
� �������	� 
 ��� � � ����� � ��
 ����� ��
 �������
�����! #"%$'&($*)+�! -,/.10 ��2( �$*34��2()65�798�:�;<8�=?>@&A34��2()65

0 >#:9$*B+BC)+8�DFEG)H2I KJ�&L2( �>M8�>@&A3N�OBQP	��RL)+R
�9798��S2()6>M8�R

TVUXWZY<[]\_^a`cb!dfeg[

h#ikj!lfmCnpoforqtsfo

uvY<wx\_dxy{zrY|e(U*W~}'Y<w���Y�d�y*^'�{��eLz�y'Yt��eLz�\�b
�cY<���Awrzc�A�����!� �SY<�*z�Yt����Y<w����A�A�





Modelling with Orthonormal
Basis Functions
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Chapter 1

Discrete-Time System Modelling in
� �

with Orthonormal Basis Functions

In this chapter, model sets for linear time–invariant systems spanned by fixed pole orthonormal
bases are investigated. The obtained model sets are shown to be complete in �������
	������������	 ,
the Lebesque spaces of functions on the unit circle � , and in �����
	 , the space of periodic continuous
functions on � . The ��� norm error bounds for estimating systems in �������
	 by the partial sums
of the Fourier series formed by the orthonormal functions are computed for the case ��������� .
Some inequalities on the mean growth of the Fourier series are also derived. These results have
application in estimation and model reduction.

1.1 Introduction

The decomposing description of linear time–invariant infinite–dimensional dynamics in
terms of an orthonormal basis is an important part of modern Systems Theory and has a
long history in modelling and identification of dynamical systems dating back to the clas-
sical work of Lee [19] and Wiener [36]. This approach is greatest utility when accurate
system descriptions are achieved with a small number of basis functions. The develop-
ment of suitable basis functions that reflect the dominant charecteristics of the system has
attracted considerable interest [26, 28, 30, 31, 32, 33, 34, 35, 22, 23, 17, 3, 5, 4, 7].

In particular, in the areas of control theory, signal processing and system identification,
there has long been interest in the use of the finite–impulse response, the Laguerre, and
the two–parameter Kautz functions to model stable linear dynamical systems [19, 18, 16].
The Laguerre and the Kautz models are special cases of the general orthonormal basis
functions in [17], where the poles of the system transfer function are restricted to a finite
set. The general orthonormal basis functions are generalized by the rational orthonormal
basis functions with fixed poles considered in detail in [23, 3, 5, 4].

In [3] the rational orthonormal basis functions were shown to be complete in the disk
algebra provided that the chosen basis poles satisy a mild condition and more recently
in [4], it was established that the Fourier series formed by the rational orthonormal basis
functions converges in the Hardy spaces.

In this chapter, a similar completeness result is obtained for the spaces � � �"!$#$�&%�'(*),+ # and - �"!.# . As the orthonormal system, we consider a set of complex-valued
rational functions /10
2 3 defined by a choice of numbers 4527698 and :;2�6<8 , as 0>=@?
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� %���� 4 = � ��� � %�� 4 =�4 # and for ��? %
	���	���
0�2 ?

� %���� 4 2 � �
%�� 4 2 4 � 2 	 � 2�? 2�� ����� = 4 � 4 �

%�� 4 � 4 	 (1.1)

0�� 2 ?
� %���� :;2 � �
4 � :;2 ���2�� � 	 ���2 ? 2���� �

%�� : � 44 � : � 	 (1.2)

where � � = ? % . The orthonormality is with respect to the inner product

��� 	� "! ? %�$#&% ��'= � �)(+*-, #  �)( *., #"/�021
We will establish the following completeness result.

Theorem 1.1.1 The linear span of the functions /10�2 3 defined by (1.1)–(1.2) are every-
where dense in � � �"!$# ( % )�(�)�+ ) as well as in - � !.# if and only if34

2 � = �&%���� 4 2 � # ? + 	 34
2 � � �&%���� :;2 � # ? + 1 (1.3)

This result has interesting applications on the robust recovery of functions in � � � !.# from
noise–corrupted evaluations on the unit circle. An abstract framework that solves this type
of problems is outlined in [24]. In the modelling of physical systems, it is necessary to
ensure that the modelled impulse response is real valued. This issue is addressed in 5 1.5.

The next result concerns the Fourier series of integrable functions on ! with respect to
the orthonormal system (1.1)–(1.2) whose partial sums are defined by

6 2 � �)(+*., # ? 247 � � 2 �8� 	 0 7 ! 0 7 �9(+*., #�1 (1.4)

The � � norm errors of the estimate (1.4) are computed quite accurately for the case % )( ) + . In establishing this, an essential role is played by the Blaschke products in (1.1)–
(1.2). Relations between projection operators, conjugate functions, and the Fourier series
are also displayed. Having computed the error bounds for the partial sums of the Fourier
series (1.4), we provide bounds on the mean growth of the Fourier coefficients / ��� 	 0 7 ! 3
and derive the so-called Hausdorff-Young inequalities.

Finally, a simulation example is given to illustrate the use of the basis functions defined
by (1.1)–(1.2) for modelling.

1.2 Completeness of the orthonormal system

We will represent
6 2 � in terms of two Cauchy integrals of

�
when

� �9( *., # is the restriction to! of a complex function which is analytic on a region that contains ! . This representation
facilitates a simple proof of Theorem 1.1.1. The analysis of the estimate (1.4) will be based
on these formulae. To this end, first we have the following lemma.
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Lemma 1.2.1 (Christoffel-Darboux formulae)

247 � = 0 7 ��� # 0 7 � 4 # ? %�� � 2�� � ��� # � 2�� � � 4 #
%�� � 4 	 4 ���? % (1.5)� �47 � � 2 0 7 ��� # 0 7 � 4 # ? %�� � �2 ��� # � �2 � 4 #� 4 � % 	 4 ���? % 1 (1.6)

Proof. The proof of (1.5) is by induction. For ��?	� ,

%�� � � �
� # � � � 4 #
%�� � 4 ? % ��� 4 = � �

� %�� 4 = � # �&%�� 4 =�4 # ? 0>= �
� # 0>= � 4 #
while for ����

%�� � 2�� � �
� # � 2�� � � 4 #
%�� � 4 ? 2�� �47 � = 0 7 �
� # 0 7 � 4 #��<� %���� 4 2 � � # � 2 �
� # � 2 � 4 #� % � 4 2 � # � %�� 4 2 4 # 1

The proof of (1.6) follows from (1.5) by the transformations and back transformations4��� % � 4 , � �� % ��� , : � �� 4 � � � 	�� ? %
	��2	��� 	 � .

Hence from (1.5)–(1.6), we get for the two components of the sum in (1.4)
247 � = ��� 	 0 7 ! 0 7 � 4 # ? %� #�� %����

� ��� #
��� 4 /���� � 2�� � � 4 #�$#�� %����

� ��� #"/������� 4 # � 2�� � ��� # (1.7)� �47 � � 2 ��� 	 0 7 ! 0 7 � 4 # ? %� #�� % ���
� ��� #4 ��� /���� � �2 � 4 #�$#�� % ���

� ��� #"/��� 4 ��� # � �2 �
� # (1.8)

where � = ���5# ? ( *! � � '"��' �$# # .
Let # �%$ � 	&$ � # be the annulus /14(' $ � ) � 4 � ) $ � 3 , where $ � ) % and $ � � % are two

given positive numbers. Suppose that
� � 4 # is analytic in a region that contains # �
$ � 	&$ � # .

Then the following Cauchy formula is valid on # �%$ � 	&$ � #� � 4 # ? %�$#�� % �*)
� �
� #
��� 4 /+�,� %� #�� % �.-

� ��� #
��� 4 /�� (1.9)

where
� � �/�5# ? $ � ( � *! �	 � � ���1# ? $ � (+*! � � '"��' �$# #�1

The integrands in (1.7) are meromorphic functions on # �
$ � 	.$ � # whose singularities are
inside � = and are encircled once by the contours �;= and � � . Hence by the residue theorem
[27, Th. 10.42]247 � = ��� 	 0 7 ! 0 7 � 4 # ? %�$#�� %�� -

� �
� #
� � 4 /+� � � 2�� � � 4 #�$#0� %1� -

� ��� #����� 4 # � 2�� � �
� # /��
and letting 42� ( *-, , we obtain

247 � = ��� 	 0 7 ! 0 7 �)(+*-, # ? %�$#�� %��.-
� �
� #
� � ( *-, /��

� � 2�� � �)( *., #�$#�� %1�.-
� �
� #����� ( *., # � 2�� � ��� # /���1 (1.10)
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Since the integrands in (1.8) are analytic on # �
$ � 	&$ � # , their integrals on the cycle � =���� �
must vanish by the Cauchy theorem. Hence� �47 � � 2 ��� 	 0 7 ! 0 7 � 4 # ? %� #�� %�� )

� ��� #
� � 4 /���� � �2 � 4 #�$#�� %��*)

� �
� #����� 4 # � �2 �
� # /��
and letting 42� ( *-, , we get� �47 � � 2 ��� 	 0 7 ! 0 7 �9(+*., # ? %�$#�� % � )

� ��� #
� � ( *., /��

� � �2 �)( *-, #�$#0� %�� )
� ��� #����� ( *., # � �2 �
� # /���1 (1.11)

Thus from (1.9) and (1.11)� �)(+*., # � 6 2 � �9(+*., # ? � 2�� � �9( *., #� #�� %��.-
� ��� #

�
� � ( *-, # � 2�� � �
� # /��
� � �2 �)( *., #�$#�� % �*)

� �
� #����� ( *., # � �2 ��� # /���1 (1.12)

The third step is to bound
� � 6 2 � . First we have the following lemma.

Lemma 1.2.2 ������	� �.- %� � 2�� � � 4 # � ' 
�� � � � $ � ��%� $ �
24� � = �&%���� 4 � � #��� (1.13)

������	� � ) %� � �2 � 4 # � ' 
�� � � � % � $ �� 24� � � �&%���� : � � #��� 1 (1.14)

Proof. Let � ? 4 � �
. Then

%� � 2�� � � 4 # � ? � � 2�� � � � #�� ' 2���� =
����� � � 4 �
%�� 4 � � ����� (1.15)

Let � ? $ ( *., and 4 � ?�� � ( *-,�� denote the polar decompositions of � and 4 � . Then a simple
algebraic manipulation yields����� � � 4 �

%�� 4 � � ����� � ' %�� � % ��$�# �&% � � � # '�
�� � � �$�&%�� $�# �&%�� � � # # (1.16)

where the last inequality follows from the fact that ( ����� % � : for all : . Consideration
of (1.15) and (1.16) with $ ? % � $ � completes the proof of (1.13). The proof of (1.14) is
similar.
Hence from Lemma 1.2.2 and the integral formulation of the approximation error (1.12)� � � 6 2 ��� 3 ' ������	�! #"%$ )�& $ -�' � � � 4 # � $ �

$ � � % 
�� � � � $ � ��%� $ �
24��� = �&%���� 4 � � #(��

� ���)��	�* #"+$ )�& $ -�' � � � 4 #�� $ �
%�� $ � 
,� � � � %���$ �� 24��� � � %���� : � � #(�� 1 (1.17)
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Now we complete the proof of the sufficiency. Let
� 6�� � �"!.# . Recall that the trigono-

metric system / (�� * 7 , 3 is closed in - �"!$# (Weierstrass’ second theorem) and hence in � � �"!$#
since - �"!$# is a dense subset of � � �"!$# . Thus we may assume without restriction that

