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Summary We consider boundary value problems for linear diffe-
rential-algebraic equations with variable coefficients without any re-
striction for the index. A well known regularization procedure yields
an equivalent index one problem with d differential and a = n — d
algebraic equations. Collocation methods based on the regularized
BVP approximate the solution z by a continuous piecewise polyno-
mial of degree k and deliver, in particular, consistent approximations
at mesh points by using the Radau schemes. Under weak assump-
tions the collocation problems are uniquely and stably solvable and,
if the unique solution x is sufficiently smooth, convergence of order
min{k+1,2k—1} and superconvergence at mesh points of order 2k—1
is shown. Finally, some numerical experiments illustrating these re-
sults are presented.
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1 Introduction

In this paper we discuss the numerical solution of linear differential-
algebraic boundary value problems (BVPs) with variable coefficients

E@®)i(t) = A(t)z(t) + f(t) foralltel (1.1)
Cz(t) + Dz(t) =,
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by collocation methods. Here is I = [¢,] C R a closed interval, the
functions £, A : I — R and f : I — R" are matrix valued
respectively vector valued and C, D € R¥>", r € R? for some d < n.
The dimension d of the boundary condition is discussed below. A
solution z : I — R" is supposed to be continuously differentiable on
the whole interval.

There exist several collocation approaches to such problems, see
[5], [1] and [3]/[4], [6] and [7] or [9]. While these authors restrict the
(differentiation) index of the differential-algebraic equation (DAE)
to one or consider only semi explicit problems of index at most two
we deal with DAEs of arbitrary index by using the regularization
procedure developed in [11].

Up to now only Gaufl schemes or Lobatto schemes have been con-
sidered in collocation methods for differential-algebraic BVPs caus-
ing difficulties of instability, oscillations and loss of order in super-
convergence [1] and singular systems of algebraic equations, respec-
tively. To overcome these difficulties several approaches are made,
e.g. [5],[6],[7],[9]. Here we use Radau schemes such that consistency
of the approximations is fulfilled automatically and none of the above
difficulties occur.

The paper is organized as follows. In §2, we give some basic re-
sults concerning the regularization, a canonical form for the regu-
larized DAE and the existence and uniqueness of solutions for the
BVPs. In §3, we discuss the choice of collocation knots, show the
unique solvability of the collocation problems and prove convergence
of order min{k + 1,2k — 1} and superconvergence of order 2k — 1.
Some numerical examples illustrating these results are presented in
84. Finally, we give some conclusions in §5.

2 Basic results

We consider a DAE of index v > 1 and suppose the data to be v times
continuously differentiable, i.e. E, A € CY(I,R**"), f € C*(I,R").
Under this assumption there exists [11] a smooth transformation of
(1.1) to a DAE of the form

B(1)i(t) = A@)=(t) + f(2) (2.1)

with

which has the following properties:
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The solution sets of (1.1) and (2.1) are the same.
The DAE (2.1) is of index one.

)

) ) )

) A value 7y € R" is consistent if and only if As(tg)zo + f2(to) = 0.
)

)

Qo O

E\(t) € R¥*" has full row rank d for all ¢ € I.

For smooth data of the original DAE we get a smooth regularized
equation: E, A, f € C* for some k > v = E A feckD

f) We can compute E(t;), A(t;), f(t;) for discrete points t; € I in
an efficient and numerically stable way by use of singular value
decompositions [13].

By part ¢) and d) we see that the regularized DAE (2.1) is split
into d differential equations

By (t)i(t) = Ai(H)z(t) + f1(2)
and a = n — d algebraic equations
0 = As(t)z(t) + fo(t).

Thus it is appropriate to pose d boundary conditions to the DAE.
The main tool in the proofs of §3 is the transformation of (2.1) to
a canonical form. We use the equivalence transformation [10]

@

(El,A1> ~ (EQ,AQ) . = 3P € O(I,R¥™),Q € CL(I, R™*™)
pointwise regular :

(Eg,Ag) — (PElQ,PAlQ — PElQ) .

Proposition 2.1 ([16]) For E, A € CY(I,R"*") there ezist point-
wise regular P € C(I,R™"), Q € C'(I,R**") such that
. 1,0 . . 00
PEQ = |:0 0] , PAQ — PEQ = [OIa] .

