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Abstract

An error analysis of the symplectic Lanczos algorithm for the symplectic eigenvalue prob-
lem in finite-precision arithmetic is given, if no breakdown occurs. An analog of Paige’s
theory on the relationship between the loss of orthogonality among the Lanczos vectors and
the convergence of Ritz values in the symmetric Lanczos algorithm is discussed.
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1 Introduction

The Lanczos algorithm proposed by Lanczos in 1950 [12] is a procedure for the successive reduction
of a given general matrix A to a tridiagonal matrix 7. The eigenvalues of the intermediate
tridiagonal matrices of smaller dimension typically approximate some of the eigenvalues of A
(often the ones largest in magnitude). During the iteration the matrix A is referenced only through
matrix-vector products Az and A”z; hence the algorithm is useful for finding a few eigenvalues
of very large and sparse matrices. A wide range of Lanczos papers appeared since the 1960s, see,
e.g., the references in [7].

Recently, there has been considerable interest in structure-preserving Lanczos algorithms for
the symplectic eigenproblem. These eigenproblems arise in applications like the computation
of stability radii of matrices or the problem of solving algebraic Riccati equations. See, e.g.
[11, 13, 9]. In some of these applications the symplectic matrix is very large and sparse, and only
a few eigenvalues and the corresponding invariant subspace are desired.

A structure-preserving Lanczos-like method for the symplectic eigenproblem was first proposed
by Banse [2]. The symplectic matrix is reduced to a symplectic butterfly matrix. Banse presents
a look-ahead version of the method which overcomes breakdown by giving up the strict butterfly
form. Benner and Faflbender [4, 3] suggest to combine the idea of the symplectic Lanczos method
with the idea of implicitly restarted Lanczos methods in order to deal with the numerical difficulties
inherent to any nonsymmetric Lanczos-like method.

Here we give an error analysis of the symplectic Lanczos method for the symplectic eigen-
problem. Numerical experiments show that, just like in the conventional Lanczos algorithm,
information about the extreme eigenvalues tends to emerge long before the symplectic Lanczos
process is completed. The effect of finite-precision arithmetic is discussed. Using Bai’s work [1] on
the nonsymmetric Lanczos algorithm, an analog of Paige’s theory [14] on the relationship between
the loss of orthogonality among the computed Lanczos vectors and the convergence of a Ritz value
is discussed.

*Universitdt Bremen, Fachbereich 3 - Mathematik und Informatik, Zentrum fiir Technomathematik, 28334
Bremen, FRG. E-mail: heike@math.uni-bremen.de
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2 The Symplectic Lanczos Algorithm
A matrix M € R**?" ig called symplectic if
(1)

(or equivalently, MT j2m27 M = J?27) where

MJQn,2nMT — J2n,2n

o g 8, 7]

—Imn 0

and I™" is the n x n identity matrix. If the dimension of I™", or J>™2", is clear from the context,
we leave off the superscript. We denote by Z™* the first k columns of a n x n matrix Z.

The symplectic matrices form a group under multiplication. The eigenvalues of symplectic
matrices occur in reciprocal pairs: If A is an eigenvalue of M with right eigenvector x, then \~1
is an eigenvalue of M with left eigenvector (Jx)T.

In exact arithmetic and without breakdown, the symplectic Lanczos methods proposed by
Banse [2] and Benner and Fafibender [4] reduce M to a symplectic butterfly matrix. A symplectic

B:[ BN
AN

is called a butterfly matriz if By, Bz € R™™"™ are diagonal matrices and By, By € R™*" are
tridiagonal matrices. An unreduced butterfly matriz is one for which the tridiagonal matrix By is
unreduced. Using the definition of a symplectic matrix, one easily verifies that if B is unreduced,
then the diagonal submatrix Bs is nonsingular. This allows the parameterization of B in the
following form (see [4, 5])

B,

B,
Bs

B,

[ -1
al_l b1 1
~1 b -1
B = K2n,2n —1N2n,2n — ap n
( u ) u a1 1 c1 d2

ds
L an | . -, dn
| 1 d, c¢p
Given s; € IR®™ and a symplectic matrix M € IR*"**" the symplectic Lanczos algorithm

generates a sequence of symplectic butterfly matrices B2k ¢ IR***?* such that (if no breakdown
occurs)

3)

where §2m2k ¢ IR**2k G2n.2ke, — g, and the columns of S2™2F are orthogonal with respect to
the indefinite inner product defined by .J as in (2). That is, the columns of S?™2* are J-orthogonal.
The eigenvalues of the intermediate matrices B2%2F are progressively better estimates of M’s
eigenvalues. For k = n the algorithm computes a symplectic matrix S such that S transforms M
into butterfly form; S~'MS = B.

In order to simplify the notation we use in the following permuted versions of M, B, and S.
Let

M52n,2k: — S2n,2kB2k,2k + sl egk;

Zp:= PZPT
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with the permutation matrix
P:= ]R2n><2n
= [61,63,--- ;€2n—1,€2,€64,... JeQn]e .

Using the permutation matrix P, the matrix J can be permuted to the 2n x 2n block diagonal
matrix

. T 4 0 1 0 1 0 1
Jp:=PJP —dlag([_l 0],[_1 O]""’[—l 0])

Mp, Bp, and Sp are permuted symplectic matrices, in other words, they are Jp—orthogonal.
Using the permuted versions of Mp, Bp, and Sp, the structure preserving Lanczos method
generates a sequence of permuted symplectic matrices

2,2k _ 2nx2k
SpU = v, wi, v, wa, . .. vk, wi] € R
satisfying
2,2k _ o2n,2k p2k,2k T
(4) MpSp"™ = Sp""" Bp"™" + di41 (brt1Vk+1 + Art1Wit1)€ap-

The symplectic Lanczos algorithm for symplectic matrices is summarized in Table 1. For a
derivation of the algorithm and a detailed discussion of various aspects see [4, 3, 5].