� �9( *., #
is a trigononometric polynomial. Since

�
extends to an analytic function on the punctured

plane # � � 	 + # , it follows from the above inequality with $ � ? % �
� and $ � ? � that�����2�� 3 � ���=�� , � ��'
��� � �9( *., # � 6 2 � �)( *., # ��� ?	�

provided that the conditions in (1.3) are satisfied. This proves the sufficiency.
For the necessity, assume that 34

2 � = � %�� � 4 2 � # )�+ 1
Then the unimodulated finite Blaschke products � 2 � 4 # in (1.1) converge uniformly on 8 to
a Blaschke product

� � 4 # ?
3�
2 � = 4 2 � 4

%�� 4 2 4 � 4 2 �4 2
(with the convention � 4 2 � � 4 2�? % when 4 2�? � ) which has zeros precisely at the points4 2 . In this case, the linear functional 	 defined on � � �"!$# � %7' (9) + # and - �"!$# by	 � � # ? ��� 	 � ! is clearly nontrivial and also bounded. However by Cauchy’s theorem it
also vanishes at every 0
2 as

	 � 0 2 # ? � � % # 2�� � 2�7 � = � 4 7 �4 7 %�$#�� % � �
� % ��� 4 2 � �
%�� 4 2 �

3�7 � 2�� �
4 7 ���%�� 4 7 � � 4 7 �4 7 /�� ?	� 1

With the same reasoning we have 	 � 0 2 # ? � for all � ) � . Hence the linear span of the
sets /10 2 �)( *-, # 3 is not dense in the spaces - �"!$# and � � � !.# � ( � %5# . The other case34

2 � � �&%���� :;2 � # ) +
is similar and it suffices to consider the Blaschke product

� � � 4 # ?
3�
2 � �

%�� :;2 4:;2 � 4 :;2� :;2 �
which is analytic on # � %
	 + # and has common zeros with the functions 0�2 � 4 # , � ) � and
the linear functional 	 � defined on � � �"!$# � % ' (�)�+ # and - � !.# by 	 � � � # ? ��� 	 � � � 4 ! .In Achieser [1], Theorem 1.1.1 is proven for the rational functions in the form
 %( *., � 4 2�� 32 � � � � ' 0 ' �$# #
where /14 2 3 is a given sequnce of distinct complex numbers satisfying � 412 �,�? % . These
functions don’t include the exponentials / ( � * 2 , 3 whereas the orthonormal functions defined
by (1.1)–(1.2) include them in the special case 412 ? :;2 ?"� for all � .

The proof in Achieser builds on the solution of a certain extremal problem. When suited
for the basis functions in (1.1)–(1.2), this extremal problem directly yields Theorem 1.1.1.
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We omit the details. Our proof on the other hand is based on the integral formulation of the
approximation error.

The completeness conditions (1.3) are very mild. For example removing a finite number
of 0 2 ’s from the span does not destroy the completeness as the same conditions still apply.
This stability property is not seen in the bases spanned by the complex exponentials / ( *���� , 3
where / � 2 3 is a sequence of real or complex numbers. For example if / � 2 3 satisfies

� � 2 � � � ' %� ( 	 ��? � 	�� %
	�� �2	���
then / ( *���� , 3 is complete in � � �"!.#$�&% ) ( ) + # (Kadec’s

�� –theorem). However, the
constant %��
� ( can not be replaced by any larger number.

1.3 Mean convergence of the Fourier series

In this section we show that the Fouries series formed by the orthonormal functions in
(1.1)–(1.2) converges in the spaces � � � !.# �&% )7( ) + # .

Let � 2 � denote the partial sums of the Fourier series of an integrable function
�

with
respect to the exponential functions / ( � * 7 , 3 . It is well-known fact that every

� 6 � � �"!$#� ( � % # has a Fourier series converging in � � � !.# if and only if the operators ��2 are uni-
formly bounded.

Now assume that ����� 2 � ��2 � )�+ and consider the operators 	�2 which maps 
 3 � 3�� 7 ( * 7 , 6
to 
 2 = � 7 ( * 7 , . The identity 	 � 2 � �)(+*-, # ? (+* 2 , ��2 �9( � * 2 , � # (1.18)

shows that ����� 2 � 	 2 � ) + . Hence for each
� 6 � � �"!$# , the sequence 	 2 � converges

in the norm and let � � � denote the limit, which is the projection of
�

as 
 3 � 3 � 7 ( * 7 , ��
 3= � 7 ( * 7 , . In particular,
� � � � ) + . This implies that the complementary projection� ��' � �)( *-, # �� 
 � �7 � � 3�� 7 ( * 7 , is also bounded.

Let � denote the Cauchy integral of
�

defined as

� � 4 # ? %�$#�� %����
� �
� #
� � 4 /���	 � = ? (+*-,
� � ' 0 ' �$# #�1 (1.19)

On the domains seperated by ! , � � 4 # is analytic. Observe that the Cauchy integral of � � �
vanishes on 8 . (This follows from the boundedness of

� ��� � and the denseness of the
trigonometric polynomials in � � �"!$# �&% ' (�) + # ). Thus � equals to the Cauchy integral
of � � � on 8 . This implies that � � 4 # converges to � � � �)( *., # for almost every ( *., 6 ! as42� ( *., nontangentially in 8 . Hence in (1.7) letting 4 � ( *-, nontangentially in 8 , we get
almost everywhere on !

247 � = ��� 	 0 7 ! 0 7 �)( *., # ?�� � � �9( *., # � � 2�� � �9( *., # � � � �
� 2�� ��� �9( *., # (1.20)

Next consider the Cauchy integral (1.19) on # �&%
	 + # , the complement of the closed
unit disk. The conjugation and the change of variables � ? ( *�� yield

� � 4 # ? %� # % ��'=
� �9( *�� #%�� 4 ( *�� /�� (1.21)
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In (1.21) substituting � ? %�� 4 and changing the variables as ( *�� ? � we obtain

� %� � � %��� ? %� #�� % �.�
� �
� #

� ����� � # /���	 � 6 8 1
This is recognised as the previously considered situation where

� �)( *., # is replaced by ( � *., � �)( *., # .
Consequently for almost every ( *., 6 ! , as �"� ( *., nontangentially in 8

� %� � � %� � � � � � � �)( *., #( *., �
which implies � � 4 # � � � � � �)( *., # as 4 � ( *-, nontangentially in # � %
	 + # . Thus in (1.8)
letting 4 � ( *., nontangentially in # �&% 	 + # we get almost everywhere on !� �47 � � 2 ��� 	 0 7 ! 0 7 �9(+*., # ? � � � �)(+*., # � ���2 �)(+*., # � � � �

� �2 � �)(+*., # 1 (1.22)

Hence from (1.20) and (1.22)� � 6 2 � ? � 2�� � � � � � � � 2�� � #�� ���2 � � � � � ���2 # a.e. ! (1.23)

Let �� �9( *., # denote the conjugate of
� �)( *., # . Recall that

�
and �� are recovered almost

everywhere on ! by taking nontangential limits of � � 4 # and �� � 4 # defined by

� � � � �� # � 4 # ? %�$# % ��'= ( *�� � 4( * � � 4
� �9(+*��"#"/�� (1.24)

as 4 � ( *., . Let � denote the map
� �� � � � �� . Noting that � = ? ��� 	 % ! , the operators � �

and � � can be written as

� � � ? %� � � � � ��� 	 % ! # (1.25)

� � � ? � � � � # � � = ? %��� � � � # � ��� 	 % !
	�1
Thus from (1.23) and the equalities

��� � � 7 	 % ! ? ��� 	 � 7 ! for all �
� � 6 2 � ? � 2�� �� �� �

� 2�� ��� � � �2� ��� �
� �2 � � � 2�� �� ��� 	 � 2�� � ! � � �2� ��� 	 � �2 ! 1

Hence � � � 6 2 � � ��' � % � � � � # � � � �
	 � 6 � � �"!.#�1 (1.26)

We started with the assumption ����� 2 � ��2 � ) + and concluded via to the boundedness of� � that
� � � ) + . The converse is also true by the equalities (1.25) and (1.18).

Let
 2 denote the linear space spanned by the sets /10 7 �)( * � # 3 2 7 � � 2 and define

( 2 � ��� � � �"!.# # ? � ���� ��� � �  � � � � 	 � 6 � � �"!$# 1 (1.27)

Thus ( 2 � ��� � � �"!$# # is the best approximation error of
� 6 � � � !.# by functions in

 2 . Since
(1.1)–(1.2) is closed in � � �"!.# �&%.' ( ) + # and - �"!.# , the quantity ( 2 � ��� � � � !.# # defined
by (1.27) monotonically tends to zero as � � + .
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Let
�

be a given function in � � � !.# and let  be the minimizing solution in (1.27). Let� ? � �  denote the approximation error. Observe that
6 2  ?  since  6  2 . Due to

the linearity of
6 2 notice also that

6 2 � ? 6 2 � � 6 2  . Thus from (1.26)� � � 6 2 � � � ? � � � 6 2 � � �
' �&% � � � � # ( 2 � ��� � � � !.# #�1 (1.28)

The error bound in (1.28) expressed in terms of
� � �

is rather tight and without further
assumptions on

�
and the orthonormal system (1.1)–(1.2) it does not seem possible to

improve upon. In the special case
� 6�� � �"!$# , the Hardy space of functions  which are

analytic on 8 and such that  �)( *., # 6 � � � !.# , we have instead of (1.28)� � � 6 2 � � ��' %� �&% � � � � # ( 2 � ��� � � �"!.# # (1.29)

where
6 2 � ? 
 2 7 � = ��� 	 0 7 ! 0 7 .

We need the following lemma to compute an upper bound for
� � �

.

Lemma 1.3.1 Let
� ? ��� � � ��� where

���
and

���
are real-valued functions. Then� ����� � � � ��� � ��' 0 � � � � �
1 (1.30)

where

0 � ?
� � �
	 � 	 % ' ( ' �� " � � � ' 	 � 	 ( � ��1 (1.31)

Proof. Note the following inequalities whose proofs can be found for example in Duren [11,5 4.2] � � � � ��� � �� � # ' �
�,�� # � ' � � �� � 	 � )�( ' %� � �� � ' �
�,�� # � ' � � � � �
� � �� � # 	 ( � %
where � and  are two arbitrary nonnegative numbers. Put � ? � ��� � � and  ? � ��� � � in the
above inequalities. Then for %�' ( ' �

� � ����� � � � ��� � �5# � ' � � � � % ��� � ���� � 	 � � � � ���� � 	 � 	 � ( � %5#
' � � � � � � ��� - % � � �� � � �� 	 � 	 � � ( �
�.' % #
? � � 	 � � ��� ��

while for ( � �
� � ����� � � � ��� � �5# � ' � � � � % ��� � �� � � 	 � � � � �� � � 	 � 	 � ( � %5#

' � � � � % � � �� � � �� 	 � 	 � � ( �
� � %5#
? � � � � � � � ��

When ( equals to % or � , the top equality in (1.31) is attained for complex-valued func-
tions in the form

� ? �&%�� �# ��� . Observe that when ( ? + , the bottom equality is attained
by complex-valued functions with real and imaginary parts disjointly supported on ! .
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If % )7( ) + and
�

is real-valued function, it is known [12] that� � � � ��' - � � � � � (1.32)

where - � is the best possible constant given by

- � ?
�
��� � � � # � � ( # � � � 	 % )7( ' �
� � ��� � # �
� ( # � � � 	 � )7( ) + 1 (1.33)

Write
�

as
� ? ��� ��� ��� where

���
and

���
are real valued. Then from (1.32) and (1.30)

due to the linearity of � � � � � � ' � � ����� � � � � ��� � �
' - � � � ��� � � � � ��� � �1#
' - � 0 � � ��� �
1 (1.34)

Using (1.28) and (1.34), the following result can now be established.