If E,A € CF(I,R™") for k > 1 then this canonical form can be
achieved with P € C*~1(I,R**"), Q € C*¥(I,R"*"). For P we have
the special structure

] with Py1(t) € R Plo(t) € RO, Pyo(t) € R*4.

Using the transformation to canonical form we get the following
proposition about existence and uniqueness of the solution for the
BVP when we transform the boundary condition analogously, i.e.

[Cn 012] =CQ(1), [Dll Dlg] = DQ(t) . (2.2)

It follows directly by considering the BVP in canonical form.
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Proposition 2.2 A boundary value problem (2.1),(1.2) is uniquely
solvable if and only if C11 + D11 € Raxd g reqular.

Of course this condition is only of theoretical character, since P, ()
cannot be computed numerically. A more practical condition [8] is the
regularity of the shooting matrix S := CX(t,t) + DX (,t) € R¥*9,
where X (¢,t) is a fundamental matrix [8],[16] to the DAE (1.1).

Throughout the paper we use

n

lyll = max luil, Y]] := @%’%;'W
‘]:

as norm for vectors y and matrices Y, respectively.

3 Collocation methods

We want to determine a piecewise polynomial as a numerical approx-
imation to the BVP solution. For that we choose a mesh

W:§:t0<t1<...<t]v:% (31)

with mesh widths h; == t;41 —t; (i =0,...,N —1), h := maxh;
and use k collocation knots 0 < p; < ... < pg < 1 to subdivide each
of the intervals [t;,%;+1] by collocation points

tz’jzti+hz’pj (jzl,...,k,z‘:O,...,N—l). (32)

Then we compute a piecewise polynomial z, of degree k, i.e. z; :=
Tr|[t; t:41] 1S @ Polynom of degree k, such that the following conditions
are fulfilled:

a) E(tij)@r,i(tij) = A(tij)zri(tij) + f(ti;) for all 4, 5,
i.e. the DAE is satisfied in all collocation points,
b) xw,i—l(ti) = .’I,‘ﬁ,i(ti) for i = 1, . ,N — 1,
Le. the polynomial pieces are continuously matched,
C) 0= Ag(ti)xﬂ’i(ti) + fz(ti) fori=0,...,N—1 and
0= As(tn)za,n—1(tn) + fo(tn),
i.e. the approximations are consistent in all mesh points %;,
d) Czro(to) + Dxxn-1(tn) =T,
i.e. the boundary condition is satisfied.

Since we need the data E, A, f only at the discrete points #;;, we can
work with (2.1) instead of (1.1) by performing the regularization at
these points. So without loss of generality we replace a) by

E(tij) i i(ti;) = A(tij)zri(tiy) + f(ti;) for all 4,7
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At first sight this is a problem with N(k + 1)n unknowns, depending
on N polynomial pieces with each based on k + 1 parameters of
dimension 7, but

Nkn +(N—-1)n+(N+1l)a+_d =N(k+1)n+ Na

collocation continuity consistency BC

conditions. When using Gauf knots p; a modification of the colloca-
tion method is necessary, e.g. projected collocation (see [5] and [3],
[4]) or a perturbation of z, [6].

The idea is to use schemes such that some conditions are im-
plied by others. By fixing pr = 1 (or p; = 0 equivalently) we obtain
tik = t; + h; = tiy1, thus consistency in ;41 follows already from the
collocation condition for t;; and we may skip the conditions c) for
i =1,...,N. This yields a problem with N(k + 1)n unknowns and
N (k + 1)n conditions.

The choice p1 = 0 and pr, = 1, e.g. in the Lobatto schemes, means
tik = tit1 = tiy1,0, so the collocation conditions in t;; and ¢;410
together with the continuity condition in #;;; cause a redundancy.
To overcome these problems [7],[9] as an additional condition the
differentiable solution part is supposed to be continuously differen-
tiable instead of just being continuous. But this approach needs the
distinction of differential and algebraic parts in the solution and is
applicable only to a restricted class of BVP.

So in the following we consider schemes with

0<pr<...<pp=1, (3.3)

e.g. the Radau schemes.

