (33) possesses a minimizer in Q ∩W 1,p∗(BR)d×d. If εn → 0 as
n → ∞ and if one chooses αn = αn(εn) such that 0 < αn → 0 and 0 < ε2

n/αn → 0, then
every sequence of minimizers of Jαn,εn contains a subsequence that weakly converges to an
Rr-minimizing solution Q† ∈W 1,p∗(BR)d×d ∩Q of the equation F(Q) = F(Qexa) in Sq.

Recall that Q† is a Rr-minimizing solution to F(Q†) = F(Qexa) if

Rr(Q†) = min{Rr(Q) : Q ∈ Q ∩W 1,p∗(BR)d×d, F(Q) = Fexa}.

Proof. We repeat the proof for the existence of a minimizer of Jα,ε. For an arbitrary
minimizing sequence {Q(n)}n∈N ⊂ Q the penalty {Rr(Q(n))} is uniformly bounded, such
that

‖Q(n)‖rLp(BR)d×d ≤ C‖Q(n)‖rW 1,p∗ (BR)d×d ≤
Cr

Ar

∑
j,G,m

ωj
∣∣(Q(n))j,Gm

∣∣r =
Cr

Ar
Rr(Q(n))

is uniformly bounded as well. As W 1,p∗(BR)d×d is a reflexive Banach space, the sequence
{Q(n)}n∈N contains a weakly convergent subsequence that converges in Lp(BR)d×d due to
the compact embedding of W 1,p∗(BR)d×d in Lp(BR)d×d, say, to Q ∈W 1,p∗(BR)d×d. Since
Q is a convex set, the limit Q belongs to Q and Lipschitz continuity of the discrepancy term
E with respect to Lp(BR)d×d implies that E(Qn) → E(Q). Lower semi-continuity of the
penalty term Rr with respect to W 1,p∗(BR) shows that Q is a minimizer of Jα,ε. Consis-
tency of the minimizers for vanishing noise level under the given choice of the regularization
parameter α can be shown as in, e.g., [20].

We omit here to show well-known source conditions that imply convergence rates of the
minimizers, as these are classic and can be easily transferred from either abstract results
in, e.g., [20], or from [11], to our setting. All required analytic properties of the forward
operator F can be derived from Corollary 19.

As it is well-known that a solution Q to the inverse problem F(Q) = Fmeas is only unique
up to a change of variables, Theorem 25 shows that all we can hope for is to determine an
Rr-minimizing solution. Even if we restrict ourselves to an (scalar) isotropic contrast of
the form Q = qsc Idd, it is unclear to us whether the far field operator Fqsc corresponding
to qsc uniquely determines the isotropic contrast qsc.

7 Numerical examples

After elaborating a theoretic framework that guarantees convergence of the Tikhonov iter-
ates against a minimum-norm solution, we present a couple of numerical experiments for
contrasts that are sparse in a wavelet basis, in the sense that few wavelet coefficients of the
isotropic contrast function are non-zero. To this end, we minimize the Tikhonov functional
in (30) for the sparsity-promoting penalty (33) in a simplified setting where merely a scalar
material parameter qsc with wavelet coefficients Wqsc = {(qsc)j,Gm } defined as in (31).

Starting with an initial guess qsc
0 (that will always be chosen as zero), we consider a

Tikhonov functional for the linearization of the forward operator at the current iterate qsc
`

and seek a minimizer h` of

h 7→ 1

q
‖F(qsc

` ) + F′(qsc
` )[h]− F εmeas‖

q
Sq + αRr(qsc

` + h), (34)

where Rr is defined in (33). We tackle the latter minimization problem numerically by
either a shrinked Landweber iteration as proposed by Daubechies, De Frise and de Mol
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in [6], or, alternatively, by a primal-dual algorithm as proposed by Chambolle and Pock
in [2], see also [10]. Whilst the first algorithm is simpler to implement and essentially equals
the one used for the numerical experiments in [13], its disadvantage, to some extend, is
that it requires (squared) Hilbert space norms defining the penalty term.