Theorem 1.3.2 Consider the partial sums of the Fourier series defined by (1.4). Let ( 2 � ��� � � � !.# # ,0 � , and - � be as in (1.27), (1.31), and (1.33). Then for all % )�(�) + and
� 6 � � �"!$#� � � 6 2 � � � ' � % � 0 � - �1# ( 2 � ��� � � � !.# # (1.35)

and if the conditions in (1.3) are satisfied� ���2 � 3 � � � 6 2 � � � ?	� 1
From (1.29), (1.34), (1.31), and (1.33), observe that

� � � 6 2 � � � ' � � �
� # ( 2 � ��� � � � !.# #
while the best value is ( 2 � � � � � �"!$# # .

The inequality (1.35) shows that the approximation error of the Fourier series is in
the order of the best achievable error for every choice of orthonormal system of functions
when the approximated function lies in � � �"!$# � % ) (�) + # . The choice of orthonormal
functions on the other hand depends on the class of functions being approximated. This
subject is not investigated here.

In Theorem 1.3.2, the spaces � � �"!$# and - �"!.# can not be included since the projection
operator � � is not bounded on these spaces.

1.4 Mean growth of the Fourier coefficients

In this section we will derive two inequalities which are analogous to the Hausdorff-Young
inequalities for the trigonometric basis / ( � * 2 � 3 .
Theorem 1.4.1 Let %�' ( '�� and let � be the conjugate exponent, that is, ��? ( � � ( � %5# .
Suppose that the basis defined by (1.1)–(1.2) is bounded, i.e.�����2 / � 4 2 �-	�� :;2 � 3
? $ ) % 1 (1.36)

If
� 6 � � �"!.# then

� 34
2 � � 3 � ��� 	 0 2 !$� � � �
	

� ' � % � $
%���$ � " � � � ' 	 � � � ��� �
1 (1.37)
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If / � 2 3 6�� � then there exists a function
� 6 � � � !.# such that � 2 ? �8� 	 0 2 ! . Moreover,� � �

� ' � % ��$%���$ � " � � � ' 	 � � � 34
2 � � 3 � � 2 � � � �
	 � 1 (1.38)

Proof. The mapping
6 ' � �� / ��� 	 0
2 ! 3 is a linear transformation of functions on the

measure space �"! 	�� � # into functions on ��� 	�� � # , � being the group of integers and � � the
so-called counting measure. The norm of the mapping as � � � !.# ���� 3 is� 6 ���

)�& 	�
 ? � ������� ) � �
����� 	 0�2 ! � 3 ?

� % ��$%�� $ 1
The mapping

6
is an isometry of � � � !.# onto � � . Hence

� 6 ���
- & 	
- ? % . Then by the Riesz-

Thorin interpolation theorem [25, Th. IX.17] the mapping
6

from � � �"!.# into � � is bounded
as � 6 ��� � & 	�� ' � 6 � " � � � ' 	 ��

)�& 	 
 � 6 � � 	 �� - & 	�- ? � % � $%�� $ � " � � � ' 	 � � 1
This proves (1.37). The proof of (1.38) is again by interpolation. For this consider the
mapping � ' / � 2 3 �� � � � # ? 
 � 2 0 2 �)( *�� # . If / � 2 3$6�� � then

� � � # ? 
 � 2�0 2 �9( *�� # 6 - �"!$#
and

��� 	 0 2 ! ? � 2 . Moreover� � � 	 ) & � 
 ? � �������� ) � �
� � � 3 ?

� % ��$% ��$ 1
The equality

��� � 	 - & � - ? % is obvious. Thus (1.38) follows from� � � 	 � & � � ' � � � " � � � ' 	 �	 )�& � 
 � � � � 	 �	�- & � - ? � % ��$%���$ � " � � � ' 	 � � 1
Theorem 1.4.1 can not be extended to the case ( � � . For example with the trigono-

metric basis 4 2 ?�:;2 ?	� for all � , there exist continuous functions
�

such that347 � � 3 � ��� 	 (+* 7 , !$� � ��� ? + 	 for all � �� 1
The uniformly bounded basis assumption can be relaxed if

� �9( *., # extends to a function that
is analytic on a region which contains ! .

In the next result, we restrict the attention to � � � 8 # .
Corollary 1.4.2 Let %�' ( ' � . Suppose that ����� 2 � 4 2 � ? $ ) % . Then

� 342 � = � ��� 	 0 2 !$� � �
�
	

� ' � % � $%�� $ � " � � � ' 	 � � � � � � 	 � 6 � � � 8 # (1.39)

If � ? / � = 	 � � 	��� 3 6�� � , then there exists a function
� 6 � � � 8 # such that � 2 ? ��� 	 0 2 ! .

Moreover, � � �
� ' � % ��$%���$ � " � � � ' 	 � � � � � � 1 (1.40)

Proof. Let
� 6 � � � 8 # . Then

� �9( *., # 6 � � � !.# . Notice that
��� 	 0>2 ! ? � for all � ) �

since /10 2 3 2�� = is a basis for � � � 8 # . Thus (1.39) follows from (1.37) in Theorem 1.4.1.
Conversely, if � 6�� ��� % ' ( ' � # , then � 6�� � and 
 2 7 � = � 7 0 7 converges to some

� 6� � �"!$# . The numbers � 2 are the Fourier coefficients of
� �9( *., # . The inequality (1.38) in

Theorem 1.4.1 tells us that
� �)( *., # 6 � � �"!.# , which implies

� 6 � � � 8 # .
10



1.5 Modelling of physical systems

Up to now, we have not imposed any restriction on pole location save for the conditions
in (1.3). However, in any appplication involving the modelling of a physical system, it
is necessary to ensure that the underlying modelled impulse response is real valued. A
requirement is that the sets /141= 	 4 � 	��� 	 4 2 3 and / : � 	 : � 	��� 	 :;2 3 used to define basis via
(1.1)–(1.2) always contain complex conjugates. Then the constraint of realness of impulse
response is easily accommodated by taking suitable linear combinations of the basis func-
tions (1.1)–(1.2). The idea in the following basis construction is taken from [23].

Suppose that 45= 	+��+	 4 2$� � are real so that the basis functions 0 = , �� , 0 2�� � have real-
valued impulse responses. Now we wish to include a complex pole at % � 4 2 . Then two
new basis functions �0 2 	 �0 2�� � with real impulse responses should be formed as a linear
combination of 0>2 and 0 2�� � generated by (1.1) with 4 2�� � ? 4 2 . These new functions then
replace 0 2 and 0 2�� � . The suggested linear combination can be expressed as�

�0 2
�0 2�� � � ?

� � � � �� � � � � � 0 20 2�� � � 1 (1.41)

Considering only �0 2 for the moment given by

�0 2 � 4 # ?
� %���� 4 2 � � � � 4 ��� #

%�� � 4 2 � 4 2 # 4 � � 4 2 � � 4 � � 2 � 4 #
where � 2 � 4 # has real-valued impulse response and the real coefficients

� 	�� are related to
the choice of � � 	 � � by � � ? � � � 4 2

%�� 4 �2 	 � � ? � 4 2 � �

%�� 4 �2 	
to ensure a unit norm for �0 2 ,

�
and � must be chosen according to the constraint that� � � � � � � � � � � ? % which becomes

:��	� : ? � %�� 4 �2 � � (1.42)

where

: ? � � 	�� # � 	 � ?
� % � � 4 2 � � 4 2 � 4 24 2 � 4 2 % � � 4 2 � � � 1

Now, suppose we make two pairs of choices: :�? � � 	�� # � giving a basis function �0 2 and

 ? � � � 	�� � # � giving another basis function �0 2�� � . These two choices correspond to two
pairs of complex numbers / � � 	 � � 3 and / � � 	 � � 3 . The requirement � � � � � � � � � ? � ensuring
orthogonality of �0 2 and �0 2�� � can be expressed as

:��	� 
 ?	� 1 (1.43)

All solutions to (1.42) are given by

: ? %� �
� � %�� 4 2 � � � � 0 � � % � 4 2 � � � � 0� %�� 4 2 � � � � 0 ��� % � 4 2 � � � � 0 � 	 � ' 0 ) � # 1

Then for a fixed 0 , a unique 
 that satisfies (1.42) and (1.43) is found by substituting 0�� # �
�
above:


 ? � %� �
� � % � 4 2 � � ��� 0 ��� % � 4 2 � � � � 0� % � 4 2 � � � � 0 � � % � 4 2 � � � � 0 � 1
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Let 0 ? � . Then the basis functions �0�2 and �0�2�� � are found as

�0 2 � 4 # ? � � �
	 � �&%���� 4 2 � � # �
	 � � %�� 4 2 � � 4 � %5#%�� � 4 2 � 4 2 # 4 � � 4 2 � � 4 � � 2 � 4 #�	
�0 2�� � � 4 # ? � � �
	 � �&%���� 4 2 � � # �
	 � � % � 4 2 � � 4 ��%5#%�� � 4 2 � 4 2 # 4 � � 4 2 � � 4 � � 2 � 4 #�1

These real-valued impulse response basis vectors �0 2 and �0 2�� � are then used for modelling
instead of 0>2 and 0 2�� � . If we require further basis functions with complex modes then
we repeat the process in (1.41) by forming �0 2�� � and �0�2�� � from linear combinations of0 2�� � and 0 2�� � and so on, and in this way arbitrary complex pole configurations may be
accommodated.

For example, when 4 2 ? 4 2�� � ? �� ?<4 2�� ��� ? 4 2�� ��� � � , the above basis construction
process yields for � ?	� 	+�� 	 �

�0 2�� � � � 4 # ? �
� 4 � % #%��  4 � � 4 � � 4 � �  4 � �
%��  4 � � 4 � �

�
� 2 � 4 # 	 (1.44)

�0 2�� � � � � � 4 # ? � � � 4 � % #%��  4 � � 4 � � 4 � �  4 � �
%��  4 � � 4 � �

�
� 2 � 4 # (1.45)

where  ? 4 2 � 4 2 , � ? � 4 2 � � , and

� ?
� � %�� � # �&%��  � � #� 	 � � ?

� � %�� � # �&% �� � � #� 1 (1.46)

With ��?	� , this is the defining formula for the two-parameter Kautz functions.
The old basis functions 0
2 and 0>2�� � can be written in terms of the new basis functions

as � 0 20 2�� � � ? %� �
����
�

% � 4 2� % � 4 2 � � % � 4 2� % � 4 2 �% � 4 2� % � 4 2 � % � 4 2� % � 4 2 �
�����
	
�

�0 2
�0 2�� � � 1

From this, we derive the following identity��� 	 0�2 ! 0�2 � ��� 	 0 2�� � ! 0 2�� � ? ��� 	 �0�2 ! �0�2 � ��� 	 �0 2�� � !	�0 2�� � 1 (1.47)

Having shown how to construct new basis functions with real-valued impulse responses
from the basis functions 0>2 	 � ? � 	 %
	+�� , we will next study the same problem for the
basis functions in (1.2). For the new basis functions �0 � 2 and �0�� 2�� � , we seek a linear
transformation of the old basis functions 0 � 2 and 0 � 2�� � expressed as�

�0 � 2 � 4 #
�0 � 2$� � � 4 # � ?