3.1 Solvability of the collocation problems

For the polynomial piece z,; we use a representation as a Lagrange
interpolation polynomial according to the points (¢;, z;), (ti1, 1), - - -,
(tik, Tir), i-e.

Tri(t) = émile (t ;f) (3.4)

with
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Here we use the notation t;y := t;, po := 0, zjo := z; and for the
collocation conditions we denote vj; := Lj(p;) = L; (%) for j =
1,....,kand [ =0,...,k.

It is easy to prove [16] that V := (v;1);=1,..x € RF** is regular
and we set (wj);i=1,..k = VL. Finally we introduce zy := TN—1,k-

Summarizing the discussion and using this notation the colloca-
tion method reduces to the solution of the system of linear equations
(withj=1,...,kand7=0,...,N—1)

k
E(ti) (hi > Uﬂl‘z‘l) — Altij)aij = f(ti5) (3.5)
b =0
Tik — Ti41 (36)
—As(to)xo = falto) (3.7)
Czro+ Dzy =7 (3-8)

In order to examine this system according to existence and unique-
ness of solutions we first consider only the k collocation conditions
for each subinterval [¢;,t;11]. Treating only z;1, ..., Z; as unknowns
at this point, (3.5) for j = 1,...,k results in the local system

Zi1
Bi| t | =azitb (3.9)
Tik
with
ron . AL |2 i Vik f 1
h B — An R E By
—Agy 0 0
va
Ry By
0 :
e | ——— - - knxkn
Bi = : Vk—1,k T €R ’
h; -1
0
Vil T Vi k—1 1+ I
he Lk “hi Lk | B Be — A
i 0 0 —Agy
o B I
— B fu
0 fa1
a; == c Rknxn , bz = . c lexl ,
v ~ ~
— 2By [k
| 0 ] | for
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A~ A

where E; == E\(ti;), A1j := Ai(tij), Agj := As(tiy), fij == fi(tij)

and f2j = fg(tlj)

To prove the regularity of B; we use the transformation to canon-
ical form introduced in §2 for multiplications of B; from the left and
from the right, respectively, with

P, Q1
TP = ) TQ = c Rk:nxk:n
Py Qk

and Pj := P(t;;), Q; := Q(ti;)- We also need permutations of the
rows and columns done by multiplication with

[1, 0 00 i
00 I, 0
I, 0
Uy := 0 1o € Rbnxkn (3.10)
I, 0
L 0 Ia_

For the following analysis we omit the index i.

Lemma 3.1 If a transformation to canonical form with Q € C? is
possible we have the representation

e Wwler o] N
B=T, Uk[ o Ll (1+a) T
where
A= |44 As-—(hf: G (s=1,2)
= 0 0 3 = rat w]l Im j,m:ly___,k; s = b

and (form=20,...,k, l,7=1,...,k)

_ ) (pm — pr)vim (P EAQ)(ti)+O(h)l;ﬁm
G Ghal = i By 0O

For sufficiently small h, the matriz B is reqular with

RV-l®I 0

Bl =T, Uy (I_A+0(h2)) [ 0

v .
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Proof : With Q € C? we can expand
Q(tu) — Q(tij) = h(p — p;)Q(ti;) + O(h?) and this leads to

Vil 0.
P; [_’J‘_EJ] Qi
0
'Ujl

D
3 Pj[oj]Qﬁ

ALy o)) G}, G?
_ h gl M4l .
_[OO]+[O 0] for j # 1.

Analogously for j = I:

Pua (1) Bu (1) (QUta) — Q(6:)) ] )
0

[#5,a - 4] o-n 2o
_ [%I 0] B ([0 0] N [(PuElQ)(tij)D
0 0 01 0

:[%Lff 0]+[G§jG?j]_
0 —I 0 0

So by multiplication of B with T’p from the left and Ty from the right
and reordering of the rows and columns using U, we get

Ui Tp BTo Uy =
R 1 [Gh- Gl Gl -+ G ]
R S S I 1A e
L —I]1 L 1
~ %V?éf 0 _[Gta?
I R - 0 0
Because of the regularity of V and (wj;);; = V' we have
-1
[W &1 _OI] UL Tp BToUy =1+ A

and

-1 -1
B =T5'U; [W 0 ©1 _OI] (I+ A) UiTy, ',
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respectively, with the representations (for s = 1,2)

wid - wl | | Gy - G
a=mwrene=n| ||
wklf wkkI Gi1 sz

k
= (h Z wlelsm)
=1
Since Gy, is bounded for h — 0 and k is fixed, we have
k k
Z wlellm Z wlelQm
=1 =1

Thus I + A is regular for sufficiently small A and has the inverse

jm=1,...k

k
| All < hmax + —o(h).

