UNIVERSITAT

BREMEN Zentrum fiir Technomathematik
Fachbereich 3 — Mathematik und Informatik

Robustness of nonlinear systems and
their domains of attraction

Andrew D.B. Paice Fabian R. Wirth

Report 99-06

Berichte aus der Technomathematik

Report 99-06 August 1999






Robustness of nonlinear systems and their domains of attraction

A.D.B. Paice F.R. Wirth
ABB Corporate Research C1 Center for Technomathematics
5405 Baden-Dattwil University of Bremen
Switzerland D-28334 Bremen, Germany
Andrew.Paice@chcrc.abb.ch fabian@math.uni-bremen.de

Keywords: Domain of attraction, robust stability, nonlinear systems, spectral theory, time-varying
perturbations.

1 Introduction

In this paper we consider the problem of analyzing the robustness of stability of nonlinear systems
with time-varying perturbations. The key idea is to define a stability radius for the perturbed
nonlinear system, and then to examine the related stability radii for the linearized system. Following
the approach outlined in [3, 5, 21] we assume there exists a fixed point z* of the nonlinear system,
and that it is singular with respect to the perturbations, i.e. not perturbed under the perturbation
class considered. For this fixed point we define the exponential stability radius. It was shown in [5]
that lower and upper bounds of this stability radius can be obtained by studying the linearization
in £*. We show that generically the stability radii of the nonlinear system and its linearization
coincide. A brief introduction to a method for the calculation of the linear stability radius is
presented.

Having thus obtained some understanding of the local problem, we go on to consider the problem
of determining a robust domain of attraction for the fixed point. For nonlinear systems one basic
question is that of the determination of domains of attraction of asymptotically stable fixed points.
This question has received considerable attention over the last decade, see e.g. [23], [2], [17]. We
discuss some topological properties of the robust domain of attraction and present an approximation
scheme for its determination.

In both cases, the study of the local problem, and the study of the robust domain of attraction,
it is seen that the tools of optimal control theory may be applied to yield methods of calculating
both the local stability radius, and the robust domain of attraction.

We proceed as follows. In Section 2 we introduce a stability radius for nonlinear systems with
time varying perturbations. The concept of a robust domain of attraction is introduced, and some
remarks on the ways in which the robust domain of attraction may shrink as the admissible size
of perturbations increases are made. In Section 3 we develop a local robustness theory based on
the linearization of the system. It is shown that generically the linear stability radii coincide,
demonstrating that generically one need only consider the linearization in order to determine the
nonlinear robustness properties of the system. In Section 4 a method of calculating the nonlinear
stability radius based on the methods of discounted optimal control is presented.



In Section 5 we introduce the concept of the robust domain of attraction and a few properties
are discussed. In the following section we then analyze the linearization of the nonlinear systems,
finding a ball of initial conditions yielding trajectories which robustly converge to the origin. The
determination of the domain of attraction, however, is clearly a nonlinear problem, thus in Section 6
we characterize the robust domain of attraction in terms of an optimal control problem, and present
approximations to this problems whose value functions are computable as viscosity solutions of
Hamilton-Jacobi-Bellman equations. In order to improve these approximations, we suggest how to
use the information provided by the linearization. From this we obtain an algorithm for which we
prove convergence.

In Section 7 we summarize the results and give a short outlook on remaining problems.

2 Preliminaries

In this paper we study nonlinear systems of the form

i(t) = fo(z(t)), teR (1)
z(0) =z9 € R",

which are exponentially stable at a fixed point which we take to be 0. By this we mean that there
exists a neighborhood U of 0 and constants ¢ > 1,5 < 0 such that the solutions ¢(¢;x,0) of (1)
satisfy ||(t;z,0)|| < cePt for all z € U. Under the assumptions of local exponential stability it is
of interest to know the domain of attraction of 0, defined by

A(0) :={z e R* | ¢(t;2,0) = 0,t = o0} .

Assume that (1) is subject to perturbations of the form

m
(1) = fo(z(t) +)_ di(t) fi(2(t) =: F(x(1),d(1)), te€R, (2)
i=1
where the perturbation functions f; leave the fixed point invariant, i.e. f;(0) =0,i =0,1,... ,m.

We assume that the vector fields f; are locally Lipschitz continuous and continuously differentiable
in 0. The unknown perturbation function d is assumed to take values in D C R™, where D is
compact, convex, with nonempty interior, and 0 € int D. Denote D := {d € {*(R,R™) | d(t) €
D a. a.}. Solutions to the initial value problem (2) with z(0) = z( for a particular d will be denoted
p(t; 20, d).

It is our aim to analyze two robustness problems related to this setup. The first one is local in
nature, as we study the corresponding time-varying stability radius at 0, defined by

Tw(fo, (fi)) =inf{a > 0| 3Id € aD such that (2)

is not exponentially stable at 0} .

For time-invariant perturbations this problem has been studied in [21].
The second robustness problem considered is that of the domain of attraction of the unperturbed
system. Given d € D, the domain of attraction of 0 at time ¢9 = 0 for (2) is

Aq(0) :={z € R" | p(t;z,d) = 0,t — 00} .



A robust domain of attraction may now be defined. In the definition of the robust domain of attrac-
tion we do assume that the perturbed system is locally exponentially stable for all perturbations,

Le. r(fo, (fi)) > L.

Definition 2.1 (D-robust Domain of Attraction) Let D C R™ as before and assume that
rw(fo, (fi)) > 1. The D-robust domain of attraction of the equilibrium 0 of (2), is

Ap(0) :={z € R* | Vd € D, p(t;z,d) — 0,t — oo}
= (1) Aa(0).

deD

When studying the robustness properties of the domain of attraction the two main problems of
interest are:

1. Given D C R™, determine Ap(0).

2. Given A C A(0) and a perturbation set D C R™, determine the largest o such that A C
Aap(0).

In the first case we are most interested in determining the robust domain of attraction, while
in the second case we consider a variant of a stability radius problem. Here the focus is on the
mechanism by which stability is lost. Note that if the allowable perturbations are increased there
are three different scenarios with which the the property A C A,p(0) is lost at some minimal .