� � � � �� � � � � � 0 � 2 � 4 #0 � 2$� � � 4 # � 1 (1.48)

The substitutions : � �� 4 � � � 	�
 � and 4��� 4 � �
transform this problem to the previously

considered case. Thus when : 2�? :;2�� � ? �� ? :;2�� ��� ? :;2�� ��� � � , we have for � ?
� 	��� 	 �

�0 � 2�� � � � 4 # ? � � �&% � 4 #4 � �  � 4 � � � � %��  � 4 � � � 4 �4 � �  � 4 � � � �
�
���2 � 4 # 	

�0 � 2�� � � � � � 4 # ? � � � � %�� 4 #4 � �  � 4 � � � � %��  � 4 � � � 4 �4 � �  � 4 � � � �
�
���2 � 4 #
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where  � ? :;2 � :;2 , � � ? � :;2 � � and � � 	 � � � are computed from the formulae in (1.46) with  �and � � . Furthermore

� 0 � 20 � 2�� � � ? %� �
����
�

%�� :;2� % � :;2 � � % � :;2� % � :;2 �%�� :;2� % � :;2 � % � :;2� % � :;2 �
�����
	
�

�0 � 2
�0 � 2�� � �

which leads to��� 	 0�� 2 ! 0�� 2 � ��� 	 0 � 2$� � ! 0 � 2$� � ? ��� 	 �0 � 2 !	�0 � 2 � �8� 	 �0 � 2$� � ! �0 � 2$� � 1 (1.49)

The unitary equivalance of the bases /10 7 3 and / �0 7 3 shows that the latter is complete
in � � � !.#
� % )<( )*+ # and - � !.# if the conditions in (1.3) hold. Moreover from (1.47)
and (1.49), 6 2 � ? 247 � � 2 ��� 	 �0 7 ! �0 7 ? �

6 2 �
whenever the sequence /145= 	 4 � 	 : � 	+��+	 4 2 	 :;2 3 contains complex conjugates as well. In this
case, if

�
has a real-valued impulse response, then both

6 2 � and �
6 2 � will have real-valued

impulse responses. This identity shows also that approximation properties of
6 2 � and �

6 2 �
are identical.

1.6 Example

In this section, we use a simulation example to illustrate the use of the basis functions
defined by (1.1) for modelling. We consider the identification of a fifth order system with
poles (in the usual stability notion) � 1���� � � 1 � � � , � 1���� � � 1 % � � , � 1���� and zeros � 1���� �
� 1 ����� , � 1���� � � 1 %
	 � . The transfer function of the system is normalized so that its � 3 norm
satisfies

��� � 3 ? % . This system was studied in [10] to illustrate the use of the generalized
orthonormal basis functions for the time–domain identification.

We assume  ? � � � frequency response measurements

� 7 ? � �9(+*���� #���� 7 	 � ? %
	+1�1�1 	  (1.50)

are available where � 7 are equally spaced on the interval � � 	 ���
and the disturbances � 7 are

bounded random variables as
� 7 ? � 1 %�(+*��
�

where � 7 are independent and uniformly distributed random variables in the interval � � 	��$# � .Note that by this choice of frequencies, frequency response are not on a uniform grid of
frequencies.

The basis functions in (1.1) were chosen with 41= ?"� and

4 7 ? �
� 1 �2	 � odd
� 1��"	 � even.

This simple choice represents both slow and fast dynamics in the model structure via to the
Laguerre functions. We will estimate

�
from the data (1.50) by two algorithms.
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In the first algorithm, a high-order model is computed from the data (1.50) by the simple
least-squares method as

�
��� � 4 # ?

� = =47 � = � 	 � � � 7 0 7 � 4 # (1.51)

where 	 � is the Moore-Penrose pseudoinverse of 	 defined by

	 � ? � 	�� 	 # � � 	��
and

	 � � # ? ���
�
% �� 0 � = = �)( *�� ) #
...

. . .
...% �� 0 � = = �9( *���� #

����
	 1 (1.52)

The estimated linear–in parameters model was reduced to a � ��� order final model by
using the subspace-based identification algorithm in [21] for model reduction purpose. The
input to the algorithm in [21] were � �
	 � equally spaced frequency response data on � � 	��$# � .Note that this amounts to evaluating 	 on a uniform grid of � �
	 � frequencies for which fast
algorithms are known to exist. The size of the Hankel matrix in the subspace algorithm was
chosen % � � by % ��� . The returned models by this algorithm are almost balanced and they
converge to balanced truncations of the approximated system as the number of the supplied
data tends to infinity. The step prior to forming a Hankel matrix was � �
	 � -point inverse
fast Fourier transform.

In Figure 1.1, the magnitudes of
�

, �
��� �9( *�� # , the final model transfer function denoted

by
���� �9( *�� # , and the measured errors �

��� �9( *�� # � �
,
���� �9( *�� # � �

are plotted. The poles
of

����
are � 1���� � � 1 % � � , � 1���� � � 1 % %�� , � 1�� 	 and the four significant zeros are � 1���	 � � 1 % 	 � ,

� 1���� � � 1 ����� . They all agree well with the system poles and zeros.

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

M
ag

ni
tu

de

Estimation by orthonormal basis

Data 
Basis
Error

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

M
ag

ni
tu

de

Frequency (rad)

Reduced model

Data   
Reduced
Error  

Figure 1.1: The magnitude plots of
�

, �
��� �)( *�� # , ���� �9( *�� #"� �

(on the top) and
�

,
���� �)( *�� # ,���� �9( *�� # � �

(on the bottom) using the linear estimate in (1.51).
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Next we will compare this algorithm with the minimax algorithm in [3]. In the minimax
algorithm, the coefficient vector

�� 6�� � = �
in the linearly parameterized model

���� � 4 # ?
� = �47 � = �� 7 0 7 � 4 # (1.53)

is obtained by solving the following min–max problem

�� ?����	� � ���

 ��� ) �/)  � 	 �	 � � � � � � �

� � �  3 (1.54)

where
� �

and
� �

are respectively the real and imaginary parts of
�

in (1.50) and 	 � and	 � are the real and imaginary parts of 	 .
The min–max solution in (1.54) is obtained from the following linear programming

problem: � ���
� � � % �

� �
� �

subject to ����
�

	 � ���	 � ���� 	 � ���� 	 � ���
�����
	
� �
� � '

����
�

� �
� �� � �� � �

�����
	

where
� 6�� �	� � = �

and � 6�� � � �
are respectively row and column vectors of zeros and

ones. This program is implemented by the lp command in the MATLAB’s Optimization
Toolbox.

In Figure 1.2, the simulation results are plotted for the minimax algorithm. We followed
the same model reduction procedure as in the previous algorithm. The poles of the final
model are � 1���� � � 1-� � � , � 1���	 � � 1 % � � , � 1�� 	 and the four significant zeros are � 1���� � � 1 %
	 � ,
� 1���� � � 1 ����� . They are in very good agreement with the system poles and zeros. This
increase in accuracy was offset by the fact that computing (1.53) took about two orders of
magnitude more time than needed to compute (1.51).

1.7 Summary

In this chapter completeness and approximation properties of a general class of fixed pole
rational orthonormal basis functions in the � � �"!$# �&% ) ( ) + # and - �"!$# spaces were
studied and a fairly complete analysis of the convergence properties of the Fourier series
formed by the orthonormal basis functions was carried out for the case � % )7( ) + # .
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Figure 1.2: The magnitude plots of
�

, �
��� �)( *�� # , ���� �9( *�� #"� �

(on the top) and
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(on the bottom) using the min–max estimate in (1.53).
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Chapter 2

On the uniform approximation of
discrete–time systems by generalized
Fourier Series

In this chapter, model sets for linear time-invariant discrete-time systems spanned by fixed orthonor-
mal bases are studied. It is shown that the Fourier series formed by bounded orthonormal basis
functions converges uniformly in the space of Dini-Lipschitz continuous functions.

2.1 Introduction

In this chapter, we will assume that the basis defined by (1.1) and (1.2) is uniformly
bounded, i.e. it satisfies � ���2 / � 4 2 ��	 � :;2 � 3�? $ ) %
1 (2.1)

Since the completeness conditions347 � = � %���� 4 7 � # ? + 	 347 � � �&%���� : 7 � # ? +
are obviously satisfied by the basis functions in (1.1) and (1.2) subject to (2.1), they are
complete in � � � !.# ( % ' ( )*+ ), the Lebesque spaces on ! , and - �"!$# [2]. The partial
sums of the generalized Fourier series of an integrable function

�
are defined by

6 2 & � � � 4 # ? 247 � � �
��� 	 0 7 ! 0 7 � 4 # 1 (2.2)

We will study approximation of functions from a particular subset of - � !.# by the sums
in (2.2) in the supremum norm � � � 3 ? �����, ��� � �)(�, # ��� 1
When

�
is a continuous function on ! , we write�  ��� # ? �����

� ����� � ��� � � � : # � � � 
 # �
17



for the modulus of continuity of
�

. A function
�

is said Dini-Lipschitz continuous if�  ��� # � � � % � � # � � ��� � � # 1
For the trigonometric basis functions 0 7 ? 4 7 , ��? � 	�� %
	�� �2	��� , it is well known that6 2 & � � � �

uniformly as � 	 � � + if
�

is Dini-Lipschitz continuous. The main result of
this chapter is to establish an analogous result for the basis functions defined by (1.1) and
(1.2) as follows.

Theorem 2.1.1 Suppose � ? � � � � # for some � ) � . Let
6 2 & � � be as in (2.2). Assume

that the orthonormal functions in (1.1) and (1.2) are uniformly bounded. If
�

is Dini-
Lipschitz continuous, then � 6 2 & � � � � � 3 � � � � � + # 1

In the course of proving this theorem, we show that
� 6 2 & � � ? � � � � � � � � � # . This

implies that the orthonormal functions in (1.1) and (1.2) can not form a basis for the space- �"!.# if they are uniformly bounded. The above results hold also for � � 8 # with the obvious
modification � ? � .

2.2 Proof of the Theorem

Note that the partial sums in (2.2) can be written as6 2 & � � �)(+*-, # ? %�$# % ��'= � �)(+* � # � 2 & � � 
 � 0�#"/ 

where � 2 & � � 
 � 0 # is the so-called Dirichlet kernel defined by

� 2 & � � 
 � 0 # ? 247 � � � 0 7 �9( * � # 0 7 �9(+*., # 1
Hence � 6 2 & � � ? �����, � � 2 & � �  � 0�# � � 1

The following lemma will be instrumental in proving the theorem.

Lemma 2.2.1 Let (�*., � 4 7 ? $ 7 �)0�# (+* � � " , ' . Then

� 7 �)0 # ? � 7 ���1#�� 0 � �� � %� % ,
 

��� 0 7 �)(+* � # ��� � / 
 1
Proof. Choose � � 	��$# # branch for the variables 0 and � 7 �)0�# . For the notation, we refer to
Fig. 1. Let

�
denote the unique zero of � 7 � � # ? � . A variety of situations arises from

different arrangements of the four points �
	 02	 � 	 � 6 � � 	�� # # . We will prove only one case
here. The other cases follow from this. For the sake of completeness, they are given in5 2.4.

Case 1. � �6 � �
	 0 � and
� �6 � � 	 0 �Let us first show that if � �?"� and � 7 � � #,�?	� ,

� �����
 � � � 7 � � # � � 7 �/�5#� � � ? % � � 0 7 �)(+*��"#�� � 1 (2.3)
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x
y

O

p A

B

C

Figure 2.1: The points A, B, C, O denote respectively ( *�� , ( *! , 4 7 , � . The points p, y, and x
lying on the unit circle are obtained by extending the chords OC and AC.

Fig. 1 depicts the case ��� � . From elementary geometry notice the similarity of the two

triangles

�������� �� �
	 , which is due to the pairwise equality of the six angles
���� � ? ��	 � 	 �

	 ��� ?
�
� � 	 	 ������ ?

�� �
	 1
Thus

� � ? �
	  ���
��� ? � %���� 4 7 � #��&% � � 4 7 � #

$ 7 � � # 1
A second fact from elementary geometry provides

�
� ��� ?