In detail the shrinked Landweber iteration determines qsc
`+1 = qsc

` +h` by computing the
jth step h` by resolving the first-order optimality conditions for a (scalar-valued) minimum
of the non-linear functional Jα,ε in (30),

qsc
` + αµ

∑
j,G,m

ωj sign((qsc
` )j,Gm )

∣∣(qsc
` )j,Gm

∣∣r−1
ψj,Gm = qsc

` − µF′(qsc
` )∗(F(qsc

` )− F εmeas)

for all µ > 0, which motivates to compute the update

h` = W−1 ◦ S ◦W
(
qsc
` − µ`F′(qsc

` )∗[F(qsc
` )− F εmeas]

)
, (35)

with a step-size parameter µ` > 0 determined by Armijo’s rule, see [1], and W and W−1

are the forward and the inverse wavelet transform. Further, S = Sαµnω,r is the so-called
soft-thresholding operator: For ω̃ = (ω̃j)j with positive entries there holds Sω̃,r(fj) =
(Sω̃j ,r(fj))j with scalar functions Sα,r defined as inverse function to t 7→ t+ α sign(t)|t|r−1

for r > 1, see [6]. (For r = 1 there holds Sα,r(t) = sign(t) max{|t| − α, 0}.)
Independent of how the update h` is computed, we stop the iteration for the qsc

` if
the discrepancy is less than a fixed tolerance τ = 1.5 times the (relative) noise level. All
examples are computed using the Cohen-Daubechies-Feauveau 9/7 wavelets.

When choosing the weights ω = (ωj)j∈N such that the penalty termR1 with r = 1 is for
a fixed wavelet discretization numerically equivalent to the W 1,3/2(BR)-norm, the resulting
reconstructions both for the shrinked Landweber iteration and the primal-dual algorithm
did neither substantially differ in the visual norm nor regarding the resulting reconstruction
errors from reconstructions for the constant sequence where ωj ≡ 1 (such that R1 is the
`1-norm of the wavelet coefficients). As, additionally, the shrinked Landweber iteration
required considerably more iteration steps, all results shown below are computed with for
constant weights ωj ≡ 1 and r = 1.

All examples moreover rely on simulate scattering data for 32 incident and scattering
directions. Computation of synthetic data and the evaluation of the forward operator, as
well as the adjoint of its derivative, require to numerically approximate solutions to the
scattering problem (1–2) or to corresponding adjoint problems. To this end, we discretize
the volumetric integral equation (11) by a collocation approach using trigonometric poly-
nomials as in [22], see also [14] for the analysis of a corresponding Galerkin method applied
to a periodic variant of (1). The advantage of the resulting method is that the integral
operator can be rapidly evaluated by the fast Fourier transform, which makes the solution
of the discrete system by an iterative solver attractive. (We use the GMRES method with
an accuracy of 10−6 as linear solver.) Moreover, the uniform grid of the domain-of-interest
can remain fixed during the iteration.

All synthetic far field data are computed on a uniform grid of size 2048 × 2048 of
[−0.4, 0.4]2, which leads in the examples to a relative numerical error of less than one
percent. (Wave lengths equal either π/70 ≈ 0.044 and π/50 ≈ 0.0628.) In the inversion
schemes, we approximate solutions to scattering problems on a grid of size 512 × 512 on
the same domain; the contrast function itself is resolved on a grid of size 128 × 128. We
did not attempt to speed up the forward solver, such that most of the inversion time is
due to solving (adjoint) forward problems (speeding up the forward solver hence yields a
corresponding speed-up for the inverse solver). All computations are coded in Matlab R©
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and indicated computation times are measured on an eight-core INTEL R© CoreTMi7-3770
CPU@3.40 GHz with 32 GB RAM.

When adding artificial noise to the synthetic data, we scale a matrix containing inde-
pendent and normally distributed random numbers with mean zero and standard deviation
one such that the sum of the synthetic data and the random matrix has a prescribed relative
error, equal to ε = 0.01, 0.05, or 0.1). Note that instead of discretizing the adjoint of the
derivative of the forward operator, we rely on the adjoint of the discretization of the inte-
gral operator, to obtain exact adjunction up to the precision of the iterative solver. Figure
1 shows plots of the two contrasts qsc (1,2) we consider for inversion (for the complex-valued
qsc (1) we plot real and imaginary part).

(a) (b) (c)

Figure 1: Contrasts plotted in [−0.4, 0.4]2. (a) Real part of qsc (1) (b) Imaginary part of
qsc (1) (c) Real-valued contrast qsc (2).