1. Loss of stability at 0: i.e. A C Aqp(0) for @ < ap and on the other hand dist(A4, 0.A.p(0)) >
6 >0 for all 0 < o < . This is the case if linear systems are considered.

2. Contraction of the domain of attraction: As a — «q it holds that dist(A, dA.p(0)) — 0.

3. Birth of an attractor in int A: while dist(A4,dA,p(0)) > d > 0 for all 0 < a < «p it holds
that AN OA,p(0) # 0.

An example for the last scenario is given in the following example.

Example 2.2 Consider the following perturbed system on R:
T = —z + d(t)zsin(z)
with D = [-1,1]. Then, Ap(0) = (—n/2,7/2), while for 0 < a <1 we have Aqp(0) = R.

In this paper we concentrate on the first question, that is determining the robust domain of
attraction, and of obtaining estimates of the robust domain of attraction, i.e. determining sets
which are guaranteed to lie within A,p(0). We begin with the analysis of the local problem, for
which it is to be expected that linearization will play a vital role. This is developed in the following
section.



3 Linearization Theory

As the functions f; are continuously differentiable we may study the linearization in 0 associated
with the nonlinear system (2) given by

m

#(1) = Aga(t) + Y di(t) Asa(t), tE R, 3)

where A; denotes the Jacobian of f; in 0, ¢ = 0,... ,m. We abbreviate A(d) = Ay + >_ d;A;.
Solutions of (3) are denoted by ¥(t; z, d).

In the analysis of the problem where constant perturbations were considered, it was seen that
an examination of the movement of the eigenvalues as the system was perturbed was key in un-
derstanding the problem. It was then possible to show that generically the stability radius for the
nonlinear system could be determined by considering the linearization. In the time-varying case
we are considering here it is necessary to consider the Bohl ezponent (or equivalently the maximal
Lyapunov exponent), see [15], [3], [4]. For d € D, let ®4(t,s) denote the evolution operator of
the time-varying linear system & = A(d(t))z(t). The Bohl exponent of system (3) given d € D is
defined by

B(d) := inf{B € R| IM : ||Bq(t,s)|| < Me =) vt > s > 0},

see [8], [15] for an introduction to the properties of the Bohl exponent, in particular for the fact
that exponential stability of a linear time-varying system given by d € D is equivalent to 3(d) < 0.
We denote the maximal Bohl exponent of system (3) by

B(Aog,... ,Am, D) := rdnea%ﬁ(d) ,

where we will suppress the dependence on the matrices (A, ... , Ay ) and on the perturbation set D
when these are clear from the context. In [1], [3] it is shown that the maximum is indeed attained.
Furthermore if g = (A, ... , Am, D) < 0 then there exists for every € > 0 an M, > 1 such that

[@a(t, s)|| < MelPTE=0) vt >5>0,deD. (4)
Define the linear stability radii

'rLy(AO, (Az)) = inf{a > O| ,B(Ao, ...,Am,aD) > O}, (5)
’FLy(A(), (Az)) = inf{a > O| ﬂ(Ao, ...,Am,aD) > O} . (6)

The following lemma from [5] states a basic relationship between the nonlinear and the linear
stability radii.

Lemma 3.1
Ly (Ao, (Ai)) < riw(fo, (fi) < Try(Ao, (4i))-

The previous lemma, gives rise to the question whether rr, (Ao, (4;)) and 774 (Ao, (A4;)) com-
monly coincide. A simple example shows that this need not always be the case.



Example 3.2 Letn=2,m =1 and
-1 0 10
=[] w-fod]
Clearly rry(Ao, A1) =0 and 71,(Ao, A1) = 1.

This example is trivial in the sense, that it shows a difference for the two linear stability radii
only in the case when the unperturbed linear system is not asymptotically stable. In the discrete-
time case it can be shown that only such trivial examples exist. In the continuous time case it is
an open question whether there are nontrivial examples. Here we will show a genericity result.

We now further develop the properties of 71, and rr,,, when considered as functions of (4o, (4;))-
Recall the following definitions of semi-continuity. A function f : R — R is upper (lower) semi-
continuous when, given f(zg) > ¢ (resp. f(zg) < ¢) for some zy € R" there exists a neighborhood
U C R" of 2y such that Vz € U, f(z) > ¢ (resp. f(z) < ¢).

It is shown in [1], that the maximal Lyapunov exponent is a continuous function from the set of
compact subsets of R"*" endowed with the Hausdorff Metric to R. Here the Lyapunov exponent
corresponding to a compact set M C R"*" is defined as the one given by the differential inclusion

te{Az|Ae M}.

We may now prove the following semi-continuity properties for r7, and 77, generalizing the results
for time-invariant perturbations.

Lemma 3.3 (1) Try(Ao; (A;)) is an upper semi-continuous function of (Ao; (4;)).

(ii) Try(Ao; (A;)) is a lower semi-continuous function of (Ao; (A;)).

Proof. Suppose that ag := ry(Ag;(A4;)) > ¢. Then Vd € ¢D, (d) < € < 0. By upper semi-

continuity of 3(-) (see [8]), there exists a neighborhood U of (Ay; (A4;)) such that for all (By; (B;)) €
U, B(Bo, ..., Bm,cD) < ¢g/2 < 0, so that rr,(Bo; (B;)) > c. Thus rg, is upper semi-continuous.

A similar argument establishes lower semi-continuity of 7r,. m|

In some situations it may be interesting to consider an extended version of the stability radius

for the linearized system.

71y (Ao, (4;)) := inf{a > 0| B(Ao, ..., Am,aD) > c} (7)
F%y(Ao, (Az)) = inf{a > O| ,B(Ao, ...,Am,aD) > C} (8)

This allows measurement of the robustness of the system with respect to a guaranteed level of
exponential convergence or divergence. It is straightforward to show that these new stability radii
may be linked to those of (5) as follows.

Lemma 3.4 Let (Ao, ..., Ay,) € Rxmxmtl) ihen

Tiy(Ao, (Ai)) = rry(Ao —cl;(4:)), 9)
Tiy(Ao, (4i)) = Try(Ao —cl;(Ai)).- (10)

The following lemma, is needed in the proof of the main result of this section.