�
� � �� ? � � �� 1 (2.4)

A third fact from trigonometry yields� ��� �
� � � ? � �

� �
� � � �

� ��� ? � %���� 4 7 � � #
$ 7 � � # $ 7 �/�5# � ��� � � � �� � 1 (2.5)

Finally

� 7 � � # � � 7 �/�5# ?
�

��� � ?
�

� ��� �
�

� � � 1 (2.6)

Hence from (2.4)–(2.6)

� �����
 �� � � 7 � � # � � 7 �/�5#� � � ? � ���

 �� � �
��� �
� 7 � � # � � 7 �/�5# #� � � � � �  � 	

? � ���
 �� � �

��� �
� ��� � � � � �

� � �� ��� � � �  � 	
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? % � %���� 4 7 � �
$ �7 � � #

? % � � 0 7 �)( *�� #�� � 1
When ��� � , reverse the roles of � and � and note the reflexity in (2.3). Hence � 7 is
differentiable on � �
	 0 � and integrating (2.3), we obtain the following formula for � 7 �)0�#

� 7 �)0 # ? � 7 ���1#�� 0 � �� � %� % ,
 

��� 0 7 �)( * � # ��� � / 
 1 (2.7)

Corollary 2.2.2

� 2 �)(+*., # � 2 �)( *! # ? 
�� � � � % ,
 

2�� �47 � = � 0 7 � � / 
 1 � 	
���� �9(+*., # � � �)( *-, # ? 
�� � � � � % ,

 

� �47 � � � � 0 7 � � / 
 1 �� 1
Proof. Write the numerator and denumerator factors of � 2�� � �)( *-, # and � �� �)( *., # in polar
forms as (+*., � 4 7 ? $ 7 �)0�# (+* � � " , ' 	 (+*., � : 7 ? $ �7 �)0 # (+* ��� � " , ' 1
Since %�� 4 7 (+*., ? $ 7 �90�# 
�� � �
� � 0 � � 7 �)0 # � # 	
we have

� 2 �)(+*., # ? 
�� � � � � � � 0 � � 2$� �47 � = � 7 �)0 # � �
and

���� �)(+*., # ? 
�� � �
�
�
� � 0 � � � �47 � � � � 7 �90�#

�
	 �� 1

Now the previous lemma completes the proof.
A key consequence of this result is that it facilitates a simple formulation of the Dirichlet

kernel.

Lemma 2.2.3

� 2 & � �/� � 0 # ? (+*�� � � � � � , ���5# �� � � � , �  � 	 1 (2.8)

where

� ? %� % ,
 

� 247 � = � 0 7 � � � %�� � �47 � � � � 0 7 � � �� / 
 	
(2.9)� , �/�5# ? %� % ,

 

247 � � � � 0 7 � � / 
 1
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Proof. This follows from the corollary, (1.5)–(1.6), and ( *., � ( � *., ? � � � � � 0 .
Now we are ready to prove the main result of this chapter. From Lemma 2.2.3 we derive

bounds for
� 6 2 & � �

. Let  ? � � � � % and a given positive number : , let � :�� denote the
nearest integer rounding : down.

Lemma 2.2.4 Let
6 2 & � � be as in (2.2). Suppose that the basis defined by (1.1) and (1.2)

satisfies (2.1). Then

%
	 # �&% ��$ # � � � � � �&%���$ # �� # ' � � 2 & � �  � 0 # � �

(2.10)� � 2 & � �  � 0�# � � ' #�&% ��$ # � � � ��� � %�� $�� 1
Proof. We start with the lower bound. For each fixed 0 ,

� , �)0 � : # defined by (2.9) is a
strictly increasing function of : . Let : 7 6 � ��# 	 # � , � ? � � 	����	  denote the roots of the
equations

� , �90 � : 7 # ? # � �
� . Then after a change of variables 0 � � ?<: and by the fact
that � � � � � : #�� ' � : � for all : , we have� � 2 & � �  � 0 � � � %� #

� � �47 � ��� % � �
	 )� �
������ � � � � � , �90 � : # �� ��� � � � 	

������ / :� %#
� � �47 � �����

� �	 ) ��� �= � � � � � � , ��� 7 � : # # � ��/ :� � � / � : 7 ��	 � : 7 � � � 3 1 (2.11)

where � 7 � : # ? 0�� : 7 � : . From the sin expansion � � � �
� �  # ? � ��� � �
� �  � �

� � � � � �  ,
the last integrand above can be written as� � � � � , ��� 7 � : # # � ? � ��� � ��� � ��� 7 � : # # � �

� � � � , � � 7 # � � �
� � � ��� � �
� 7 � : # # � � � � � � , � � 7 # �

?
� � ��%5# 7 	 � � � � � ��� � �
� 7 � : # # � 	 � even� ��%5# " 7 � � ' 	 � �

� � � ��� � �
� 7 � : # # � 	 � odd

where
� 7 ? 0 � : 7 . Since

� , �90 � : # is increasing on � ��# 	 # � , we have � ��� � ��� 7 � : # # � ' # � �
for all :�6 � � 	 : 7 � � � : 7 � . Thus from � � � � : # � � : �$# valid for all � : � ' # �
� ,

� � � � ��� � ��� 7 � : # # � � �# ��� � ��� 7 � : # # ? %# % �
=

247 � � �
��� 0 7 �)(+* "�� � " � ' ��� ' # ��� � / 
 � � �# :

where � � ? � � �, 247 � � �
��� 0 7 �)( *-, # ��� � 1

Hence if � is even integer,

% � �
	 ) ��� �= � � � � � � , �
� 7 � : # # � ��/ : � � ��$# � : 7 � � � : 7 # � 1 (2.12)

Next from# � ? � , � � 7 � � # � � , � � 7 # ? %� %
�
��
�
	 )

247 � � �
��� 0 7 �9(+* � # ��� � / 
 � � �� � : 7 � � � : 7 # 	 (2.13)
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we have : 7 � � � : 7 ' #� � 1 (2.14)

Note also from (2.13) that
: 7 � � � : 7 � #� � (2.15)

where � � ? � � �, 247 � � �
��� 0 7 �)(+*-, # ��� � 1

Summing (2.14) over ��? � 	 %
	��� 	 ( � % or ��? � ( 	���+	+� % and noting that : =�? � , we
derive � : � � ' #� � � ( � 	 ( ? � 	 � %
	 � �2	+��+1 (2.16)

The last inequality implies that : � ' � # � � � #  and : ��� � �$� # � � � # � . Recall that : �
and : � were chosen so that : � � � � # and : � " � � � ' ) ��# . Thus # ) � # � � � # �  � % #
and # ) � # � � � # � � � %5# . Therefore  � % � � � and � � % � � � . It follows that
 	 � � � � � � .

Considering terms in (2.11) that have even indices, we have from (2.15)–(2.16) and
(2.12) %#

� � �4
� �
� �7�� even

%� � � / � : 7 � 	�� : 7 � � � 3 % � �
	 ) ��� �= � � ��� � � , ��� 7 � : # # � �2/ :
� � ���$# � � �


��
� � �4
� �
� �7�� even

%� � � �
� � �4
� � �7�� even

%� � % ����� � � ��� # � � � 	 � -�
 � �47 � �
%� 1 (2.17)

Now we consider terms in (2.11) that have odd indices. The graph of �
� � � : # has the

property �
� � � : # � %�� �)� : �$# # , : 6 � � 	�# � � � . Thus for all : 6 � � 	 : 7 � � � : 7 � ,

�
� � � ��� � ��� 7 � : # # � � %�� �# ��� � �%� 7 � : # #

? %�� %# % �
=

247 � � �
��� 0 7 �)(+* "�� � " � ' ��� ' # ��� � / 
 � %�� � �# : 1

Hence if � is odd integer,

% � �
	 ) ��� �= � � � � � � , �
� 7 � : # # � ��/ : � % ' 	 � )=
� % � � �# : � / : ? #� � � 1 (2.18)

Thus from (2.16) and (2.18)

%#
� � �4
� �
� �7�� odd

%� � � / � : 7 ��	�� : 7 � � � 3 % � �
	 ) ��� �= � � ��� � � , ��� 7 � : # # � ��/ :
� � ��$# � �


��
� � �4
� �
� �7�� odd

%� � � �
� � �4
� � �7�� odd

%� � % ����� � � ��$# � �

	 � - 
 � �47 � �
%� 1 (2.19)
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It follows from (2.11), (2.17), and (2.19)� � 2 & � �  � 0 # � � � %�$# � �� �
� % � � �� � �

	 � - 
 � �47 � �
%� 1 (2.20)

Lower and upper bounds on � � and � � are obtained from

247 � � �
��� 0 7 �9(+* � # ��� � ? 247 � � �

%���� 4 7 � �� %�� 4 7 ( * � � � � 247 � � �
%���� 4 7 � �
�&% � � 4 7 � # � �  � %���$ # (2.21)

and 247 � � �
��� 0 7 �9(+* � # ��� � ' 247 � � �

% � � 4 7 �%���� 4 7 � '  % � $%���$ 1 (2.22)

Hence from (2.20)–(2.22), and the following inequality�47 � �
%� � %

� � �
�

/ :: ? ��� �  � %5#
we obtain the lower bound on

� � 2 & � �  � 0�# � � as follows� � 2 & � �  � 0 # � � � %
	 # �&%���$ # � � � � � �&%�� $ # �� # 1

The upper bound on
� � 2 & � �  � 0 # � � is obtained as follows� � 2 & � �  � 0 # � � ? %�$#�% � )� � )

������ � � � � , �)0 � : #� � � � � � 	
������ / : � %� # % � 	��� � � ) & � )��

������ � ��� � � , �)0 � : # �� � � � � � 	
������ / :

' %�$#�% � )� � ) # � �� / : � %� % � 	��� � � ) & � )�� #� : � / :
? � �

	 � : � � : � � #�� %� �)� � � # � � � � � : � � # � � � : � #
' # � �� � � � %��� � � � # � � � � � # � � � # �
' # �&%�� $ # � � � ��� � �  � �&%���$�# �

where in deriving the second inequality from the bottom (2.14)–(2.15) have been used.
From the lemma, it follows that the orthonormal functions in (1.1) and (1.2) can not

also form a basis for the space � � �"!.# if they are uniformly bounded.
Now we complete the proof of the main result.

Proof. Let
 2 & � denote the linear space spanned by the basis functions 0 7 , � ? � � 	��� 	 �

and define ( 2 & � � � # ? � � ��,� � ��� � � � �  � 3 1 (2.23)

Thus ( 2 & � � � # is the best � 3 �"!.# -norm approximation error of
�

by functions in
 2 & � .