(I+A)71:I—A+O(h2).

From this follows

-1 —1 _1
([hv &1 _OI] U,:TPBTQUk) = (1+4)" =1-a+o0®)
1
= B =T Ui (1 - A+ 0(1)) ["V & _OI] U: Tp

and the proof is completed. 0O

For the continuity conditions z;;, = r;(tiy1) E Trit1(tiv1) =
z;+1 we will use an expression for x;; in dependence of x; which
results from the solution of the local systems (3.9):

zig=1[0---0I]B;a;-z; + [0 --- 0I] B; 'b; . (3.11)

~

" ~

=W; =:9;
The next lemma gives representations for W; and g;.

Lemma 3.2 If a transformation to canonical form with Q € C? is
possible then the following representations (for 0 <i < N —1) hold:

I—F; —F; _ .
W= Q)| T 0 () with = 002),Fa = O(0),

&)

Pzzfz)(ti+1):| with ¢; = O(h;) .

9i = Q(ti+1) [_(
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Proof : Using the representation for B, ! given in Lemma 3.1 we
compute W;Q(t;) = [0...0I]B; 'a;Q(t;).
With Qo := Q(t;) and Qo — Qj = —pjhiQ(ti;) + O(h?) we have

—0F; Y50 E;] E;
P 0
= UgpTpaiQo =Ug : Qo
0
1 [weI0] [G)G}
hl 0 0] [0 0

with vy := (vj0)j=1,..x and G§ := (G;’?O)j:l,_",k,s = 1,2. We easily
derive that vg = =V [1 1]* by considering

k k
Z'UJI = ZL;(p]) =0
1=0 1=0
for all 7, and this leads to
(107 [Al A%
BVvler 0 .. o _ |10 Al A%,
[ 0 —I] UsTraio= ool = | 0 0 |°
100 . 0 0
\c_/ W
=:1 =:A;

with Ay = O(h;) defined as in Lemma 3.1. The next step yields

(1-ai+00)(1- A) =T- A — Ad + 0(r2)
(107 [Af A%] [X Al 0] [O) O

10 ALy A2,

YA 0] | ORF) O(h7)
00 0 0 0

0 0 0

100 0 0 0 o0J L O 0



Collocation for differential-algebraic BVP 11

* *
* *
= I-Fa —Fp| =06;,
0 0
L 0 0

k
with Fyy := Apo+ Y Apy +O(h7), Fip := Afp+O(h7) . Altogether
m=1
this yields
@1
WiQ(t;) =[0...01])B; 'a;Qp = [0...01] Ur6;
Qk
and hence

Wi = Q(tis1) [I Fu o ] ot

In order to show that Fj» = O(h?) we use interpolation according to
00, - - - » pr. of the polynomials p(t) = ¢, ¢(t) = 1 and get

k k
S Ln(p)pm=1, > I(p)=0.

By inserting the definitions of Lemma 3.1 we see

k k k k
Allco + Z Allcm = hz Z ’wlellO + Z hz Zwlellm

K k

= hi Y wg(PuEn)(ta)| Y (Ulm(pm_Pl)Q(til)+O(hi)) — Qu(ta)
=1 m#l
k ) k _

= hi Yy wp(PuBy)(ta) [Z Ly (p1) (pm — Pl)_1] Q1(ti) + O(hq)
=1 m=0

0
k
= Fu=Ap+ Y A+ 00 =0(R) .

m=1
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Looking at the definition of A%, it is obvious that Fjo = O(h;).

¢ .