Lemma 3.5 Let m,n € N and (Ao, ... ,Ap) € ROXMXM bo fired. For the maps
g:c—=ry(Ag—cl,(4;), G:c—Try(Ao—cl,(4)),
the following statements hold:
(i) g is upper semi-continuous, g is lower semi-continuous.
(i1) g is discontinuous at ¢y iff g is discontinuous at cy iff g(co) < g(co)-
(iii) g,g have at most countably many discontinuities.

(iv) g(c) = g(c) for all c € R with the exception of at most countably many points.

Proof.
(i) Semi-continuity is an immediate consequence of Lemma 3.3.

(ii) Let g(co) < g(cp) then by definition and continuity of the maximal Lyapunov exponent
g(co + €) > gleg) for any € > 0. Thus the assumption implies discontinuity of g at cp.
Discontinuity of g at ¢y follows from g(cy) > g(co — €). Conversely, let g be discontinuous
at ¢y. By semi-continuity this implies that for any € > 0 and a suitable constant C' we have
g(cp) < C < gleg+¢€) <g(ep+€). Now the right hand term tends to g(cy) as € — 0, proving
g(cp) < C < g(ep). A similar argument works for g.

(iii) This follows from the monotonicity of g, 7.
(iv) This follows from (ii) and (iii).

O

With the help of the previous results, it is possible to prove the following genericity result,
which is the main result of this section.

Theorem 3.6 (i) For fized m > 1 the set L given by

{(Ao;- - s Am) |1y (Ao, (4)) = 71y (Ao, (A1)}

is a countable intersection of open and dense sets. Furthermore, the Lebesgue measure of the
complement L is 0.

(i1) For fized m > 1 the set N of maps (fo,--- , fm) satisfying

Ly (Ao, (4i)) = 71y (Ao, (4i) = T (fo, (fi))

contains a countable intersection of open and dense sets with respect to the Cl-topology on
the space of Ct-maps (fo,--- , fm) satisfying fo(z*) = z*, fi(z*) =0,i=1,... ,m.



Proof. (i): We introduce the set
To == {(Ag, ... , Am, @) € ROMXH) S R| B(Ay, ..., Ap,aD) =0},

which is clearly closed by the continuity of the maximal Lyapunov exponent.

Note that (Ao, ..., Am,rry) € To, and (Ao, ... , Am,TLy) € Tp again by continuity of the maxi-
mal Lyapunov exponent. Thus (Ag,...,Ay) € LCiff T a,b > 0, a # b such that (Ag,... ,An,a),
(Ag,... ,Am,b) € Ty. Under this condition if follows for all a < ¢ < b that (Ag,... , Am,c) € Tp.
For k > 1 we denote

1
TO,lc = {(A(), ,Am,a) € R(nxn)x(m+1) X R ‘ (Ao,... s A, a+ E) € T()} .

Thus L£¢ = ;2 Qr where
Q= {(A(), ... ;Am) |30, > 0 such that (A(), ... ,Am,a) ey ﬂTO,k} .

The Qj, are projections of Ty N Tp ;, onto Rxn)x(m+1) = Ag Ty N Ty, is closed also Q) is closed for
every k > 1. Therefore we now need to show that all of the sets (), that compose L¢ are nowhere
dense in R**"*(m+1)  For this it is sufficient that in every neighborhood of any point in £ there
exists a point that does not belong to £¢, as any closed set either has interior points or is nowhere
dense. As any affine subspace of the form {(4g —cI,... ,An) | ¢ € R} intersects £° in at most
countably many points by Corollary 3.5 (iv) the assertion is proved.

In particular, this shows that L€ is Lebesgue measurable, and an easy application of Fubini’s
theorem in conjunction with Corollary 3.5 (iv) shows that the Lebesgue measure of L is zero.

(ii): Note that for (fo,--- , fm) € N it is sufficient that for the linearized system (Ag, ... , Ap) €
L. Tt is thus sufficient to show that the preimage of an open and dense set under the continuous,
linear map

0 Ofm , «
Yoo fiee ik o L), . o o))

is open and dense. This, however, is clear by definition of the C'-topology. O

A consequence of the previous theorem is that other stability radii which might be defined for
the nonlinear system, e.g. with respect to Lyapunov, or asymptotic stability generically coincide
with the exponential stability radius.

4 Calculating the local stability radius

In this section we will briefly present a method for the calculation of the linear stability radii. It is
based on an idea for the calculation of Lyapunov exponents presented in [13] and in the discrete-
time case in [25]. We define the Lyapunov exponent corresponding to an initial condition zy # 0
and a disturbance d € D to be

A(zo, d) = limsup  log |4 (t; 2o, d)]|. (1)

t—00 t



By [3]
B(Ao, ... ,Am, D) = max{A(zg,d) | zo # 0,d € D},

that is B(Ag, ..., Am, D) is equal to the maximal Lyapunov exponent of the family of time-varying
systems given by (3) and the condition d € D. This is the quantity studied in [1] and [3]. We now
briefly present a way for the calculation of approximations of Lyapunov exponents. Via projection
onto the projective space P* ! we obtain (in local coordinates, which we take to be vectors of unit
length) from system (3) the system

5(t) = (A(d(t) — s(t)" A(d(®)s(t) - 1d) s(t) , (12)

s(0) = so = zo/||zol|| € Pl

Defining the function ¢ : P*! x D — R, ¢(s,d) = sT A(d)s it is an easy calculation (see [3]) that
for s € P!, d € D we have

t
[Ba(t, 0)sol| = exp ( / q(n(s;xo,d>,d<s))ds) . (13)

Thus the Lyapunov exponent is of the form on an average yield along a trajectory of system (12),
i.e.

1 t
Nao.d) = limsup 7 [ an(si ), d(s))ds
0

t—o0

where 7(s; zg,d) denotes the trajectory of (12). Interpreting this expression as an average yield
optimal control problem on P"~!, we introduce the following approximating functional for § > 0

Ts(o,d) = /0 " 5e 9% g(n(s; w0, ), d(s))ds (14)

with associated value function Vj p(z) := supyep Js5(2o,d) . For these optimal control problems it
is known [11] that

ks(D) := max Vsp(z) > B(4g,... ,Am, D),
rcPr-1 ’

and k4(D) — B(Ag,... ,An, D) as § — 0, but here we need more details about the corresponding
rate of convergence. Recall that a set of matrices M C R"*" is called irreducible, if only the trivial
subspaces {0} and R" are invariant under all A € M. Recall further, that an invariant control set
C of system (12) is a set with the properties

(i) For all z € C it holds that
Ot (z):={yeP* ! |3deD,t>0:y=n(tz,d}=clC.