In the following first set of examples we used the shrinked Landweber iteration sketched
above for artificial noise levels ε equal to 0.01, 0.05, and 0.1 and regularization parameter
α = ε. The wave number equals k = 140, such that the wave length is about 0.045. The
iteration is stopped by the discrepancy principle if the (relative) discrepancy is less than
1.5 ε. Figure 2 shows that the shape of the cross in Figure 1(a,b) is well reconstructed and
that the magnitude of the reconstruction is roughly matched, at least for small noise level.
However, the small variations of the contrast inside the cross-shape are not well resolved
but tend either to thicken or to thin the width of the cross. For ε = 0.01, the relative
discrepancy does not reach the prescribed value of 0.015 in 500 iterations, which might be
due to the numerical noise level of the synthetic data. We hence plot the 500th iterate;
after the 400th iteration, the first two digits of the reconstruction do no longer change,
such that this is, arguably, justified. Reconstruction times notably become tremendous for
so many iteration steps.

Figure 3 shows the corresponding results in the same reconstruction setting for the real-
valued double L-shape from Figure 1(c). The inversion scheme converges somewhat faster;
again, for ε = 0.01 the reconstructions do not reach a relative discrepancy of 1.5 ε until the
sequence of reconstructions becomes stationary at about the 200th iterate. Notably, the
imaginary part of the reconstruction remains small during the iteration without imposing
it to vanish by the algorithm. Again, the reconstruction times are rather high, which is
a well-known disadvantage of soft-shrinking techniques. Generally speaking, the inver-
sion problem is to our impression somewhat harder to tackle numerically by the shrinked
Landweber iteration compared to the Helmholtz equation ∆u+ k2(1 + q)u = 0 considered
in [13].

To cope with the two most obvious disadvantages of the shrinked Landweber iteration,
we finally consider the primal-dual algorithm by Chambolle and Pock. This allows first
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(a) (b) (c)

(d) (e) (f)

Figure 2: Reconstructions of qsc (1) by shrinked Landweber method, plotted in [−0.4, 0.4]2.
(real parts in top row, imaginary parts in bottom row). (a/d) ε = 0.01, 500 iter., 2145
min., rel. error=0.533 (b/e) ε = 0.05, 300 iter., 748 min., rel. error=0.565 (c/f) ε = 0.1, 57
iter., 126 min., rel. error=0.677.

to consider different norms for the discrepancyterm of the Tikhonov functional (we choose
discretized Lp-norms for functions on S1 × S1-norms as explained in Remark 18) and
second yields smaller computation times. This algorithm computes the minimizer of the
Tikhonov functional in (34) by explicitly considering the resolvents of the subdifferentials
of the convex functionals F 7→ ‖F − F εmeas + F(qsc

` )‖qSq and h 7→ αRr(qsc
` + h). More

precisely, let us consider general proper, convex, and lower semicontinuous functionals
E : Sq → [0,∞] and P : Q → [0,∞], as long as the resolvents (I+σ∂E∗)−1 and (I+η∂P)−1

of the subgradients of the Fenchel conjugate E∗ of E and of P are explicitly computable
for η, σ > 0. The primal-dual algorithm then computes the minimizer of

h 7→ E(F′(qsc
` )[h]− (F εmeas − F(qsc

` ))) + αP(qsc
` + h) (36)

via these resolvents. As already mentioned, E = ‖ · ‖qq/q for 1 < q < ∞, see Remark 18.
We further define P(·) as sum of Rr from (33) and a convex functional 1b that ensures
that the reconstructed contrast respects a-priori known pointwise bounds: 1b(qsc) = 0 if
−1 ≤ Re qsc(x) ≤ 3 and 0 ≤ Im qsc(x) ≤ 3 in [−0.4, 0.4]2; otherwise, 1b(qsc) = ∞. For
both functionals, the subgradients can be computed using basic rules of convex analysis,
see, e.g., [18], and both resolvents can be computed explicitly.