Let 	 2 & � be the minimizing solution in (2.23). Let
�

� �
� # denote the best � 3 � !.# -norm

approximation error of
�

by trigonometric polynomials � � 4 # ? 
 �7 � � � � 7 4 7 and let � �� be
the unique minimizer. Note that� � �� � 3 ' �

� �
� #�� � ��� 3 ' � � � � 3 1
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Hence
� � � 3 ' � � ��� 3 . Let # �%$ � 	&$ � # denote the annulus /14 ' $ � ) � 4 � ) $ � 3 . Since

� �� 6�# � � 	 + #�� # � % �
�2	 ��# , ���)��	�* �" �
	 � & � ' � � �� � 4 # � ' � � �
� � � � 3 1 (2.24)

Let ���? � ��� / � 	 � 3 . Fix � as

��? � � %���$�# �� 	�� 1 (2.25)

Then from (1.17) and (2.24)–(2.25), we have for some absolute constant - � ��� � �� � ��2 & � � �� � 3 ' � � �
� � ��� 3 
,� � � � %

	 �&%���$ # � � � %5# � � � � � � � � � 3 
,� � � � %
	 �&%�� $ # � �' � � � � 3 
�� � � � - � �&%�� $ # �� � 1 (2.26)

Since
6 2 & � � �� 6  2 & � , an application of the triangle inequality yields

( 2 & � � � # ' �
� �
� #�� � � �� � ��2 & � � �� � 3 1 (2.27)

The first term on the right hand side of the above inequality is bounded from a theorem of
Jackson [8, p. 144] as

�
� �
� # ' �  � #

� � % � 1
Hence if � ? � � � � # , then for some absolute constant - � � �

�
� �
� # ���  ' - � �  � #

� � % � � � �

and thus �
� �
� # � �  � � � � � + # 1 (2.28)

From (2.26) under the same condition � ? � � � � # , we also have� � �� � ��2 & � � �� � 3 � �  � � � � � + #�1 (2.29)

It follows from (2.27)–(2.29)

( 2 & � � � # ���  � � � � � + #�1
Write

�
as

� ? 	 2 & � ��� with the approximation error � ? � � 	 2 & � . Then
6 2 & � 	 2 & � ?

	 2 & � since 	 2 & � 6  2 & � and due to the linearity of the Fourier series
6 2 & � � ? 6 2 & � � � 	 2 & � .

Hence from Lemma 2.2.4 for some absolute constant - � � �� � � 6 2 & � � � 3 ? � � � 6 2 & � � � 3' ( 2 & � � � #�� � 6 2 & � � ( 2 & � � � #' - � ( 2 & � � � # � �  � � � ��� + # 1
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2.3 Summary

This chapter has provided a preliminary study of the uniform convergence properties of
certain general classes of rational orthonormal basis functions. The main result was to
establish that the Fourier series formed by uniformly bounded orthonormal basis functions
converged uniformly in the space of Dini-Lipscithz continuous functions.

2.4 Appendix

In this appendix, we study the other cases.
Case 2.

� �6 � �
	�� # # � � � 	 0 �Apply Case 1 to � � 	 �$# � � # and � � 	 0 � . Then from (2.7)

� 7 �8�$# � � # ? � 7 �/�5#�� �$# � � ���� � %� % ��' ���
 

� 0 7 � � / 
 	
� 7 �)0 # ? � 7 � � # � 0 � �� � %� % ,� ��� 0 7 �9(+* � # ��� � / 
 1 (2.30)

Since � 7 � � #,�?	� , � 7 � 
 # is continuous at 
 ?"� . Hence� ���� � = � 7 � � # ? � 7 � � ��# ? � 7 � � # ? � 7 �8�$# �
# ? � ���� � = � 7 �)�$# � � # 1
Thus

� 7 �)0 # ? # ��� 7 ���1#�� 0 ���� � %� % ,
 

��� 0 7 �)(+* � # ��� � / 
 � %� % =
��'

��� 0 7 �9(+* � # ��� � / 

? �$# ��� 7 ���5#�� 0 ���� � %��% ,

 

��� 0 7 �)(+* � # ��� � / 
 (2.31)

where the second equality follows from

% �.� ��'
� � 0 7 �9(+* � # � � / : ? � # 	 for all 
 1 (2.32)

Case 3. � � � and
� �6 � � 	 0 �If � ? � , consider only (2.30) in Case 2 which then yields (2.7) as � � � .

Case 4.
� 6 � �
	 0 � ( � � � )

1.
� 6 �/�
	 0 # : then � 7 � � �
# ? �$# and � 7 � � ��# ? � . Apply Case 3 and Case 1 to � � 	 � #and � � 	 0 � to get from (2.7)

� 7 � � �># ? � 7 ���5#�� � � �� � %� %
�
 

��� 0 7 �)(+* � # ��� � / 
 	
� 7 �90�# ? � 7 � � ��#�� 0 � �

� � %� % ,� ��� 0 7 �)(+* � # ��� � / 
 1
Thus

� 7 �)0 # ? � �$# ��� 7 ���1#�� 0 � �� � %� %
�
 

��� 0 7 �9(+* � # ��� � / 
 1 (2.33)
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2.
� ? � : then � 7 �/�5# ? � 7 � � ��# ?	� . Apply Case 1 to � � 	 0 � to get from (2.7)

� 7 �)0�# ? � 7 � � ��#0� 0 � �

� � %� % ,� ��� 0 7 �9(+* � # ��� � / 

? � 7 �/�5#�� 0 � �� � %� % ,

 

��� 0 7 �9(+* � # ��� � / 
 1
3.

� ? 0 : then � 7 �90�# ?	� and � 7 � � �># ? �$# . Apply Case 3 to � �
	 � # . Hence from (2.7)

� 7 � � �># ? � 7 ���1#�� � ���� � %��%
�
 

��� 0 7 �)( * � # ��� � / 

which is (2.33).

Case 5.
� 6 � �
	�� # # � � � 	 0 �

1.
� 6 ���
	��$# # : then � 7 � � �
# ? �$# and � 7 � � ��# ? � . Apply Case 2 and Case 1 to� � 	 �$# # � � � 	 0 � and � �
	 � # to get from (2.31) and (2.7)

� 7 �)0 # ? �$# ��� 7 � � ��#0� 0 � �

� � %� % ,� ��� 0 7 �)(+* � # ��� � / 
 	
� 7 � � �># ? � 7 �/�5#�� � ���� � %� %

�
 

��� 0 7 �9(+* � # ��� � / 
 1
Hence summing the above equalities we get (2.7).

2.
� 6 � � 	 0�# : then � 7 � � �># ? �$# and � 7 � � ��# ?	� . Consider � �
	��$# # � � � 	 � # and � � 	 0 � .
Thus the following equalities

� 7 �)0 # ? � 7 � � ��#�� 0 � �

� � %��% ,� ��� 0 7 �)(+* � # ��� � / 
 	
� 7 � � �># ? �$# ��� 7 ���5#�� � ���� � %� %

�
 

��� 0 7 �)(+* � # ��� � / 

yield again (2.7).

3.
� ?	� : then � 7 �8�$# �># ? �$# and � 7 � � ��# ?	� . Considering � �
	�� # # and � � 	 0 � , we have

� 7 �)0 # ? � 7 � � ��#�� 0 � �� � %� % ,= ��� 0 7 �9(+* � # ��� � / 
 	
� 7 �)�$# �># ? � 7 �/�5#�� �$# � �� � %� % ��'

 

��� 0 7 �)( * � # ��� � / 

which yield (2.7).

4.
� ? � : consider ���
	��$# # � � � 	 0 � . Then from (2.31)

� 7 �90�# ? �$# ��� 7 � � ��#0� 0 � �

� � %� % ,� ��� 0 7 �)(+* � # ��� � / 

which is (2.31) since � 7 ���5# ? � 7 � � ��# ? � .
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5.
� ? 0 : consider � �
	��$# # � � � 	 0 # . Then � 7 �)0 # ? � and � 7 � � �># ? � # and from (2.31),
we have

� 7 � � �># ? �$# ��� 7 ���5#�� � � �� � %� %
�
 

��� 0 7 �)(+* � # ��� � / 

which is (2.7).

The following equality defined for �
	 0 6 � � 	��$# # unifies (2.7), (2.31), and (2.33)

� 7 �90�# ? � 7 ���5#�� 0 � �� � %� % ,
 

��� 0 7 �9(+* � # ��� � / 
 	 mod �)�$# #�1
Due to (2.32) this equalitity is invariant to translations of 0 and � by multiples of �$# . This
completes the proof.
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Chapter 3

Synthesis of Complete Orthonormal
Bases with Prescribed Asymptotic Order

In this chapter, a method to construct complete orthonormal model sets for continuous–time sys-
tems, which have a prescribed asymptotic order, is presented. Two examples that illustrate the
application of the method are provided.

3.1 Introduction

In a sequel of papers [5, 4], the basis functions defined by a choice of numbers � 2 in the
open right half-plane as

0�2 ���1# ?
� � Re / � 2 3
� ��� 2 � 2$� � �/�5# 	 ��? %
	���	��� �

(3.1)� 2 ���1# ? 2�7 � �
��� � 7
� ��� 7 	 ��? %
	��2	��� � � = �/�5# ? %

which are orthonormal with respect to the inner product
��� 	� "! ? �&%��
�$# # �

33 �  have been
considered in detail. The well-known Laguerre and Kautz models, and the more recently
introduced general orthonormal basis functions are the special cases of the basis functions
(3.1) where all the basis poles are restricted to a finite set.

In [5, 4], completeness of the basis defined by (3.1) in � � , the Hardy spaces of functions �/�5# which are analytic on the open right half-plane and such that
�  � ���? � �&% � �$# # �

3� 3 �  ��%� � #�� � / � � �
	 � )+ , was studied. Completeness means that linear combinations of the basis functions (3.1)
are capable of arbitrarily good approximation in the spaces � � .

A function
�

is said to have asymptotic order � if
� �/�5# ? � �/� � � # as � � + . The bases

defined by (3.1) have asymptotic order % . As illustrated in [22, 32], there are significant
advantages in being able to construct bases of asymptotic order greater than one. In [22],
a unified method for the construction of orthonormal sets with arbitrary asymptotic order
was proposed. As pointed out in [32], orthonormal sets constructed by this method are not
necessarily complete in � � . Most recently in [4], a method to construct an infinite set of
orthonormal bases, each of which have arbitrary asymptotic order, and whose linear span
is everywhere dense in � � for all %�' (�)�+ was presented.

This chapter is continuation of the work initiated in [4]. First, a different version of the
result in [4] that allows easier implementation of the method is presented. Next, it is shown
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in a special case that this method is equivalent to calculating certain Toeplitz determinants.
The latter problem is reduced to finding solution of a linear finite–difference equation. Two
simple examples illustrating application of the method are given. In the first example,
this method is shown to produce the generalized Laguerre functions [29, 9, 20], which are
known to form a complete set in � � and have asymptotic order two. In the second example,
a restriction in the first example is removed. Extensions to more complicated situations are
straightforward and they are briefly described.

3.2 Bases with Prescribed Asymptotic Order

In this section, we derive model sets that are complete in � � for all % ' ( ) + and for
which the basis functions

� 7 �/�5# defining the sets each have a prescribed asymptotic order.
The following result provides a recipe to construct bases of arbitrary asymptotic order and
with arbitrary pole locations.

Theorem 3.2.1 Let 	 ���5# be an � th order real coefficient polynomial with roots in the

open left half-plane. Consider the basis functions (3.1). Let
� 7 ���5# �?<0 7 � � ���5#�� 	 �/�5# , � � � .

Then / � 7 3 7 � = is complete in � � for all % ' (7) + if 
 32 � � �&% � � � 2 � # ? + and
� 7 ���5# ?� ��� � " � � � ' # as � � + .