(ii) C is a maximal set with property (i).

We have the following relation between these concepts.



Lemma 4.1 The following statements are equivalent
(i) The set A(D) is irreducible.

(i) Every invariant control set C of (12) contains a basis of R".

Proof. Assume that C' is an invariant control set and let z1,... ,z; € C be a basis of V := spanC.
Let z € V and d € D be arbitrary. If z = 22:1 Yz then it follows

l

(I'd(ta 0).’13 = z’Yk(I)d(ta O)"I"k )
k=1

Now by invariance of C' the projection of the trajectories ®4(t,0)zy onto the projective space remain
in C. This shows that any trajectory of (3) starting in V' remains there for all times. Hence for
all z € V, d € D we have A(d)z € V, so that C spans a subspace invariant under all A(d),d € D.
Now the assertion follows. O

If A(D) is not irreducible then there exists a coordinate transform 7" such that for any A € A(D)
we have

[ A11 A12 - . Alk
0 A22 A23 . A2k
rar-t—| 0 0 Ass :
| 0 “en 0 Ak:k: i

where each of the sets A(D); := {A(d);;;d € D},i = 1...d is irreducible. It is then easy to see
that

riy(Ao, (Ai)) = min rry(Ao;, (Aij)),
thus we can constrict all considerations to the irreducible case.
The following result is shown in [13] for the case that the projected system is locally accessible,
but the proof easily carries over to the following slightly more general assumption.

The set A(aD) is irreducible and there exists a closed maximal
(A) integral manifold of (12) that contains exactly one invariant
control set.

We present it here because we need a further detail on parameter dependence that is not immediate
from [13] (although it is not hard to obtain the result from the proofs presented in that reference).
Assumption (A) is satisfied in particular if (12) is locally accessible. However, it is sufficient that
in addition to irreducibility there exists a single matrix A € A(D) with a simple eigenvalue Ayqq
satisfying R\ ez > VA, A € 0(A) \ {Mnaz}- This may be seen as follows: The existence of a closed
maximal integral manifold N is clear as the orbits of system (12) are orbits of a Lie group. On
the other hand if & € P*! is an eigenvector corresponding to the eigenvalue \,q, then it follows



from standard arguments [7] that & € clC for any invariant control set in P"~!. As the system is
forward accessible on N and N is closed this implies £ € C for any invariant control set contained
in N. By maximality of control sets this implies the existence of a unique invariant control set in
N. The existence of at least one invariant control set follows by compactness of N. Furthermore
the relative interior inty C' is nonempty, as the system restricted to maximal integral manifolds is
locally accessible, see [7].

Lemma 4.2 Consider system (8) and two constants 0 < a < @ < oco. Assume that (A) holds for
system (12) with control range aD then there exists a constant M > 0 such that for all a € [, @]
we have

ks(aD) € [B(aD),B(aD) + 6 M].

Proof. Let N be the closed maximal integral manifold that contains exactly one invariant control
set of (12) with control range aD. We denote this invariant control set by C,. Then for every
a € [a,a] there exists an invariant control set C, D C, of (12) with control range aD [7]. By
Lemma 4.1 we may fix a basis z1,... ,x, € inty Cy. Define

A= max z,d)|.
wePd*l’deaDlQ( ,d)|

As C, is the only invariant control set in the compact manifold N it follows that for all z € N we
have O (z) N C # () and T defined as follows is finite

T := max supinf{t > 0| 3d € D such that n(t,z,d) = z}.

k:l,...,n .’EEN
We claim that for any k =1,... ,n, a € [a,a] and d € oD we have for all t > 0
1 2AT

t
i /0 a(n(s; ox, ), d(s))ds < BaD) + ——.

Assume to the contrary the existence of d € D and a t > 0 such that

I 2AT

7 [ atatss o). d(s)ds > paD) + 2
0

and denote y = n(t, zk, d), then there exists a control d; € oD such that x = n(t1,y,d;) for some

t1 <T. Denoting the concatenation of the controls d(-)o,;) and di(-)|o,s,) by d2 and extending da

periodically to R we obtain with ¢to =t + 3

1 (" t 24T At
Ay, d2) = —/ q(n(s; ok, dz), da(s))ds > —B(aD) + =— — == > B(aD).
t2 Jo to to to
This contradicts the definition of 8. Now the assertion follows as in Section 5 of [13]. a

As B(aD) is monotonically increasing in o and S(rry (Ao, (4;))D) = 0 it follows that

o Bllriy (Ao (4) — WD)
c(D) = ]H}Ill‘li)nf— Ly 70 A

>0.
The number ¢(D) may be interpreted as the supremum of the gradients of those linear functions that
have their zero in r4,(Ao, (4;)) and are larger than § on some interval of the form [a, 71, (Ao, (4;))],

where a < TLy(AOa (Az))

10



Theorem 4.3 Consider system (3) and assume that (A) holds for some a < rry(Ag, (4i)), then
the following properties hold.

(i) For all § > 0 it holds that

r1y(Ao, (4i)) > r5(Ao, D) := inf{a > 0 | ks(aD) > 0} . (15)

(i) rry(Ao, (4)) = lims—0 75(Ao, D).
(iii) If c(D) > 0 then there exist 6 > 0 and a constant M > 0 such that for all 0 < 6§ < §

rLy(Ao, (4i)) —15(A0, D) < M.

Proof.
(i) If o > rry(Ao, (A4;)), then 0 < f(aD) < ks(aD) by Lemma 4.2. Thus a > r5(Ao, D).

(ii) If o < rry(Ao, (4;)), then f(aD) < 0 and by Lemma 4.2 there exists a d, such that for all
0 < § < d, it holds that ks(aD) < 0, and therefore for 0 < § < 4 it follows that a <
r5(Ag, D) < rry(Ao, (A;i)). Letting o tend to rr, (Ao, (4;)) from below shows the assertion.

