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Local Capacity � Control for Production
Networks of Autonomous Work Systems

With Time-Varying Delays
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Abstract—This paper considers the problem of local capacity
control for a class of production networks of autonomous

work systems with time-varying delays in the capacity changes.
The system under consideration is modeled in a discrete-time
singular form. Attention is focused on the design of a controller
gain for the local capacity adjustments which maintains the
work-in-progress (WIP) in each work system in the vicinity of
planned levels and guarantees the asymptotic stability of the
system and reduces the effect of the disturbance input on the
controlled output to a prescribed level. In terms of a matrix
inequality, a sufficient condition for the solvability of this problem
is presented using an appropriate Lyapunov function, which
depends on the size of the delay and is solved by existing convex
optimization techniques. When this matrix inequality is feasible,
the controller gain can be found by using LMI Toolbox Matlab.
Finally, numerical results are provided to demonstrate the pro-
posed approach.

Note to Practitioners—Modern production networks become
large due to new communication technologies and globalization
processes. These networks are subject to many disturbances such
as changes on market, transport congestions, communications
delays, machine failures etc. Their complexity makes it difficult
to control them in a centralized way. One possible solution is to
introduce autonomous control, i.e., to allow some parts of a large
network to make their own decisions based on local situation
and available information. However, stability of the network and
robustness with respect to external and internal disturbances and
time delays in signals must be assured to guarantee a reasonable
performance and vitality of the whole system. For this purpose,
this paper proposes an approach for controller design for large
scale autonomous work systems capable to cope with time delays
and explains its implementation and advantages on a concrete
example.

Index Terms—Autonomous systems, delay, linear matrix in-
equality (LMI), production networks.
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I. INTRODUCTION

P RODUCTION networks are emerging as a new type of
cooperation between and within companies, requiring

new techniques and methods for their operation and manage-
ment [1], [2]. Coordination of resource used is a key challenge
in achieving short delivery times and delivery time reliability.
It is shown by Helo [3] that these networks can exhibit unfa-
vorable dynamic behavior as individual organizations respond
to variations in orders in the absence of sufficient communi-
cation and collaboration. The global control becomes difficult
and vulnerable in case of large size and high complexity of
production networks. This is due to permanent changes of, e.g.,
market requirements, order sizes and internal disturbances.
These changes can destabilize the dynamics of a production
network and lead to low performance and economic losses.
A compromise is to allow some entities of a network, e.g.,
single machines or separate plants to make decisions by their
own based on local situation and available information. Such
entities are called autonomous work systems in this paper. A
set of rules to make decisions for a single autonomous work
system is called autonomous control. However, the structural
and dynamic complexity of these emerging networks inhibit
collection of the information necessary for centralized planning
and control, and decentralized coordination must be provided
by logistic processes with autonomous capabilities [4]. Further-
more, to develop and analyze autonomous control strategies
dynamic models are required. To this end different modeling
approaches are investigated regarding their abilities to describe
an exemplary scenario—an autonomously controlled produc-
tion network. A discrete-event simulation model is compared
to a deterministic fluid model for a continuous product queue,
both based on previous work by Scholz-Reiter et al. [5]. Here,
the term continuous denotes the continuous material flow in
comparison to the flow of discrete parts in the discrete-event
simulation model. Recently, models and control strategies
based on the idea of pheromones was developed in [6]. That
is, the decision which path to choose through the production
network is not made by a manager or operator, but by the
individual part itself, based on the “experience” of other parts
of the same type.

A production network with several autonomous work systems
is depicted in Fig. 1. The behavior of such a network is affected
by external and internal order flows, planning, internal distur-
bances, and the control laws used locally in the work systems
to adjust resources for processing orders [7], [8]. In prior work,
sharing of capacity information between work systems has been
modelled along with the benefits of alternative control laws and
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Fig. 1. Production network consisting of a group of autonomous work systems.

reducing delay in capacity changes [9]. Several authors have
described both linear and nonlinear dynamical models for con-
trol of variables such as inventory levels and work-in-progress
(WIP), including the use of pipeline flow concepts to repre-
sent lead times and production delays [2], [10]. Delivery reli-
ability and delivery time have established themselves as equiva-
lent buying criteria alongside product quality and price [1]. High
delivery reliability and short delivery times for companies re-
quire for high schedule reliability and short throughput times in
production. In order to manufacture economically under such
conditions, it is necessary to minimize WIP levels in production
and utilize operational resources in the best possible way [11].