- with ¢; = O(h;
(P22f2)(ti+1)] ' ()
can be derived analogously by inserting the representation for B; !

given in Lemma 3.1 into g; = [0 --- 0T | B;"'b;. O

The representation g; = Q(t;+1) [_

After the solution of the local systems we have the continuity
conditions ;11 = W;x; + g;, e = 0,..., N — 1, instead of (3.6) which
together with the the consistency condition (3.7) and the boundary
condition (3.8) form the global system

T
Kp| @ | =9n, (3.12)

IN

with K, € RVHUnx(N+1)n and g, € RVTD? defined as

C D r
—As(to) 0 fa(to)
W() —I —go
Kh:: ._.._. 7gh:: .
i Wy-1—1| | —9gn-1

We must prove the regularity of Kj, and the boundedness of K, Lan.
For this the following notation is useful: Let Uy € R(N+nx(N+1)n
be a permutation matrix as Uy in (3.10), and let

I 0
0 Pry(to) Q(to) |

T’l = Q(tl)_l 7T7“ =

Qtn)~! Q(tw)
be defined by use of P, (Q, which transform the differential-algebraic
equation to canonical form. They will be considered for multiplication
of K}, from the left and from the right, respectively. Set

Cn Dy Ciao Dy
I —I —Fypy 0
Mh:: — 7Nh:: .. .. )

I -1 —Fy_ 12 0
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0

—Fy1 O
Dh = . . ;

—Fn_110
with Cll,Clg,Du,Dlg given in (22) and El,FiQ given in Lemma

3.2, and set Aj, := [J‘S’h J_V?] A, = [Dohg _

Lemma 3.3 We have the representation
Ky, = 1}71 Un (Ah + Ah) UX] T’,,._1 .

For a uniquely solvable BVP (2.1),(1.2) and a smooth transformation
function Q € C?, the matriz K}, is reqular for sufficiently small h with

K =T, Uy (I — AT A+ (f)(hQ))A,;1 UL Ty

Furthermore, Kh_lgh is bounded by a constant which depends on the

data E,A,f, C,D,r and the transformation functions P,Q, but not
on h.

Proof : By multiplication with 7} from the left and 7. from the right
we get blockwise

[éPmﬂ(to)] [—Af(to)] Qo) = [—(sz?‘iitﬁ()?))(to)] N [681 %IQ]

and (according to Lemma 3.2)

Q(tir1) ' WiQ(t:)

= Q)™ (@) |1 7] Q) @
7]

Reordering of the rows and columns yields
Un T, Ky Tr Uy
[ 011 C12 Dll D12-
0 —I 0 0
I-Fy —Fy|—1I 0O
— U 0 0 |0 —1I Uy

-1 0
0 —I

I-Fy 11 —Fn-12
0 0
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By Proposition 2.2 the matrix S := Ci1 + Dy is regular and so is
M}, with inverse

g1 I Dy -+ Dy
e R F
S*l : : Dqq
I-Ci---—Ci
From this it follows that
N—1
M}, Dy < [|S™1| max{[|C1]], [ D111} - | Fin |
i=0
=0(h?)
N-1
< |57 max{[|Cuil, | D11[|} - const - by hy
=0
=tn—to

=O(h) for h—0.

By this we see the regularity of Ay and

=[5 3]

: 1M, Dal| = O(h) .

Thus Ay, + Ay = Ay, (I + A;lAh) is regular for sufficiently small h
with

(Ah n Ah)_l - (I n A;lAh>_1A;1 — (I — AT AL+ (9(h2))A,;1 .

Inserting this into Kj; = Tl_1 Un (Ap + Ap) Uy T,7F proves the re-
presentation of K- L
Using g; = Q(ti+1) [—(PZZJ%)(t'+1)] (see Lemma 3.2) we get
7

IR M, d
Ahl'UNTlgh:[ ’é ]

with e := [—(szfg)(t())* et _(P22f2)(tN)*]*’ d:= [dé T d*N]* and

di = {7' + Cha(Poa fo) (to) + Dia(Poafo)(tn) fori=0
' —ci_1 — Fi_12(Pasfo)(ti—1) fori=1,...,N
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Since ¢i—1 = O(hi—1), Fi—12 = O(hj—1) we also have d; = O(h;_1)
for ¢ =1,..., N, which gives the boundedness of Mh_ld, ie.