(iii) Choose € > 0 small enough such that ¢ := ¢(D) — e > 0. Then there exists an 1 > 0 such
that for all « € [rry (Ao, (4i)) — 1, 7Ly (Ao, (4;))] we have

B(aD) < c(a — rry(Ao, (4s)))-

By Lemma 4.2 for every a € [rry(Ao, (4i)) — n,7Ly(Ao, (A;))] there exists an M, > 0 such
that

ks(aD) < c(a — rry(Ao, (4i))) + M6 .

Let M := sup{M, | a € [rry(Ao, (A4;)) —n,rLy(A0, (A4;))]} and denote the zero of the right
hand side in the above equation by

M

7§ := rry(Ao, (Ai)) — (D) —¢

1) < ’l"(s(A(), D) .
Then for all 0 < § < ¢’ small enough so that Mdc~! < we obtain
5 M
rry(Ao, (A7) —75(A0, D) < 71y(Ao, (4i)) — 75 = —-3.

O

The time varying stability radius may thus be calculated by applying Theorem 4.3. A descrip-
tion of the actual mathematical background for the calculation of the objects defined in this section
can be found in [9, 10, 12] and references therein.

11



5 Robust Domains of Attraction

We now turn our attention to a study of the robust domain of attraction. After determining
some properties of such sets, we study the problem of determining a ball about the origin which is
guaranteed to be in the robust domain of attraction.

We now collect some properties of the robust domain of attraction .Ap(0). It is maybe surprising,
that these resemble closely the properties of domains of attraction of fixed points of unperturbed
systems, [14]. For our proofs, we need the following slight extensions of the results in [14] and [24].

Lemma 5.1 Let 0 be an asymptotically stable fized point of the unperturbed system (1). Let W
be an open subset of A(0) with 0 € W that is invariant under (1). Then W is connected and
contractible to zero. If fy is of class C", then there exists a C" diffeomorphism from W to R™.

For the proof of the preceding lemma we recall the following basic lemma from [18].

Lemma 5.2 Let M be a paracompact manifold such that every compact subset is contained in an
open set which is diffeomorphic to R". Then M 1is diffeomorphic to R™.

Proof. (of Lemma 5.1) Let V. C W be a connected neighborhood of 0. By definition for each
x € W we have ¢(t;z,0) € V for all ¢ large enough. This shows connectedness of W. In the
following we denote image of a set V' under the flow of (1) by ¢(-; V). To complete the proof let
K be an arbitrary compact subset of W. We choose a relatively compact neighborhood of K that
is invariant under (1) as follows: Choose a relatively compact neighborhood V' of 0 contained in
A(0) that is invariant under (1). This exists as a sublevel set of a Lyapunov function. Then for
some T > 0 we have K C o(=T;V), and ¢(—T;V) is relatively compact and invariant. Hence
Vo := W nNe(—T;V) is a relatively compact open neighborhood of K. For € > 0 small enough the
set ¢(e; Vo) is still an open neighborhood of K with the property that clp(e; V,) C W. Now choose
a C" function o : R* — Ry with the property @|cy(e;15) = 1 and are\py = 0 and consider the
system

& = afx) fo(z) , (16)

and denote the corresponding flow by ¢. Choose € > 0 such that B(0,) C W. Then for some
T > 0 we have K C ¢(—T;B(0,¢)). On the other hand by construction of « it follows that
@(—T;B(0,¢e)) C W and ¢(—T; B(0,¢)) is diffeomorphic to R” via the diffeomorphism induced by
the flow of (16). This completes the proof. O

Let us briefly recall that system (2) with a perturbation set D is called locally uniformly
asymptotically stable, if for every € > 0 there exists a ¢ > 0 such that ||z|| < § implies ||p(¢; z,d)|| <
€ for all £ > 0,d € D and if there exists a neighborhood U of 0 such that for all z € U we have
©(t; z,d) — 0 uniformly in d as t — oo.

Proposition 5.3 Consider system (2) and assume that 0 is locally uniformly asymptotically stable
for the perturbation set D, then

(i) o € Ap(0) < limy_yo0 SUpgep ||0(t; 20, d)|| = 0.

(i) Ap(0) is an open,connected, invariant set.
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(#ii) cl Ap(0) is an invariant set.

(iv) Ap(0) is contractible to 0.

(v) If for some d € D f(d) is of class C", then Ap(0) is C"-diffeomorphic to R".

(vi) For every x € 0Ap(0) there exists d € D such that o(t;z,d) € 0Ap(0) for all t > 0.

Proof.

(i) Clearly we need only show “=”. Assume that z € Ap(0) and there exist sequences {dx} C D,
Ty — oo and € > 0 such that ||p(Tk, z,dg)|| > € > 0 for all £ € N. By uniform stability there
exists a § > 0 such that ||z]| < ¢ implies ||p(t, z,d)|| < € for all d € D,¢ > 0. Without loss
of generality dr — d € D in the weak-x topology on D. By assumption there exists a g
such that ||p(to,z,d)|| < 0. As @(to,z,dr) — @(to,z,d) this means for all k large enough
llo(t, z,di)|| < € for t > ty, a contradiction.

(ii) By assumption there is an open neighborhood V' of 0 contained in Ap(0). By definition from
each z € Ap(0) there exists a trajectory ¢(-,z,d) entering V. This shows connectedness.
To prove invariance assume that for some z € Ap(0),d; € D there exists a ¢ > 0 such that
y := p(t;z,d1) & Ap(0). This implies the existence of a do € D such that o(t,y,d2) 4 0.
But then for the concatenation d given by djjps = di, d|1,00) = d2(- — ) it follows that
o(t;z,d) /4 0 contradicting the choice of z. Finally, to prove that Ap(0) is open, assume the
contrary and let x € Ap(0) and assume we are given a sequence xy — x with zx & Ap(0).
Then there exist controls dy, such that ¢(t; zg,dy) / 0. As in (i) this leads to a contradiction.

(iii) If for some z € cl Ap(0) and d € D we have ¢(t;z,d) € cl.Ap(0) then by continuous depen-
dence on initial conditions we have that .Ap(0) is not invariant, contradicting (ii).