Production Planning and Control (PPC) has become more
challenging as manufacturing companies adapt to a fast
changing market [12]. Current PPC methods often do not
deal with unplanned orders and other types of turbulence
in a satisfactory manner [13]. Assumptions such as infinite
capacity and fixed lead time are often made, leading to a
static view of the production system may not be valid because
WIP affects lead time and performance, while capacity is
finite and varies both according to plan and due to unplanned
disturbances such as equipment breakdowns, worker illness,
market changes, etc. Understanding the dynamic nature of
production systems requires new approaches for the design of
PPC based on company’s logistics. The controllers implicitly
interact to adjust capacity to eliminate backlog as the system
maintains its planned WIP level [13]. A discrete closed-loop
PPC model was developed and analyzed by Duffie and Falu
[14] in which two discrete controllers, one for backlog and one
for WIP, with different periods between adjustments of work
input and capacity, respectively, were selected and evaluated
using transfer function analysis and time-response simulation.
A second architecture for continuous WIP control and discrete
backlog control, with delay capacity adjustment, was developed
and analyzed by Ratering and Duffie for cases of high and low
WIP [15]. This analysis was facilitated by linearization of the
logistic function using operating point analysis. A proportional
backlog controller was designed and evaluated at the extreme
cases of high and low WIP using control theoretic methods.

Response times for elimination of backlog were found to be
relatively slow due to the limitations of the control algorithms
used. A closed-loop production planning and control concept
has been employed with adaptive inventory control in decision
support systems in a multiproduct medical supplies market [12].
State-space models have been used for switching between a
library of optimal controllers to adjust WIP in serial production
systems in the presence of machine failures [11], and switching
of control policies in response to market strategies has been
investigated by Deif and ElMaraghy [16]. A discrete state-space
dynamic model was developed for production networks with
an arbitrarily large number of work systems by Duffie et al.
[4]. It is illustrated the use of this generic model to predict
performance, and comparing the results with results obtained
using discrete event simulation.

On the other hand, delay (or memory) systems represent a
class of infinite-dimensional systems largely used to describe
propagation and transport phenomena or population dynamics
[17]. Delay differential systems are assuming an increasingly
important role in many disciplines like economic, mathematics,
science, and engineering. For instance, in economic systems,
delays appear in a natural way since decisions and effects are
separated by some time interval. The presence of a delay in a
system may be the result of some essential simplification of the
corresponding process model. The delay effects problem on the
stability of systems including delays in the state and/or input is
a problem of recurring interest since the delay presence may in-
duce complex and undesired behaviors (oscillation, instability,
bad performance) for the schemes, see for instance [18] and the
references therein. Thus, there has been increasing interest in
the robust and/or stabilization of uncertain time-delay sys-
tems in the last decades. For the continuous-time case, most re-
sults have been obtained based on the modified Riccati equa-
tion/inequality approach [19] and the linear matrix inequality
(LMI) approach [18]. It should be pointed out that, the discrete-
time systems with time-delay have received little attention com-
pared with its continuous-time counterpart [20]–[22]. The main
reason for this is that for precisely known discrete-time systems
with constant time-delay, it is always possible to obtain an aug-
mented system without delayed states. This approach, however,
does not seem to be suitable for time-varying delay, delay-in-
dependent stability characterization, and for robust-system sta-
bilization [23]. With regard to the stability analysis issue, Ver-
riest and Ivanov in [24] studied the sufficient conditions for the
asymptotic stability of the discrete-time state delayed systems
by using an algebraic matrix inequality approach. Concerning
the problem of designing control systems, Song and Kim in
[25] have established the control problem for linear dis-
crete-time uncertain time-delay systems and a sufficient condi-
tion has been derived in terms of a Riccati-like matrix inequality.
In the context of discrete time-delay systems, sufficient condi-
tions for the solvability of the control problem was obtained
in [26] in terms of a modified Riccati equation. Recently, the
problem of robust control for a class of discrete systems
with time-varying delays and time-varying norm-bounded pa-
rameter uncertainties was studied by Xu and Chen [27]. How-
ever, robust stability analysis of the production networks that
includes time-delays in their local capacity adjustments is an
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important problem and, so far, very little attention has been paid
for the investigation of this problem, see for instance [4].