N
10, )l < 1157 (lldol + max{[Cull, [ Drall} - il )
i=1
< 11574 (Iidol| + max{||Cy1 I, 1Du1 |1} - const - (tx = to) )
Of course e is bounded by sup;cy ||(P22 f2)(t)| and thus

1 gl = |

<|

T, Un (I —AAL+ (D(hZ))A,;1 UL Ty th

T, Un (1= 47" A+ O(R) )| - max {|Iag;dl. 1] |

is bounded independent of A. 0O

The following theorem about existence and uniqueness of solutions
of collocation problems (3.5)-(3.8) can now be proved by combining
Lemma 3.1 (solvability of the local systems) and Lemma 3.3 (solv-
ability of the global system). If the data is smooth, i.e. E A e C?,
the existence of a transformation to canonical form with Q € C? is
guaranteed by Proposition 2.1.

Theorem 3.1  Consider a uniquely solvable BVP (2.1),(1.2) with
smooth data E,A € C?, f € C. For N € N and k > 1 define a
mesh m as in (3.1) and collocation points t;; (for j = 1,...,k, i =
0,...,N —1) as in (3.2) according to knots p; as in (3.3).

Then for sufficiently small mesh widths hg, ..., hy_1, there exists
one and only one continuous piecewise polynomial x, of degree k
that satisfies (2.1) at all collocation points t;;, fulfills the boundary
condition (1.2) and is consistent at all mesh points t;.

The collocation methods are stable, i.e. the approximations x;, z;;
are bounded independent of the mesh 7, since the z; are bounded (see
Lemma 3.3) and this leads to the boundedness of the z;;, according
to a representation

7 = (Q(tij) [I o ] Q(ti)l) zi + Q(ti) [—(PQQC??)(tij)] ’

which is similar to z;; = W;x; + g;.
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3.2 Convergence results

The next aim is to examine convergence of the collocation methods.
The expected results (convergence of order k, superconvergence of
order 2k — 1) will be proved.

Theorem 3.2 Let x be the unique solution of a BVP (2.1),(1.2) and
let z, be the unique solution of the corresponding collocation problem

with parameter k and sufficiently small mesh widths h;.
If z is smooth, i.e. x € C*T1(I,R"), then

|7 — Trlloo = sup () — &x ()] = O(R*) .

Proof : Interpolation of x analogous to (3.4) means that

k k
t—t; x(kﬂ-l
)= w(ta)ly ( - ) e 1 H — tij)

1=0 ¢

:-wz(t)

for some 0;(t) € [t;,ti+1]. Inserting this representation into the DAE
at the collocation points ¢;; delivers the local system

z(ti1) Til
B; = ai:L'(ti) +b; — ,
z(tik) Tik

with B;,a;,b; defined in (3.9) and Tij 1= EA(tZ])’L/)Z(tZ]) Since the col-
location problem is uniquely solvable, i.e. B; is regular, this can be
solved and leads to (with W;, g; defined in (3.11))

o(ty) = Wiz(t:) +9i — 7 -

For the error 7;:= [0 --- 0I] B; ! (Tij> _ a representation
J:

geuny

Ti = Q(tiy1) [%Z] . i =O(hFt

can be derived analogously to that of g; ( see Lemma 3.2) since 4;(t) =

O(RE, i (t) = O(h¥). The continuity, boundary and consistency
conditions for z lead to the global system (comparable to (3.12))
0
x(to) o
Kp| =0Gh+Th, Th:i=
z(tn)

TN-1



Collocation for differential-algebraic BVP 17

According to the unique solvability of the collocation problem, Kj,
is regular and so the difference of the global systems for z and z,,
respectively, gives

.’L'(t()) — Ty
Kp : =Th. (3.13)

$(tN) — TN

Due to the higher order of 75, we have Kngh = O(h¥) (this can be
proved like the boundedness of K, lgp in Lemma 3.3), i.e.

max ||z (t;) — z;]| = O(h).