(iv) This follows from Lemma 5.1.
(v) This is a consequence of (ii) and Lemma 5.1.
(vi) This follows by definition as Ap(0) is open and cl Ap(0) is invariant.
O
The first question to consider is under which conditions Ap(0) contains a neighborhood of
0, that is to give a sufficient condition for local uniform stability of system (2). To examine this
question we use the linearization (3) of (2) at 0 with maximal Bohl exponent 5(Ay, ... , Ay, D). By

[8, Th. VII.1.3] the Bohl exponent is upper semi-continuous even under nonlinear perturbations.
Thus:

Lemma 5.4 Consider (2) with linearization (3).
(i) If B(Ag,... ,Am,D) <0 then Ap(0) contains an open neighborhood of 0.
(ii) If B(Ao, - .. , Am, D) > 0 then 0 € dAp(0).

The following example shows that for the case 3(Ay,... , Am, D) = 0 both situations are pos-
sible.
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Example 5.5 Let Ag, A1,..., A, € R*™ and D C R™ be such that the mazimal Bohl exponent
B(Ao, A1,... ,An,D) =0 and consider the systems

&= —z(t) < z(t),z(t) > + (Ao + idi(t)AZ) z(t) (17)
i=1

T =xz(t) < z(t),z(t) > + (Ao + f: di(t)A,) z(t) (18)
=1

By [1] there is a norm v on R™ that is a Lyapunov function for the linearization

i (Ao ; zmjdz(t)Ai) 2(t)

in the following sense. Denote the dual norm by v*. Then for any z,y with v(z) = 1,v*(y) =1 and
< z,y >=1 it holds that < A(d)z,y >< 0 for all d € D and so that for each x there ezrists a y and
d € D with < A(d)z,y >= 0. By homogeneity of the norm we obtain for the chosen pair x,y that
< —z(t) < z(t),z(t) > +A(d)z,y >< 0 for system (17). This shows that v is a global Lyapunov
function for (17) and hence Ap(0) = R"™. Similarly, for (18) one obtains that Ap(0) = {0}.

By the results of the previous Section 3 the point where the Bohl exponent does not indicate
whether 0 € int.Ap(0) is exactly the perturbation intensity at which the system becomes exponen-
tially unstable.

Furthermore the linearization can be used to obtain a more precise statement on the size
of the ball contained in Ap(0), which is a consequence of [8, Th.VIL.1.3]. To this end denote
L(D) := maxgep ||A(d)]]-

Lemma 5.6 Let 3(Ag,... ,An, D) < 8 <0 and Mg > 1 such that (4) is satisfied and fix B <
B’ <0 and M > Mg. Let h >0, g > 0 be such that

1-— Mﬁe_(ﬂ_ﬂ’)h >0 and

qhePLDI+a+B0h — min (M — Mg, 1 — Mﬁe*(ﬂfﬂ’)h}_
If |F(z,d) — A(d)z|| < q for all z € B(0,¢),d € D then
lo(t; z,d)|| < MePY||z||, Vz e B(0,e/M),deD.

In particular, it follows that B(0,e/M) C Ap(0).

6 An optimal control characterization of the robust domain of
attraction

In this section we present an optimal strategy for the approximation of the robust domain of
attraction. This is motivated as follows. By definition we have

zo € Ap(0) & Vd € D lim ||¢(t; zo,d)|| =0,
t—oo
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Assuming that 8(Ao,...,An, D) < 0 and applying Lemma 5.4 we obtain immediately that

zg € Ap(0) & Vd € D, limsup||e(t;zo,d)|| =0 (19)
t—00

Motivated by Proposition 5.3 (i), the domain of attraction can thus be characterized via the
following optimization problem. Define

Jo(z,d) := lim sup [|p(t; z, d)||
t—o0

and the corresponding value function

vo(z) = 216111; Jo(z,d),

then Ap(0) = v, (0). In other words, there clearly exists a ¢ > 0 such that z ¢ Ap(0) implies
that vo(z) > c.
The problem with this value function is obviously its discontinuity at the boundary of Ap(0).

As v is hard to calculate we use a the approximation scheme already introduced in Section 4. For
0 > 0 define

o0
Ts(a,d) = / 5 p(t; z, d) |t
0

with value function vs(z) = supgep J5(z,d). Note that v; is continuous w.r.t. z.
Although it is not generally true that vy is strictly decreasing w.r.t. §, it is possible to obtain a
convergence result. For M > 1 and 0 > 8 > ((Ao,... , Am, D) denote

X(M,B) :=={z |Vt >0 : sup||e(t;zg,d)|| < Meﬁt}
deD

Note that Ap(0) D X (M, 3). We note the following properties of X (M, ).

Proposition 6.1 Consider (2) with linearization (3) and assume that 3(Ag, ..., Amn,D) < 3 <0,
then

(7‘) AD(O) = UMZI intX(Ma ﬂ);
(ii) = € X(M, ) = vs(x) < M525.

Proof. (i) Note that by Lemma 5.6 for some M, large enough and some ¢ > 0 we have
B(0,e) C int X(My,B). Let x € Ap(0). By Proposition 5.3 (i) there exists a T' > 0 such
that for all d € D we have ¢(T;z,d) € B(0,¢/(2Mp)). It follows that for a relatively com-
pact neighborhood U of = we have ¢(T;y,d) € B(0,e/My) for all y € U,d € D. Defining
M := max{My, e~ " sup{ ||o(t;y,d)|| | t € [0,T],d € D,y € clU}} we have that U C X(M, ) as
desired.

(i) This follows from

[e.e]
0
Ué(iE) = sup J(S(.T,d) < Sup/ (56_6tM6ﬂt = Mm .
deD deD JO
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Corollary 6.2 Consider (2) with linearization (3).
vs — vo uniformly on compact subsets of Ap(0) as § — 0.

Proof.