Proof. Let
� 6 � � be a given function. Let � � � be also a given number. Approximate

�
by a function  analytic on the open right half-plane that has the properties

� � �  � � ) �
and ��� �

�
 
� � 3 � �"� � � � �  ���1#�� ?	� 	 Re / � 32� � 1

This is possible since such functions form a dense subset of � � for all � )�(7) + (for a
proof, see Corollary 3.3 in Chapter II of Garnett [13]). Take � �/�5# ? 	 �/�5#  �/�5# . Then for all%�' ( ' + ,

� �/�5# ? �/� � %5# � � �  �/�5# 	 ���5#�/� � %5# � � � 6 � �
1
Since sp /10 � 	 0 � 	+�� 3 is complete in � � for all % ' ( ) + (see Lemma 4 in [5] and
Theorem 3.1 in [4]), there exists a function � 6 sp /10 � 	 0 � 	��� 3 such that� � � � � � ) �
which implies that

  � �	  � '
� � � � � �� � �
� � 	 �
� � #�� ) �� � �

� � 	 �%� � #�� 1
Therefore 

� � �	  � ) � � �� � �
� � 	 �%� � # � 1

Since
�

and � are arbitrary, this establishes the claim.
The proof of Theorem 3.2.1 is adapted from [4]. This new result is stronger than Theo-

rem 4.1 in [4] since the required order for 	 ���5# is one less. The next job is to orthonormalize
the set / � 7 3 . In [4], the Gram–Schmidt orthonormalization procedure was applied to the
set / � 7 3 without obtaining explicit results. As will be shown shortly, in a special case, the
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orthonormalization problem is equivalent to computing certain Toeplitz determinants. This
in turn is equivalent to finding solution of a linear finite–difference equation. An increase
in the order of 	 ���1# by one means an increase in the order of this equation by two.

Examination of the proof of Theorem 3.2.1 raveals that the conclusion of Theorem 3.2.1
is valid for every complete base in � � �&% ' ( ) + # . A set of basis functions with real–
valued impulse responses that is complete in the real Hardy spaces � � � %�' ( ) + # can
be extracted from the basis functions in (3.1). This process is described in [5]. Then Theo-
rem 3.2.1 tells us that the basis functions / � 7 3 will have all real–valued impulse responses.
The real–valued impulse response basis functions are used in applications involving the
modelling of physical systems.

Since /10 7 3 is linearly independent, / � 7 3 is also linearly independent. Thus the follow-
ing determinants

� 2 ?
����������
��� = 	 � = ! ��� � 	 � = ! �� ��� 2 	 � = !��� = 	 � � ! ��� � 	 � � ! �� ��� 2 	 � � !

...
...

. . .
...��� = 	 � 2 ! ��� � 	 � 2 ! �� �8� 2 	 � 2 !

���������� 	 � � � (3.2)

are all positive. It is fairly easy to show that the functions defined by � = �/�5# ? � � �
	 �= � = ���5#
and for � � % ,

� 2 ���1# ? � � 2�� � � 2 # � �
	 �
����������

��� 2 	 � = !� 2�� � ...��� 2 	 � 2�� � !� = �/�5# � 2 ���5#
���������� (3.3)

are orthonormal. The coefficient of
� 2 �/�5# in � 2 �/�5# is � � 2�� � � � 2 # �
	 � . If this positivity

is enforced in the orthonormalization, then � 7 , � � � are the unique functions which
orthonormalize the given functions

� 7 , � � � . The inner products above are calculated
from (3.1) as follows

��� 7 	 ��� ! ? %#�� ��� �Re / � 7 � � 3 Re / � � � � 3 � �
	 � � � 7 �/�5#�� � � �/�5# ��/� ��� 7 � � # �/��� � � � � # 	 ���1# 	 � �,�5# / � (3.4)

where the closed path � consists of the imaginary axis and the infinity radius semicircle in
the right half-plane centered at the origin and is traversed counter clockwise.

The equations (3.2)–(3.4) are greatly simplified by enforcing a periodicity condition on
the basis poles � 7 � � � ? � 7 	 � ? %
	��2	+�� 	 � � � ? % 	��2	��� 	 (3.5)

which corresponds to the choice of general orthonormal basis functions, and choosing the
roots of 	 �/�5# from a subset of basis poles. The condition (3.5) implies that��� 7 � � � 	 ��� � � � ! ? ��� 7 	 ��� ! 	 � ? � 	 %
	���	���
and thus

� 2 defined by (3.2) are determinants of Hermitian (block) Toeplitz matrices. Re-
call that elements of a Toeplitz matrix are constant along any stripe parallel to the main di-
agonal. The second assumption that the roots of 	 ���1# lie in the set / � � 7 3 forces these ma-
trices to be band matrices. Indeed, if � is sufficiently larger than � , the term �/��� � � � � # 	 � � �5#
is cancelled by the term

� 7 �/�5#�� � � �/�5# and the integrand in (3.4) becomes analytic on the
open right half-plane; thus by the Cauchy’s formula the right hand side of (3.4) vanishes.

30



In 5 3.3, in order to simplify the computations and also to gain insight in the orthonor-
malization procedure we will consider the Laguerre functions defined by a fixed real pa-
rameter � �� as

0 7 �/�5# ? � ���
� ���

� ��� �
� ��� � 7 � � 	 � ? %
	 �2	��� (3.6)

and take 	 �/�5# ? �8��� � # � �
	 � �/� � � # . The factor �8��� � # � �
	 � is for normalization. This choice
of the basis functions and 	 �/�5# corresponds to � ? � ? % . In 5 3.4, we will remove the
restriction on the pole location of 	 ���5# . The case � � % with no restriction on the poles of	 �/�5# is not difficult but tedious; it requires some lengthy notation and substantial algebra.

3.3 Construction of Single Pole Orthonormal Bases with
Asymptotic Order �

When applied to the Laguerre functions (3.6), equation (3.4) with 	 ���5# ? �8��� � # � �
	 � ����� � #
plugged in admits the following simple form��� 7 	 ��� ! ? � ��� �#0� � � �/��� � # 7 � � � ��/� ��� # 7 � � � � / �
	 � � � 1
Hence

��� 7 	 ��� ! ? � if � � � � � � � . Moreover from the following identity [14, For-
mula 2.148.3]

% / :� % � : � # 2 ? :
�8� � � � # �&% � : � # 2�� � � � � � �

� � � � % / :�&% � : � # 2�� � 	 (3.7)

we have ��� = 	 � = ! ? ��� �# % 3� 3 / �� � � ��� � # � ? %
1
For the term

��� � 	 � = ! , using (3.7) twice for � ? �
and the following identity [14, For-

mula 2.147.2]

% : � / :�&% � : � # 2 ? � : � � �

�8� � � � ��%5# �&% � : � # 2�� � �
� ��%� � � � � % % : � � � / :�&% � : � # 2 	

we get ��� � 	 � = ! ? � ��� �# % 3� 3 � � � � �� � � ��� � # � / � ? � %� 1
Let

� 2 denote the matrix in (3.2) whose determinant is
� 2 . Then it has the following

form

� 2 ?

��������
�

� = � � � �� �� � � = � � �� �
� � � � = �� �
...

...
...

. . .
...

� � � �� � =

���������
	
	 � � % (3.8)

where � = ? % and � � ? � %��
� . The determinants
� 2 can be computed recursively from

� 2 ? � 2�� � � %
	
� 2�� � 	 ��? �2	 � 	��� (3.9)
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with the initial conditions
� = ? % and

� � ? � � 	 . If we set
� � � ? % , then this recursion is

also valid for ��? % . The equation (3.9) has a multiple root at 4$? % �
� . Thus its solution is
found as � 2 ? � % � � � � � � 2 	 � � � 1 (3.10)

Expanding the determinant in (3.3) with respect to the last row and taking into account
the structure in (3.8), we derive the following expression for � 2 �/�5#

� 2 ���1# ? 247 � = � � %5# 2�� 7 � 2$� 7� � 7 � �
� � 2�� � � 2 # �
	 � � 7 �/�5# (3.11)

?
�

��� �� � � % # � � � ��# �
�
	 � %��� ��� # � 247 � = � � � % # � ��� �

� ��� � 7 	 � � �

which simplifies to

� 2�� � ���5# ? � %� � � � �
� � ��� �
� ���

� ��� �
� ��� � 2 � %� ��� � %�� � ��� �

� ��� � 2 � � 	 � � % (3.12)

where we used the identity [14, Formula 0.113]247 � = ��� �� � # : 7 ? � � �
� � �  # : 2�� �

% � : �  : �&%�� : 2 #� % � : # � (3.13)

which is valid for all : �? % and ���� .
The functions � � 2�� � , � � % are the generalized Laguerre functions considered in

[29, 9, 20], which are known to form a complete set in � � . Then Theorem 3.2.1 tells us that
the set of generalized Laguerre functions is complete in the spaces � � for all %@' (�) +
and each function in this set has an asymptotic order � .

It should be noted that generating orthonormal sets with prescribed asymptotic order
is not difficult. As a matter of fact, consider the orthonormal basis functions (3.1) and
let � 2 ���1# ? 0 �2 � � 0 �2 � � , � � % where � is an integer satisfying � � % . Then by an
application of the residue theorem, observe that / � 2 3 2�� � is orthonormal. However this
set will not be complete. This implies that any finite collection of such sets generated by
different values of � will not be complete. Then it follows that the method proposed by
Mendel [22] does not necessarily produce complete orthonormal sets. On the other hand,
our recipe guarantees completeness. To show incompleteness of the set / � 2 3 2 � � for each
fixed � � % , first by an application of the residue theorem note that 0 � is orthogonal to the
functions 0 �2 , � � � and

� 0 � 	 0 �� ! �?"� . Set

� ? � 0 �� � � 0 � � � 0 � 	 0 �� ! � � 1
Then � �?	� and it is orthogonal to the set / � 2 3 2 � � .

3.4 Construction of Double Pole Orthonormal Bases with
Asymptotic Order �

In this section, we remove the restriction on the pole of 	 �/�5# and choose

	 ���1# ?
� �1�
� �� # � �

�
	 � �/� �� #
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where the constant factor has been introduced for normalization. Then the basis functions
to be orthonormalized are� 7 �/�5# ? �
� �� # � ����� ��� # �/� �� #

� ��� �
� ��� � 7 	 � � � 1

We start the orthonormalization process by computing inner products in (3.2). We have
for � � � ,

��� 7 	 ��� ! ? � %�$#0� � � ��1���,�� # � ����� � # 7 � � � �

��� ��� # 7 � � � � �/� �� # �����  # / �
? � ��1��� �� # � �� � � # 7 � � � �

��1�� ��� # 7 � � � �
(3.14)

? � �  � � ��� �
7 � � � � 	

where the closed path � is as defined in (3.4) and the second equality follows from the
residue theorem, and for � ? � ,��� 7 	 � 7 ! ? 1�
� �� # �# % 33 / �

� � ����� � # � � ���� � #
(3.15)? � ��� 1

Letting � �? � ��� 	 � �?  � � ��� 	
we obtain from (3.14) and (3.15), the following expression for

� 2 � � � %5#

� 2 ?

��������
�

� ��% � � �� � � 2$� �

��% � � % �� � � 2$� �� � ��% � �� � � 2$� �
...

...
...

. . .
...� � 2�� � � � 2�� � � � 2$� � �� �

���������
	 1 (3.16)

As opposed to (3.8),
� 2 is not a band matrix. However it does not pose much difficulty

for the orthonormalization process. This is due to the special structure in (3.16). We will
show that as in 5 3.3, the determinants of

� 2 can be calculated by solving a second order
finite–difference equation. Indeed, first substract � times the second row of

� 2 from the
first row of

� 2 . Then substract � times the second column of the resulting matrix from the
first column of it. These operations leave

� 2 invariant and the result is

� 2 ?

�������������
� � � ��%5# % � � � �� �%�� � � � % �� � � 2�� �

� ��% � �� � � 2�� �
...

...
...

. . .
...

� � � 2$� � � � 2$� � �� �
�������������

(3.17)? � � � ��% # � 2�� � � � � ��%5# � � 2$� � 	 � � �
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with the initial conditions
� = ? �

and
� � ? � � � % . The solution of this equation is found

as � 2�? � � � � # � � ��%5# 2 	 � � � 1 (3.18)

To construct orthonormal base, we proceed as in 5 3.3. Let

� 2 �?

����������
�

� ��% � � �� � � 2$� �

��% � � % �� � � 2$� �� � ��% � �� � � 2$� �
...