For the remaining example, we invert qsc (2) for scattering data for k = 100, such that
2π/k ≈ 0.063. The artificial noise level ε is set to 0.01, the regularization parameter α
in (36) equals 0.01 and the remaining parameters η and σ to (5/4‖F′(qsc

` )‖)1/2. We stop
the primal-dual algorithm applied to the linearized functional in (36) when the relative
residuum of the linear equation is less than 0.05 (which typically yields less than 10 steps
and is finished in less than a minute). The largest part of the computation time of the
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(a) (b) (c)

(d) (e) (f)

Figure 3: Reconstructions of qsc (2) by shrinked Landweber method, plotted in [−0.4, 0.4]2

(real parts in top row, imaginary parts in bottom row). (a/d) ε = 0.01, 200 iter., 390 min.,
rel. error=0.653 (b/e) ε = 0.05, 48 iter., 87 min., rel. error=0.665 (c/f) ε = 0.1, 20 iter.,
38 min., rel. error=0.703.

primal-dual algorithm is due to the computation of the entire (factorized) matrix repre-
senting the derivative of the forward operator at the current iterate qsc

` . (This typically
takes less than 2 minutes for the examples below.) The numerical computation of the (ma-
trix) norm of F′(qsc

` ) takes about one minute and executing the algorithm for one linearized
problem typically less than three minutes. Figure 4 shows the effect of changing the pa-
rameter q ∈ (1,∞) of the discrepancy term ‖ · ‖qq/q by plotting reconstructions for q = 1.6,
2, and 3. (We simply plot the iterate with the smallest error.) Let us first note that for all
reconstructions, the computation times are much smaller than for the shrinked Landweber
iteration. Generally, choosing q larger/smaller results in smaller/larger iteration numbers
to reach to optimal reconstruction in the entire range in between q = 1 and q = 5. On
the other hand, the reconstruction quality is best for q = 2, where the accuracy roughly
matches that of the shrinked Landweber iteration. (Arguably, this might be due to the
Gaussian distribution of the additive noise.) Choosing q larger or smaller than 2 yields
increasingly worse reconstructions; in particular, the contrasts do not reach the true values
anymore. Thus, the choice of the discrepancy norm has obviously a significant influence
on the inversion result.

A The adjoint of the forward operator’s linearization

The adjoint operator of the linearization F′ is a crucial ingredient for most gradient-based
schemes tackling the inverse scattering problem to stably solve the non-linear equation
F(Q) = Fmeas for some given Fmeas ∈ Sq. This is our main motivation to give an explicit and
computable representation of this adjoint. We fix Q ∈ Q, consider F′(Q) : Lp(BR)d×d → Sq
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(a) (b) (c)

Figure 4: Real part of reconstructions of qsc (2) by primal-dual algorithm for different
discrepancy norms ‖ · ‖qq/q (see Remark 18) and fixed artificial noise level ε = 0.01, plotted
on [−0.4, 0.4]2. (a) q = 2, 5 iter., 12 min., rel. error=0.658 (b) q = 3, 2 iter., 4 min.,
rel. error=0.738 (c) q = 1.6, 41 iter., 82 min., rel. error=0.763.

and aim to determine F′(Q)∗ : Sq′ → Lp
′
(BR)d×d such that

(F′(Q)[Q′],K)S2
!

= (Q′,F′(Q)∗K)L2(BR)d×d for all Q′ ∈ Lp(B2R) and K ∈ Sq′ . (37)

Here, p′ and q′ are the conjugate Lebesgue indices to p and q, respectively, such that
1/p + 1/p′ = 1 and 1/q + 1/q′ = 1, and (· , ·)L2(BR)d×d is the usual scalar product in

L2(BR)d×d,

(A,B)L2(BR)d×d =

∫
BR

A : B dx =

∫
BR

d∑
i,j=1

AijBij dx,

extended to the anti-linear dual product between Lp(BR)d×d and Lp
′
(BR)d×d. Further,

(·, ·)S2 is the scalar product in the Hilbert space of Hilbert-Schmidt operators,

(F,K)S2 =
∑
j∈N

sj(F)sj(K) =

∞∑
j=1

(Fgj , K gj)L2(Sd−1)

for an arbitrary orthonormal basis (gj)j∈N of L2(Sd−1). Consequently, (37) becomes

∞∑
j=1

(F′(Q)[Q′]gj ,K gj)L2(Sd−1)
!

= (Q′,F′(Q)∗K)L2(BR)d×d for all Q′ ∈ Lp(B2R), K ∈ Sq′ .

Thus, we consider at first a single L2-scalar product for fixed Q ∈ Q and g ∈ L2(Sd−1)
and seek for A : L2(Sd−1)→ Lp

′
(B2R)d×d such that

(F′(Q)[Q′]g, h)L2(Sd−1)
!