Let K C Ap(0) be compact and fix 0 > 8 > B(Ag,.-.,Am, D), then by compactness and
Proposition 6.1 (i) there exists an M, such that K C X(M,3). Now the assertion follows from
Proposition 6.1 (ii). O

The previous statement implies that vs converges linearly on compact subsets of Ap(0) to 0. To

obtain an estimate for Ap(0) define
A(d,e) :={z € R" | vs(z) < €}.
Then we have

Proposition 6.3 Consider (2) and assume that B(Ag,... ,An, D) <0 then for all0 < e < ¢g :=
dist(0, 0.Ap(0))

Ap(0) = [ JAGe)= |J Al6e), V&*>0

>0 0*>6>0

Proof. This is an immediate consequence of Proposition 6.1 as we have for any M > 1 and
B(Ao,... ,Am,D) < <0 and § > 0 small enough that X (M, 3) C A(J,¢). |
In general, information about ¢y amounts to the solution of the original problem itself, so we need a

lower bound on ¢y. Using the quantities introduced in Lemma 5.6, assume that ||F(z,d) — A(d)z|| <
gforallz € B(0,¢),d € D, then B(0,e/M) C Ap(0) and so /M < ¢y is the lower bound we require.

In order to use the information provided by Proposition 6.3 we have to obtain estimates for the
quantities (Ao, ... ,Am, D) and Mg as used in Lemma 5.6, from these the quantities ¢ and ¢ are
determinable and Proposition 6.3 is then applicable.

In order to estimate € and M, we need some information about the local growth properties
of the perturbed system. Via Lemma 5.6 these may be obtained by examining the linearization
at 0, defined in Section 3. In the following we use the notation of Section 4, where one problem
has already been discussed, namely that of approximating the maximal Bohl exponent. Thus if
B(Ag, ... ,Am, D) < 0, then choosing § > 0 small enough in the optimization problem defined by
(14) we can obtain 0 > ks5(D) > (Ao, ... ,Am, D). It remains to obtain a constant M, such that
(4) is satisfied.

Let 0 > k > k5(D). By (13) it is sufficient to find 7' > 0 such that

T
sup / a((s; 2,d), d(s)) — rds < 0
||z||=L,deD Jo

Then it follows that ||®4(T,0)|| < e*', Vd € D, and so
||®a(t,0)|| < eXPTert vd e D,Vt > 0

Note that in order to find T, the value function vs that has already been calculated can be used,
and it is sufficient to find T" such that

T
H S—lipdeb/o se % (q(y(s; 2, d), d(s)) — k)ds < 0 (20)
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Note that solvability of (20) depends on the fact that k > k5(D), as for k5(D), the expression on
the left is always nonnegative.

With the estimates obtained so far, we are now in a position to describe an algorithm for
determining A p(0), which is the main contribution of this section.

Algorithm 6.4 Given fy,..., fm and D such that B(Ay,... ,An,D) <O0:
1. Calculate ks for small §, such that ks < 0.

With the data k5, M satisfying (4), determine a ball B(0,¢) contained in Ap(0) via Lemma 5.6.

Let gy = ¢, /i() = B(O,&).

™ o 2

Determine the value function vsy associated with the cost functional
[ee]
Tinlad) = [ 6 Vg (pttin,d))dt, (21)
0

where gi(z) = ||z|| if |z|| & Ak, gr(z) =0, otherwise.
5. Determine e, such that B(0,ep41) C Apyp1 = U(;Ji([(),&k]) U B(0,¢). Continue with step 4.

Theorem 6.5 Consider system (1) with perturbation structure (2). If B(Ao,... ,Am, D) <0 then
the sets Ag, k = 1,2,... generated by Algorithm 6.4 form a monotonically increasing sequence such
that U2 Ay = Ap(0).

Proof. Note that is is clear by definition that Ay C Ay and g1 < go- Thus we may proceed by
induction assuming that Ay C ... Ax_1 C Ax and g9 > ...gr_1 > gx. With this we obtain for
T € Ay,

o0 [o¢]
sup [ 5 Vg (ptts,d))dt <sup [ 8 g s (ot d)dt < oy <
deD JO deD JO

It follows that z € flk_H. So Ak - flk_H and consequently, gr > gr+1.
Let z € Ap(0) and assume z ¢ A;, as there is nothing to show otherwise. Define

T :=sup{t|3IdeD: $t,z,d) ¢ A }
Note that T is finite by Proposition 5.3 (i) and the fact that B(0,¢) C A;. Let
O;(x) ={yeR" |3deD,0<s<t:y=¢(s,z,d)}.
Note that O;T(w) is compact and let R be such that (’);T(x) C B(0,R). Let

_log(1—¢/R)

h = 5 ,

then it follows for y € O;T(x) \ O;T_h(w) that
h>sup{t|3deD: ¢t y,d) ¢ A},
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as otherwise we have an immediate contradiction to the definition of T'. It follows that for any
d € D we have

/ se g (o(t,y, d))dt </ be Rdt = R(1—e ") =¢.
This implies Ot(z) \ (9<T n(z) C As. Continuing this argument we see that z € Aj, where k is
such that kh > T. O
Remark 6.6 (i) A useful stopping criterion can be applied in step 5 as follows: If e — €41

is bigger than some threshold go to 4. Otherwise, determine whether to decrease § and go to
4 or stop, depending on the size of 9.

(i) In practice we would suggest to stop the algorithm in step 1 if k5 > 0 for reasonably small
6. The reason for that is that although the nonlinear system may be exponentially stable, the
Bohl exponent of the linearization is so small that the system is unlikely to be robustly stable
in a meaningful sense.

(iii) The reason for choosing the particular form of g (21) is that once a trajectory enters Ay,
it will robustly converge to 0, and thus there is no longer any need to penalize it in the cost.

(iv) Note that by construction A C Ap (0), thus the algorithm supplies an inner approximation
of the robust domain of attraction.

7 Conclusion

In this paper we have studied the robustness of stability of a class of perturbed nonlinear systems,
both from a local and a semi-global perspective.

First we introduced time-varying stability for nonlinear systems. Using linearization techniques
and spectral theory for time-varying linear systems it was shown that the nonlinear stability radius
equals the linear stability radii provided exponential stability of the unperturbed system holds.
A scheme for the calculation of the time varying stability radius has been proposed, based on
discounted optimal control.

Additionally we have discussed robust domains of attraction of singular fixed points. A scheme
for the approximation of the robust domain of attraction has been presented. This involves the cal-
culation of approximations of the maximal Bohl exponent of the linearized system and subsequently
the solution of an optimal control problem given by the nonlinear system. In this way a sequence of
interior approximations to the robust domain of attraction is produced, each approximation being
contained in the next.