Looking at the difference in the local systems we obtain

x(til) — i1 Til
: = B la; (w(tz’) - ivz) -Bi' | (3.14)
T(tix) — Tik j(/hr lf—/
o)

and hence max; ||z(t;;) — zi5]| = O(RF) .
Considering the difference of the interpolation representations we get

z(t) — zx(t) = i (w(tu) - wiz)Lz <t ;th) + (1)

=0

and thus
|z(t) — zx(t)|| < const - max [z (ti5) — miz]| + [[4i(2)]]
=0(r*). O

So far we have only made the assumptions 0 < p; < ... < pg = 1.
Choosing the Radau scheme a higher convergence order in the mesh
points %;, i.e. superconvergence, can be achieved.

Theorem 3.3 Let x be the unique solution of a BVP (2.1),(1.2)
and let x; be the unique solution of the corresponding collocation
problem with parameter k and sufficiently small mesh widths h;. Use
the Radau scheme with py, = 1 to construct the collocation points t;;.

If the data is smooth, i.e. E,fi € CQk,f € C%*~1 then

N o] — 2%—1
Jmax [lo(t) = ol = O()
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Proof : Since E’, A are smooth, a transformation to canonical form
with P € C%*~1,Q € C% exists, see Proposition 2.1. Recalling the
consistency of x; = x,(t;), we can consider the solution v of the initial
value problem Ey = Ay + f, y(t;) = z; which has, due to the corre-
sponding initial value problem in canonical form, a representation

[IO](Q(tz $2+j;: Pf ) )] ,t >t
—(Paafa)(t) -

Analogously we have for the solution z, of the initial value problem
Ey = Ay+ Eiy — Azy, y(t;) = z4:

[10](Q(t) " mi + J(P(Bix — Azz))(s)ds) ]
(Poa Agzr)(2)

for t; <t <t;41. Since z, is consistent in mesh points, the difference
of these representations at ¢ = t;11 gives

Q7 Mo)(t) =

(@ tax)(t) = [

tit1
v(tit1) — Tiv1 = Q(tiv1) [ft’Jr ol ] ;

with a smooth function ¢ € C%*~1([t;,t;11], R?) (note the smoothness
of E, A, f, P and z,) of the form

#(s) = [T0]P(s)(f(s) = Bls)in(s) + A(s)x(s))

Because z, satisfies the DAE at the collocation points ¢;;, these k
points are zeros of ¢ and from this the existence of a smooth function
w € C*L follows [16], such that ¢(s) = w(s) [T5_,(s — ti;) for s €
[tiyti+1]. A Taylor expansion of w yields a polynom 1 of degree at
most k — 2 with

k

¢(s) = v(s) [ [ (s —tij) + O(RFF1), s € [ti, tira].

J=1

From the orthogonality property of the Radau scheme we get

tit1 tit1 k
| otas= [ i) [T — 1) + 002 ) s

7 i

1 k
= hf“/ Pt + hit H T — p;)dr +O(h*) = O(h*)

7

-~

=0
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and this means that the local discretization error

tit+1

is of order O(h2F).
Considering a fundamental solution matrix W (-,;), i.e. a solution
of
I0

BW = 4w, Wi(tt) = () [ o 0] @t .
we see that z(t) — v(t) = W(t,t;)(z(t;) — v(t;)) for all ¢ > ¢;, and
especially for ¢;11 we have

W (tit1,ts) (iv(ti) - xz) = z(tit1) — v(tiv1) = z(tit1) — Tiv1 — di-

This holds for ¢ = 0,..., N —1 and builds together with the boundary
condition and the consistency condition in ¢y the system

C D 0
—As(to) 0 z(ty) — zo 0
W(tl,to) —I = _¢0

SE(tN)—J?N
i W(tn,ty—1) —1 | | —¢n-1

comparable to (3.13). From this we derive (as in Lemma 3.3)

max [|z(t;) — i = O(R*1),
7

since the inhomogeneity is of order O(h%¥). O

Inserting this result into (3.14) the following improvement of the
convergence order can be shown [16].