...
...

. . .
...� � 2�� � � � 2�� � � � 2$� � �� � %� = � � � � �� � 2

�����������
	
1

Let
� " 7 '2�� � denote the matrix obtained by striking out the row and column of

� 2 containing� 7 �/�5# . Let
� " 7 '2$� � denote the matrix obtained by striking out the first row and the first column

of
� " 7 '2�� � . Then

� " 7 '2$� � is obtained from
� " 7 '2�� � by striking out its first row and first column

and so on. We define another sequence of matrices starting with � " 7 '2�� � , which denotes the
matrix obtained from

� 2 by striking out the row and column of
� 2 containing

� = �/�5# . The
second matrix � " 7 '2�� � is obtained from � " 7 '2�� � by striking out its first row and first column. The
matrices � " 7 '2�� � , � " 7 '2$� � 	��� are defined similarly.

First, substract � times the second row of
� " 7 '2�� � from the first row of

� " 7 '2�� � . Then
substract � times the second column of this matrix from the first row of it. The result for� ' � ) � is

� � " 7 '2�� � � ?

�������������
� � � � %5# %�� � � �� �%�� � � ��% �� � � 2�� �

� ��%
...

...
� " 7 '2�� �

� � � 2$� �

�������������
? � � � ��% # � � " 7 '2�� � � � � � ��% # � � � " 7 '2$� � �-1

Hence for � � � � ��' � ) � and
� ' � ) � , we obtain the following finite–difference

equation � � " 7 '� � ? � � � ��%5#�� � " 7 '� � � � � � � � %5# � � � " 7 '� � � �-1
The solution of this equation is found as

� � " 7 '� � ? � - � � � - � # � � ��% # � (3.19)

where the constants - � , - � are to be determined from

� � " 7 '2$� 7 � ? � - � � - � � � � � # � � � ��%5# 2�� 7 	
(3.20)� � " 7 '2$� 7 � � � ? � - � � - � � � � � � %5# � � � ��% # 2�� 7 � � 1

Thus from (3.19) and (3.20), we get for
� ' � ) �

� � " 7 '2�� � � ? � � � � ��# � � " � � 7 '2$� 7 �� � � %5# � � 7 � � � ��% # � � " 7 '2�� 7 � � �� � ��%5# � � 7 1 (3.21)
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Next, assuming
� ' � ) � , we find a recursion formula for � � " 7 '2$� 7 � � � . Letting � ?� � � � % , we have

� " 7 '� ?

��������
�

� � % � � � �� � � ���% � � � �� � � � � �

� � � %
...

... � � � �� � � � � � � � � �

���������
	 1

On this matrix, repeating the same row and column operations as before, we arrive

� � " 7 '� � ?

�������������
� � � ��%5# %�� � � �� �%�� � � � � �� � � � � �

� � %
...

... � � � �� � � � � �

�������������
? � � � ��% # � � " 7 '� � � � � � � � %5# � � � � � � � 1

Note that this equation holds also for � ? � . Thus we have shown that for all � ' � ) � ,

� � " 7 '2�� 7 � � � ? � � � � %5# � � " 7 '2$� 7 � � � � � %5# � � ��2$� 7 � � � 1 (3.22)

Now we find a recursion formula for � � " 7 '2�� 7 � . Substract � times the second row of
� " 7 '2$� 7

from the first row of
� " 7 '2�� 7 to obtain for � ' � ) � ,

� � " 7 '
� � ?

�������������
� � � � � �� �� % � % � � �� � � � � �

� � � � % �� � � � � �
...

...
...

. . .
...� � � � � � � � � � � � � � �� � %

�������������
? � � � � #�� � � � � �

where � ? � � � . This formula holds also for � ? % . Thus for all %�' � ) � ,

� � " 7 '2�� 7 � ? � � � � #�� ��2�� 7 � � �-1 (3.23)

Finally, we obtain a recursion formula for � � � � . Substract � times the second row of � �
from the first row of � � . Then � = ? ��% and for %�' � ) � ,

� � � � ?
����������
%�� � � �� �� � % �� � � � � �

...
...

. . .
...� � � � � �

� � � �� � %
����������

? �&%�� � # � � � � � �
? �.� % � � # � 1 (3.24)

Hence from (3.23) and (3.24), we have for %�' � ) � ,

� � " 7 '2�� 7 � ? � � �� � %�� � # 2�� 7 1 (3.25)
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Using (3.25) and (3.24) in (3.22), we get for �.' � ) �
� � " 7 '2�� 7 � � � ? � � � 	� �&% � � # 2�� 7 � � 1 (3.26)

Plugging (3.25) and (3.26) in (3.21), we obtain for
� ' � ) �

� � " 7 '2$� � � ? � � � �� � ��%5# 2�� 7 � � ��%5# 2$� � 1 (3.27)

This formula contains the cases �@? % in (3.25) and �@? � in (3.26). For � ?	� , we have

� � " = '2�� � � ? � ��2$� � � ? �$�&%�� � # 2�� � 	
which is recovered by the formula (3.27) with � ? � plugged in. Thus (3.27) is valid for
all � ) � . Note that � � " 2 '2�� � � ? � 2$� � 1 (3.28)

Expanding the determinant in (3.3) with respect to the last row, we have � = �/�5# ?� = ���5#�� � � since
� = ? �

and for � � %

� 2 ���5# ? 247 � = � ��%5# 2�� 7 � � 2�� � � 2 # � �
	 � � " 7 '2$� � � 7 ���5# 1 (3.29)

Thus from (3.18), (3.27), and (3.28), we get

� 2 �/�5# ?
� 2

�/� ��� # ��� �� #
� 2�� �47 � = � � � � � # � ��� �

� ��� � 7 � � � � � � � %5# � ��� �
� ��� � 2 �

where
� 2 �?

� ��� �� � � � # � � � � � %5# �
�
	 � 1 (3.30)

From (3.13), we can write � 2 �/�5# as

� 2 �/�5# ?
� 2

�/� ��� # ��� �� #
� � � � � � ��%5# � ��� �

� ��� � 2 � ��� ��� # �
	 � � � � �<�)� � � # ��� �

� ���
(3.31)�$� � � � � # � ��� �

� ��� � 2 � � � � � � � ��# � ��� �
� ��� � 2�� � � � 1

Although tedious, it is clear how to proceed for higher asymptotic orders. For example,
consider the single–pole case in 5 3.3 for deg 	 �/�5# ? � � % . Then

� 2 in (3.8) will have � �
nonzero stripes parallel to the main diagonal and the order of the finite–difference equation
in (3.9) will be � � . Once this equation is solved, � 2 �/�5# can be calculated in terms of
its solution as in (3.11). When � � % , the multiple–pole case considered in this section
requires taking more than one row or column at a time for pivoting. In the most general
case, i.e., the basis–pole set is not singleton, pivoting operations are to be performed on
matrices. The details are omitted.
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3.4.1 Asymptotic Toeplitz Results

The examples we have studied in this chapter are essentialy of determining Toeplitz deter-
minants generated by nonnegative rational functions. A lot of results are available in the
literature for Toeplitz determinants. In the rest of the chapter, we will review some of these
results.

The nonnegative function on the unit circle that generates the Toeplitz matrices in (3.16)
is � �)(+*-, # ? � � 47��� = � � 7 � � � (+* 7 ,

? 1� 4 ��%5# �� � 4 � ��%5# � 4 � � # 	 4$? ( *., 1 (3.32)

This rational function has double zeros at 4 � & � ? % and two poles at ( � ? � and ( � ? % � � .
The symmetry of the poles and zeros with respect to the unit circle is in agreement with
the positivity of � �)( *., # . When � ? � , we have � �)( *., # ? �.� % � 4 # � � 4 , which is the case
considered in 5 3.3 after a rescaling of

� 7 ’s.
The first Szegö limit theorem [15] tells us that�����2 � 3 � 2� 2�� � ? 
,� � � %�$# % '� ' ��� � �9(+*., #"/�0 � �?���� (3.33)

where the symbol ��� stands for the geometric mean of � . Now consider the case in 5 3.3.
Then � �)( *., # ? %�� �

� � 0 and

����? 
�� � � %�$# % '� ' � � �&%�� �
� � 0 #"/�0 � ? %�

where we used the identity [14, Formula 4.224.9]

% '= ��� �
� �� �
� � : #"/ : ? # � � �,� � � � �  �� (3.34)

valid for all � �  �� . Hence ��� �2�� 3 � 2� 2$� � ? %� 1
From (3.10), we have the same result as follows��� �2�� 3 � 2� 2�� � ? ��� �2�� 3 � � �� � � � %5# ? %� 1

When � is positive and satisfies certain smoothness conditions, the following refined
version of (3.33), known as the strong Szegö limit theorem [15], holds

��� �2�� 3 � 2
� 2�� �
�

? 
�� � � � % �
= % ��'=

����� � � �%$ ( *-, #� �
$�( *., #
����� � $ /�0�/+$ �� (3.35)

where � � 4 # is the unique analytic function that satisies Re � �9( *., # ? � �9( *., # and � � � � � # ?
� . Recall that if the Fourier series of � is

� �)(+*., # ? 347 � � 3 � 7 (+* 7 ,�	
37



then its conjugate Fourier series is

�� �)(+*., # ? � � 347 � � 3 � � � � � # � 7 (+* 7 ,
where � � � is the signum function defined by� � � � � # ? � � � � � � �-	 � �?	� 	

� 	 ��?	� 1
Thus for the case in 5 3.3, we have � � 4 # ? % � 4 . Hence � � � 4 # ? ��% for all � 4 � ' % and
the right hand side of (3.35) is

%
�
= % ��'= �&%�� $ � #"/�0%�� � $ �

� � 0 � $$� � $ /+$%���$�� ? %
�
= 	 #�$ /+$% ��$�� ? +

which equals to the left hand side of (3.35), where we used the fact that the integral of the
Poisson kernel which is the first integrand on the left hand side of the above equation equals
to �$# .

More elaborate asymptotic results on Toeplitz determinants can be found in the compre-
hensive book [6]. Notice that the coefficients of

� 7 �/�5# in (3.10) increase slowly as
� � � � � # .

This implies that asymptotic analysis does not have much to offer in the problems consid-
ered here. However it is an indispensible technique when exact solutions as in (3.10) or
(3.18) are not possible.

3.5 Summary

This chapter has illustrated application of a method to construct complete orthonormal
model sets which have a prescribed asymptotic order.
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[20] P. M. Mäkilä. Laguerre methods and � 3
identification of continuous–time systems.

Int. J. Control, 53:689–707, 1991.

[21] T. McKelvey, H. Akçay, and L. Ljung. Subspace-based multivariable system identifi-
cation from frequency response data. IEEE Trans. Automat. Control, AC-41:960–979,
1996.

[22] J. Mendel. A unified approach to the synthesis of orthonormal exponential functions
useful in systems analysis. IEEE Trans. Systems Science and Cybernetics, pages 54–
62, 1966.

[23] B. Ninness and F. Gustafsson. A unifying construction of orthonormal bases for
system identification. IEEE Trans. Automat. Control, AC-42:515–521, 1997.

[24] J. R. Partington. Interpolation in normed spaces from the values of linear functionals.
Bull. London Math. Soc., 26:165–170, 1994.

[25] M. Reed and B. Simon. Fourier Analysis, Self Adjointness, volume II of Methods of
Modern Mathematical Physics. Academic Press, New York, 1975.

[26] D. Ross. Orthonormal exponentials. IEEE Trans. Communication and Electronics,
71:173–176, 1964.

[27] W. Rudin. Real and Complex Analysis. McGraw-Hill, New York, 1987. 3rd edn.
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