In this paper, we contribute to the further development of a
local capacity control design for a class of production networks
of autonomous work systems with time-varying delays in the
capacity changes. The system under consideration is modelled
as a discrete-time singular form. An appropriate Lyapunov func-
tion is constructed in order to establish a delay-range-dependent
sufficient condition in terms of a matrix inequality for finding a
controller gain for the local capacity adjustments which main-
tains the WIP in each work system in the vicinity of planned
levels and guarantees the asymptotic stability of the system and
reduces the effect of the disturbance input on the controlled
output to a prescribed level. When this matrix inequality is fea-
sible, the controller gain can be found by using LMI Toolbox
Matlab. Finally, numerical results are provided to demonstrate
the proposed approach.

The notation used throughout the paper are fairly standard.
The superscript ‘ ’ stands for matrix transposition; denotes
the -dimensional Euclidean space; is the set of all real

by matrices. refers to the Euclidean vector norm or the
induced matrix 2-norm. and represent, re-
spectively, a column vector and a block diagonal matrix and the
operator represents . and
denote, respectively, the smallest and largest eigenvalue of the
square matrix . The notation means that is real
symmetric and positive definite; the symbol denotes the el-
ements below the main diagonal of a symmetric block matrix.
If and , the orthogonal complement

is defined as a possibly nonunique matrix with
rank , such that .

II. MODEL OF AUTONOMOUS WORK SYSTEMS

In this section, we consider a linear discrete-time dynamic ap-
proach for modeling the flow of orders into, out of, and between
work systems. The model chosen promotes straightforward cal-
culation of fundamental dynamic properties such as character-
istic times and damping. In this network, the work systems do
not share information regarding the expected physical flow of
orders between them.

Assume that there are work systems in a production net-
work, as shown in Fig. 1. Vector specifies the rate at
which orders are input to the work systems from sources ex-
ternal to the production network, which is constant over time

where . The parameter
is a time period between capacity adjustments [for example,

1 shop-calendar day (scd)]. The total orders that have been input
to the work systems up to time then can be represented
as the vector [4]

(1a)

where vector is the rate at which orders are output from
the work systems during time (the
actual capacity of each work system) and is a matrix in which
element approximates the fraction of the flow out of work
system that flows into work system .

The total number of orders that are completed by the work
systems up to time can be represented by
the vector

(1b)

while the rate at which orders are output from the network
during time is

(1c)

where is a diagonal matrix in which nonzero diagonal ele-
ment represents the fraction of orders flowing out of work
system that flow out of the network. is assumed to be con-
stant, and

(1d)

The WIP in the work systems is

(1e)

where represents local work disturbance, such as rush
order, that affect the work system. Furthermore, the actual ca-
pacity of each work system depends on three components as
follows:

(1f)

where represents local capacity disturbances such as
equipment failures and denotes planned capacities
of the work systems. Also, represents local capacity
adjustments to maintain the WIP in each work system in the
vicinity of the planned levels using straightforward
proportionality . In other words, can be described in
the form of

(1g)

While each work system could have a different value of the con-
trol parameter , here it is assumed to be the same throughout
the network. Furthermore, the actual capacity may be less than
the full capacity due to capacity disturbances such as
operator illness, work system starvation due to insufficient WIP,
etc. It is assumed that a time-varying delay exists in the
capacity changes for logistic reasons such as operator
work rules and satisfies

(2)

where the known parameters and are lower and upper
bound of the time-varying delay , respectively, and the
planned capacity and WIP are also assumed to be known and
delay free in advance.

In (1a)–(1g), the general case of omnidirectional order-flow
structures is assumed in which the flow of orders into a given
work system can be a function of the flow of orders out of that
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same work system. The simplest case is when some of the or-
ders that leave a work system reenter the same work system.
Furthermore, information used in calculating full capacity, such
as expected order flows into the network and capacity plans for
the work systems, is assumed to be available time periods
in advance regardless of whether it is the result of external plan-
ning or derived from information shared within the network.

Remark 1: It is clear from (1a)–(1g) that the fundamental dy-
namic properties of the network are a function of order-flow
structure. With the objective of establishing and maintaining
consistent and desirable fundamental dynamic properties, we
may consider a network in which each work system shares ex-
pected capacity information with all other work systems in the
network, allowing individual work systems to locally compen-
sate for physical order-flow coupling.

Remark 2: Capacity adjustments can be large, and there can
be relatively large differences between successive capacity ad-
justments. Such adjustments must be acceptable in application.
Delay in capacity adjustment has been included to represent the
inability to make instantaneous adjustments. For this case,
is called an interval-like or range-like time-varying delay [27].
It is also noted that this kind of time delay describes the real
situation in many practical engineering systems. For example,
in the field of networked control systems, the network transmis-
sion induced delays (either from the sensor to the controller or
from the controller to the plant) can be assumed to satisfy (2)
without loss of generality [28], [29].