References

The authors would like to thank Fritz Colonius for pointing out an error in an earlier version of
this paper.

18



References

[1]

2]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

N. E. Barabanov. Absolute characteristic exponent of a class of linear nonstationary systems
of differential equations. Sib. Math. J., 29(4):521-530, 1988.

H.-D. Chiang, M.W. Hirsch and F.F. Wu, Stability regions of nonlinear autonomous dynamical
systems, IEEE Trans. Auto. Control, 33(1):16-27, 1988.

F. Colonius and W. Kliemann. Stability radii and Lyapunov exponents. In D. Hinrichsen and
B. Martensson, editors, Control of Uncertain Systems, number 6 in Progress in Systems and
Control Theory, pages 19-55, Basel, 1990. Birkhauser.

F. Colonius and W. Kliemann. Maximal and minimal Lyapunov exponents of bilinear control
systems. J. Diff. Eqns., 101:232-275, 1993.

F. Colonius and W. Kliemann. A stability radius for nonlinear differential equations subject
to time varying perturbations. 3rd IFAC Symposium on Nonlinear Control Systems Design
(NOLCOS’95), Lake Tahoe, USA, pages 44-46, June 1995.

F. Colonius and W. Kliemann, The Lyapunov spectrum of families of time varying matrices,
Trans. Amer. Math. Soc., 348 (1996), pp. 43894408

F. Colonius and W. Kliemann, The Dynamics of Control, Birkhauser, 1999. to appear.

J. Daleckii and M. Krein. Stability of Solutions of Differential Equations in Banach Spaces.
Number 43 in Translations of Mathematical Monographs. American Mathematical Society,
Providence, Rhode Island, 1974.

L. Grine. Numerical stabilization of bilinear control systems. SIAM J. Control Optim.,
34(6):2024-2050, 1996.

L. Griine. An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation. Nu-
merische Mathematik, 75:319-373, 1997.

L. Grine. On the relation of discounted and average optimal value functions, J. Differ. Equ.,
148 (1998), pp. 65-99.

L. Griine. On the relation between discounted and average optimal control problems. J. Diff.
Eqgns., 148:65-99, 1998.

L. Griine, F. Wirth , On the rate of convergence of infinite horizon discounted optimal value
functions. Nonlinear Analysis. 1999. to appear.

W. Hahn. Stability of Motion. Springer-Verlag, Berlin, 1967.

D. Hinrichsen, A. Ilchmann, and A. Pritchard. Robustness of stability of time-varying linear
systems. J. Diff. Eqns., 82(2):219-250, 1989.

Y. Lin, E.D. Sontag, Y. Wang, A smooth converse Lyapunov theorem for robust stability,
SIAM J. Control Optim., 34(1):124-160, 1996.

19



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Loccufier and E. Noldus, On the estimation of asymptotic stability regions for autonomous
nonlinear systems, IMA J. Math. Control & Information, 12:91-109, 1995.

J. Milnor. Differential topology. Number II in Lectures in Modern Mathematics. John Wiley
& Sons, New York, 1964.

A. Packard and J. Doyle. The complex structured singular value. Automatica, 29(1):71-109,
1993.

A. D. Paice and F. R. Wirth. Robustness of nonlinear systems subject to time-varying per-
turbations. In Proceedings of the 36th Conference on Decision and Control, pages 4436-4441,
San Diego, CA, December 1997.

A. D. B. Paice and F. R. Wirth. Analysis of the local robustness of stability for flows. Math.
Contr., Sign., and Syst., 11(4):289-302, 1998.

A.D.B. Paice and F. Wirth. Robustness analysis of domains of attraction of nonlinear systems,
Proceedings of the Mathematical Theory of Networks and Systems MTNS98, pages 353 — 356,
Padova, Italy, 1998.

A. Vannelli and M. Vidyasagar. Maximal Lyapunov functions and domains of attraction for
autonomous nonlinear systems. Automatica, 21(1):69-80, 1985.

F.W. Wilson. The structure of the level surfaces of a Lyapunov function. J. Differ. Equations
3 (1967): 323-329.

F. Wirth. On the calculation of real time-varying stability radii. Int. J. Robust & Nonlinear
Control, 8:1043-1058, 1998.

20



Berichte aus der Technomathematik ISSN 1435-7968

http://www.math.uni-bremen.de/zetem/berichte.html
— Vertrieb durch den Autor —

Reports Stand: 10. September 1999

98-01. Peter Benner, Heike Fafibender:
An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Eigenvalue Problem,
Juli 1998.

98-02. Heike Faflbender:
Sliding Window Schemes for Discrete Least-Squares Approzimation by Trigonometric Poly-
nomials, Juli 1998.

98-03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Orti:
Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998.

98-04. Peter Benner:
Computational Methods for Linear—Quadratic Optimization, August 1998.

98-05. Peter Benner, Ralph Byers, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Solving Algebraic Riccati Equations on Parallel Computers Using Newton’s Method with
Ezact Line Search, August 1998.

98-06. Lars Griine, Fabian Wirth:
On the rate of convergence of infinite horizon discounted optimal value functions, November
1998.

98-07. Peter Benner, Volker Mehrmann, Hongguo Xu:
A Note on the Numerical Solution of Complexr Hamiltonian and Skew-Hamiltonian Eigen-
value Problems, November 1998.

98-08. Eberhard Bansch, Burkhard Hohn:
Numerical simulation of a silicon floating zone with a free capillary surface, Dezember 1998.

99-01. Heike Falbender:
The Parameterized SR Algorithm for Symplectic (Butterfly) Matrices, Februar 1999.

99-02. Heike Faflbender:
Error Analysis of the symplectic Lanczos Method for the symplectic Eigenvalue Problem,
Marz 1999.

99-03. Eberhard Bénsch, Alfred Schmidt:
Simulation of dendritic crystal growth with thermal convection, Marz 1999.

99-04. Eberhard Béansch:
Finite element discretization of the Navier-Stokes equations with a free capillary surface,
Marz 1999.

99-05. Peter Benner:
Mathematik in der Berufsprazis, Juli 1999.

99-06. Andrew D.B. Paice, Fabian R. Wirth:
Robustness of nonlinear systems and their domains of attraction, August 1999.