= (Q′, Ah)L2(BR)d×d for all Q′ ∈ Lp(B2R)d×d, h ∈ L2(Sd−1).

Recall from (22) that L′(Q, vg)[Q
′] = v′ ∈ H1(B2R), a function whose radiating extension

satisfies

v′ = SQ
[
div V

(
Q′∇[L(Q, vg) + vg]

)]
in H1(B2R), where SQ = [Id−div V (Q∇(·))]−1.

Since the derivative F′, see (27), involves the far field of L′, we note that

F′(Q)[Q′]g = Z ◦
[
Q∇v′ +Q′∇SQ(vg)

]
= Z ◦

[
Q∇SQ

[
div V

(
Q′∇SQ(vg)

)]
+Q′∇SQ(vg)

]
.
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Consequently, we compute that

(F′(Q)[Q′]g, h)L2(Sd−1) =
(
Q∇SQ

[
div V

(
Q′∇SQ(vg)

)]
+Q′∇SQ(vg), Z

∗h
)
L2(BR)d

=
(
Q′∇SQ(vg), [Q∇SQ ◦ (div V )]∗ ◦ Z∗h

)
L2(B2R)d

+
(
Q′∇SQ(vg), Z

∗h
)
L2(BR)d

=
(
Q′,

([
[Q∇SQ ◦ (div V )]∗ + Id

]
◦ Z∗h

)
⊗∇SQ(vg)

)
L2(BR)d×d

where the last matrix-valued function is defined by (a ⊗ b)i,j = ai bj for 1 ≤ i, j ≤ d and
[Q∇SQ div V ]∗ denotes the L2-adjoint of the bounded operator w 7→ Q∇SQ ◦ (div V (w))
on L2(BR). (If Q is a twice continuously differentiable function, then the latter adjoint
can be represented by f 7→ V ∗(∇S∗Q(div(Q>f))) for all f ∈ H2(BR).)

Lemma 26. For Q ∈ Q and g ∈ L2(Sd−1), the adjoint of Q′ 7→ F′(Q)[Q′](g) with respect
to the L2-inner product maps L2(Sd−1) into Lp/(p−1)(B2R)d×d for p > 2Tλ(Tλ − 2) and is
represented by

g 7→
([

[Q∇SQ ◦ (div V )]∗ + Id
]
◦ Z∗g

)
⊗∇SQ(vg).

For all orthonormal bases {gj}j∈N of L2(Sd−1) and all K ∈ Sq′, the bounded operator
F′(Q)∗ : Sq′ → Lp/(p−1)(B2R)d×d is represented by

F′(Q)∗(K) =
∞∑
j=1

([
[Q∇SQ ◦ (div V )]∗ + Id

]
◦ Z∗

(
K gj

))
⊗∇SQ[vgj ]. (38)

Remark 27. If Q = qsc Idd is represented by a scalar function qsc and h 7→ F′(q)[h] maps
Lp(BR) into Sq, then F′(Q)∗(K) = F′(qsc)∗(K) in (38) becomes scalar,

F′(qsc)∗(K) =
∞∑
j=1

([
[qsc∇Sqsc ◦ (div V )]∗ + Id

]
◦ Z∗

(
K gj

))
· ∇Sqsc [vgj ] ∈ Lp/(p−1)(BR).
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Math. Soc., 1955(16):140, 1955.

[9] P. Hähner. On the uniqueness of the shape of a penetrable, anisotropic obstacle.
Journal of Computational and Applied Mathematics, 116(1):167–180, 2000.

[10] T. Hohage and C. Homann. A generalization of the Chambolle-Pock algorithm to
Banach spaces with applications to inverse problems. ArXiv e-prints, 2014.

[11] B. Jin and P. Maass. An analysis of electrical impedance tomography with appli-
cations to Tikhonov regularization. ESAIM: Control, Optimisation and Calculus of
Variations, 18:1027–1048, 2012.

[12] A. Kirsch. An integral equation for the scattering problem for an anisotropic medium
and the factorization method. In Advanced Topics in Scattering and Biomedical En-
gineering, pages 57–70, 2008.

[13] A. Lechleiter, K. S. Kazimierski, and M. Karamehmedović. Tikhonov regularization
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