Remark 3: It is noted that the system structure in [4] con-
siders a production network with constant delays in local ca-
pacity adjustments and in compare to our case do not center on
time-varying delays, i.e., the results in [4] cannot be directly ap-
plied to the systems with time-varying delays.

Equations (1a)–(1g) can be combined to obtain a discrete-
time singular model for the system

(3a)

(3b)

where ,

, , and with

where denotes controlled outputs of the network and the
constant matrices are defined in Section IV.

Then, the local capacity control problem to be addressed
in this paper can be formulated as finding the controller gain
in (1g), the same throughout the network for each work system,
such that

i) The system (3a) is asymptotically stable when
.

ii) Under the zero-initial condition and for any nonzero
, the controlled output satisfies the

performance measure

(4)

where is a prescribed scalar.
Remark 4: The order-flow structure and the choice of ,
and will affect the fundamental dynamic properties of

the network (possibility of free oscillation when disturbed, time
required to respond to changes in plans, time required to recover
from disturbances, etc.) and the dynamic properties of the net-
work may change with time if the order-flow structure is not
constant. Furthermore, significant deviation of WIP from plan
can be easily illustrated if the work system capacity required
to satisfy order flows entering from outside network and from
other work systems deviates significantly from planned capacity
by the case of constant inputs.

III. MAIN RESULTS

In this section, sufficient conditions for the solvability of the
local capacity control problem are proposed using the Lya-
punov method and an LMI approach is developed.

A. Stability Analysis

In this section, assuming that the control gain is known,
new delay-range-dependent sufficient conditions for the local
capacity control problem formulated in the previous section
are presented.

Theorem 1: For given scalars , the system (3) is
asymptotically stable and satisfies the performance bound

by the control gain , if there exist some matrices
and positive-definite matrices and such that the following
matrix inequality is feasible:

(5)
with

and
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Proof: Consider the Lyapunov function candidate in the
following form:

(6)

where

(7)

and

(8)

Then, one obtains

(9)

Now, by some calculation, we derive

(10)

From (2) and (7)–(10), it is easy to see that

(11)

Using the obtained inequalities (10) and (11), the following re-
sult is obtained:

(12)

Moreover, from (1a)–(1g), the following equation holds for any
matrices , , and with appropriate dimensions:

(13)

Furthermore, in the case of , it follows from (12)
that:

(14)

where

and

(15)

On the other hand, considering the Lyapunov function (6),
one gets

(16)

where
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Define

(17)

where is a positive integer scalar.
Now, noting the zero initial condition and (12) and adding the

left-hand side of the (13) to the right-hand side of the inequality
(12), one has

(18)

where and where (19) is shown
at the bottom of the page. Now, by the Schur complement for-
mula, it follows from (5) that , which together with (18)
ensure that (4) holds under the zero-initial condition.

Moreover, the condition implies . Therefore,
from (14) and (16) it is easily concluded that the system (3) is
asymptotically stable.

Remark 5: The reduced conservatism of Theorem 1 benefits
from the construction of the new Lyapunov function in (6), using
a free weighting matrix technique, and no bounding technique
is needed to estimate the inner product of the involved crossing
terms. It can be easily seen that the derived sufficient condi-
tions are discrete-delay-range-dependent. Therefore, it makes
the treatment in the present paper more general with less conser-
vative in compare to most existing results in the literature which
are delay-range-independent, see for instance [18] and [20].

B. Control Design

This subsection is devoted to the design of the local capacity
control gain by using the results in Theorem 1. Obvi-

ously, the matrix inequality (5) includes multiplication of the
matrices and the control gain . In the literature, more
attention has been paid to the problems having this nature (see
for instance [18]). In the sequel, it is shown that, based on the
Finsler’s Lemma a convex programming algorithm in terms of
LMIs is developed to solve the bilinear matrix inequality (5).

Lemma 1: (Finsler’s Lemma [30]) Consider a vector ,
a symmetric positive definite matrix and a matrix

, such that . The following statements
are equivalent:

i) such that , ;
ii) ;

iii) ;
iv) ;

The following theorem gives a sufficient condition for the ex-
istence of a local capacity controller for the work systems
(1a)–(1g).