Corollary 3.1 Under the assumptions of Theorem 3.2 it follows that
lz(tij) — 25|l = O(RFH) + O(W*F1)
for1<j<Ek0<i<N-1and

sup ||z(t) — (1) = O (hmin{k—l—l,Qk—l}) '
tel
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4 Numerical examples

In order to illustrate the practicability and effectiveness of the de-
scribed collocation methods they are applied to three challenging
examples. A MATLAB code has been developed including a simple
strategy for the generation and refinement of the meshes 7. The pack-
age DGELDA [13] is used for the regularization. As input the data
t,t, C,D,r are needed as well as FORTRAN subroutines for evalua-
tion of E, A, f and its derivatives up to degree v—1 at discrete points.
The parameter 1 < k < 5 and a tolerance for the mesh selection must
be chosen.

Ezample 4.1 In [14] a double operational amplifier is modeled as a
DAE Ei(t) = Az(t) + f(t) with matrices E, A € R6*® and f depend-
ing on an input signal U;,. This is an index one problem with d = 2,
a=4.

Taking a periodic input we can look for a periodic solution z. A
necessary and sufficient condition for this is that

E12(0) — Erz(T) =0,

where T is the periodicity of the input.

We choose parameters C; = Cy = 107%, Ry = Ry = 103, a =
10* and an input signal Uy, (t) = cos(2007t) (i.e. T = 0.01). The
collocation method with & = 4 and a tolerance 10~° for the mesh
selection computes a periodic solution with an error

max ||Uout(ti) - .'I,'4Z|| ~0.24 - 10_6
i

(comparing only the output signals of the analytical solution and the
numerical approximation at mesh points).

Ezample 4.2 Ascher and Spiteri considered in [5] the semi explicit
index two problem

100 K—5= 0  (2-tk
010 z(t) = a1 1 k—1-— '62p+(i) z(t)
000 t4+2—p(t) 12 —4 0
2
+ | (2+ AW _ e, ) of

—(#2 +t - 2)e
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on I = [0, 1] with initial condition z1(0) = 1. It consists of d = 1
differential and a = 2 algebraic equations, so no more boundary con-
ditions are necessary. The solution of this BVP is

t ¢ "
z(t) = [et (1+§_l4) et—%] )
By taking parameter x = 20 and the parameter function

p(t) = — (1 +erf(t ?/_216/3)) ,e=107°

(as done in [5]) a layer region around ¢ = 3 occurs in p and in the
second solution component and we can ask whether the collocation
method can rebuild this layer region. Figure 4.1 shows the approxi-

-+ + 4+ o+ + -+ +

L L L L L L L L L L L
[o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4.1. Approximation for x> and corresponding mesh

mation for xo computed by the collocation method with & = 4 and
the corresponding mesh which consists of N = 28 points and has
been built in five refinement steps. The error is

max ||z(t;) — z;|| = 0.3-1073.
2

Ezample 4.3 A planar truck model is given in [15]. Here we consider
its linearization

Ei(t) = Azx(t) + (1)

with constant coefficient matrices E, A € R?**23 and an inhomogene-

ity f which depends, among others, on a function v modeling the road
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profile. This equation is of index three with d = 20, a = 3 and badly
scaled.

We choose a wavy road profile u(t) := 0.05sin(207t) (meaning
waves of height 5 ¢m and length 3 m if the truck is driving at a speed
of 30:2) and look for the motion of the driver’s seat that is caused
by this, i.e. we solve the DAE together with a periodic boundary
condition

E12(0) — E1z(T) =0,T =0.1.

Figure 4.2 shows the solution of the collocation method with k = 4
in comparison to the road profile.

road profile

driver's seat

-0.01

—0.02

—0.03

—0.04

—-0.05

L L L L L L L L L |
(o] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Fig. 4.2.

5 Conclusions

In this paper we have shown that numerical approximations to the
solution of linear differential-algebraic BVPs of arbitrary index can
be computed in an efficient and stable way via collocation meth-
ods applied to the equivalent, regularized BVPs. Since we use Radau
schemes, consistency is implied in the collocation conditions, thus we
do not need special adaptations, as projected collocation [3],[5] or
a perturbation of the approximating polynomial [6], of the colloca-
tion methods that work for BVPs for ordinary differential equations.
A drawback of these methods may be the unsymmetry caused by
the Radau schemes. Similar but symmetric collocation methods are
currently under investigation as well as methods for nonlinear BVPs.
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