Theorem 2: For prescribed , , there exist a local
capacity controller in the form of (1g) such that the system
(3) is asymptotically stable and with an performance for
any delay satisfying (2), if there exist matrices and
positive-definite matrices and such that the following LMI
is feasible:

(20)

where

with

and

In this case, a desired control gain can be obtained from
the following inequality:

(21)

(19)
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with

such that

Proof: Let and . Then, the ma-
trix inequality (5) can be rewritten as the inequality (21). Based
on the Finsler’s Lemma, it follows that (21) has a solution if the
LMI (20) holds.

Remark 6: Theorem 2 provides sufficient conditions for the
solvability of the local capacity control problem for the
work systems (1a)–(1g). It is shown that a desired controller can
be constructed by solving the condition (21) in terms of the gain

when the LMI condition (20) is satisfied.
Remark 7: It is worth noting that the number of the variables

to be determined in the LMI (20) is , where is
the number of interacting work systems. It is also observed that
the LMI (20) is linear in the set of matrices , , , , ,
and the scalar . This implies that the suboptimal solution to the
problem of delay-dependent local capacity control can be
found by solving the following convex optimization problem

IV. NUMERICAL RESULTS

Consider the case of a supplier of components to the auto-
motive industry and for which production data documents or-
ders flowing between five work systems over a 162-day period.
These work systems and the order-flow structure over this pe-
riod is illustrated in Fig. 2. In this network, all order flows are
unidirectional; therefore, the fundamental dynamic properties
of capacity adjustment in the individual work systems are inde-
pendent. Then, the internal flow of orders is approximated using
the following matrix [4]:

Fig. 2. A production network consisting of five work systems.

in which element is the total number of orders that went
from work system to work system divided by the total
number of orders that left work system . Generally, in the
special case of a unidirectional order-flow structure, upstream
work systems do not receive work from downstream work
systems, and the work systems can be numbered such that

for .
Consider and in (1a)–(1g)

with the sampling time scd. It is required to find a con-
troller gain in (1g) such that the system (3a) is asymptotically
stable and the performance measure is satisfied as well. To
this end, in light of Theorems 1 and 2, the LMIs (20), (21) using
Matlab LMI Control Toolbox for different values of parameter

with , and different values of the performance
bound , are solved and the values of the parameter are ob-
tained and shown in Table I.

For simulation purposes, changes in the local capacity
of the work systems are considered under the

controller gain and the performance
bound . In this case, in response to a one-order step
planned levels at the shearing-sawing work, time
behavior of the local capacity changes at the shearing-sawing
work system is depicted in Fig. 3 for four different values
of the upper bound of the time-varying delay , i.e.

. It is also noting that a lower value of control
parameter tends to produce a more slow-acting dynamic
system and, within limits, a higher value of tends to produce
a more fast-acting system.

V. CONCLUSION

The problem of local capacity control for a class of
production networks of autonomous work systems with time-
varying delays in the capacity changes was investigated in this
paper. The system under consideration was modelled as a dis-
crete-time singular form. Attention was focused on the design of
a controller gain for the local capacity adjustments which main-
tains the WIP in each work system in the vicinity of planned
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TABLE I
CONTROLLER GAIN � W.R.T. � AND �

Fig. 3. Time behavior of the local capacity changes at the shearing-sawing
work system.

levels and guarantees the asymptotic stability of the system and
reduces the effect of the disturbance input on the controlled
output to a prescribed level. In terms of a matrix inequality, a
sufficient condition for the solvability of this problem was pre-
sented using an appropriate Lyapunov function, which is depen-
dent on the size of the delay and is solved by existing convex op-
timization techniques. When this matrix inequality is feasible,
the controller gain can be found by using LMI Toolbox Matlab.
Finally, numerical results were provided to demonstrate the pro-
posed approach.

In the proposed method, no information is shared between
work systems and it has been shown that a good capacity plan
is required if steady-state WIP errors are to be avoided. The
provision of such a plan by sources external to the network
may be a challenge because work systems require capacity to
process both external order flows from outside the network and
order flows within the network. Therefore, this method may
be more appropriate when the order-flow structure is unidirec-
tional. Delay in capacity adjustment has been included to repre-
sent the inability to make instantaneous adjustments, but varia-
tions in cost, delay and feasibility with adjustment magnitude,
as well as capacity limits, have not been modeled. It is noted
that for the special case of unidirectional order-flow structures,
the local dynamic behavior of the work systems is not affected
by the order-flow structure, and that the network dynamic be-
havior is simply characterized by series combinations of work
system dynamics. However, order-flow information sharing still
is beneficial in this case because it curtails propagation of dis-
turbances to downstream work systems.
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