Algorithm : Symplectic Lanczos method

Choose an initial vector 7; € IR*"™, 7, # 0.
Set vy = 0 € R?™.

Set d1 = ||171||2 and v = dLl:l\)/l
form=1,2,... do

(update of wy,)
set
Wy = MpUy — bpvm
am = vL Jp Mpvy,

15

Wm =
m am Vm

(computation of ¢;,)

em = —a;twh JpMp v,
(update of vy41)
Umt1 = —dmUm—1 — CmUm + Wy + a,_nlMlglvm
dmt1 = |[Um+1]|2
Vmt1 = 7=—Vmi1

dm+t1

Table 1: Symplectic Lanczos Method for the Symplectic Eigenproblem
Equivalent to (4), as Bo?* = (K2k2k) 51 (N292F) p and el, (N22F) 51 = —el, | we have

2n,2k [ A72k,2k\—1 __ q2n,2k/ 1-2k,2k\—1 T
MpSp ™ (N, )p = Sp (K™ )p = dit1 (br1Vk41 + Ghp1Wht1) €251 -

The vector rg41 = dg41 (bgr1Vk+1 + Gp+1Wr+1) is the residual vector and is Jp—orthogonal to the
columns of 512,"’2’9, the Lanczos vectors. The matrix Bf,k’zk is the Jp-orthogonal projection of Mp

onto the range of S&"%*

2k,2k _ 72k,2k ; q2n,2k\T on,2k
By =Jp " (Sp ) JpMpSpTT.
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Remark 2.1 The usual nonsymmetric Lanczos algorithm generates two sequences of wvectors.
Adapting the usual nonsymmetric Lanczos algorithm to the situation considered here, the symplec-
tic Lanczos process should have been stated as follows: Given vi,t, € IR*™ and a symplectic matriz

M € R>™2"_ the symplectic Lanczos algorithm produces matrices 512,"’% =[v1, w1, ..., Uk, wg] €
R2"%% gnd W2 = [ty,. .. ,tor] € R*™?* with Jp—orthogonal columns which satisfy

2n,2k\T o2n,2k _ 12k,2k
(Wp"")" Sy =7 ,

and
2n,2k 2n,2k p2k,2k T
MPSP ’ = SP ’ BP’ +dk+1’l“k+162k
Tii2n,2k on,2k ; 2k, 2k\T . T
MpWp = Wp " (Bp ™) + dpt1frey1es;

As Sp is symplectic, we obtain from (W»>")T S22k — [2k:2k tpay

2n,2k 2n,2n o2n,2k 72k,2k
WP ’ ZJP’ SP’ JP’ :[—Jp’wl, Jpvy, ..., — Jpwyg, Jpvk].
Moreover,
Thy1 = Mpupyq, and Fr+1 = JpUk41.

Substituting the expressions for W;"’Zk and Try1 into the second recursion equation and pre-
and postmultiplying with Jp yields that the two recursions are equivalent. Hence one of the two
sequences can be eliminated here and thus work and storage can essentially be halved. (This
property is valid for a broader class of matrices, see [6].)

Assume that we have performed k steps of the symplectic Lanczos method and thus obtained
the identity (after permuting back)

2n,2k 2n,2k R2k,2k ~ o T
MG = §E2E BENER 4 1 (b1 0k+1 + Q1 Wht1 ) o

If the norm of the residual vector is small, the 2k eigenvalues of B2¥2% are approximations to the

eigenvalues of M. Numerical experiments indicate that the norm of the residual rarely becomes
small by itself. Nevertheless, some eigenvalues of B%*2¥ may be good approximations to eigenval-
ues of M. Let A be an eigenvalue of B2*2¥ with the corresponding eigenvector y. Then the vector
x = §?2ky satisfies

||M.’E _ ’\"E||2 ||(M82n,2k _ SQn,2kB2k,2k)y||2

|di41] le3py] |[Bret10rt1 + Qkr Dpg|f2-

(5)

The vector z is referred to as Ritz vector and X as Ritz value of M. If the last component of the
eigenvector y is sufficiently small, the right-hand side of (5) is small and the pair {A, z} is a good
approximation to an eigenvalue-eigenvector pair of M. Note that |egky| > 0 if B?%2k is unreduced
(see, e.g., [5, Lemma 3.11]). The pair {),z} is exact for the nearby problem

(M + E)z = Az where E = —dji1 (De10k41 + arp1@rgr ef, (S72F) T J2m2m,
In an actual implementation, typically the Ritz estimate
|dis1] €3,y ||Drt1Dkt1 + Ghy1 D ||2

is used in order to decide about the numerical accuracy of an approximate eigenpair. This avoids
the explicit formation of the residual (M §2m2k — §2n.2k B2k.2k),,

A small Ritz estimate is not sufficient for the Ritz pair {\, 2} to be a good approximation to
an eigenvalue-eigenvector pair of M. It does not guarantee that A is a good approximation to an
eigenvalue of M. That is

min |A — p;|, where p; € o(M)
j
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is not necessarily small when the Ritz estimate is small (see, e.g., [10, Section 3]). For nonnormal
matrices the norm of the residual of an approximate eigenvector is not by itself sufficient informa-
tion to bound the error in the approximate eigenvalue. It is sufficient however to give a bound on
the distance to the nearest matrix to which the Ritz triplet {\, z,y} is exact [10] (here y denotes
the left Ritz vector of M corresponding to the Ritz value A). In the following, we will give a
computable expression for the error using the results of Kahan, Parlett, and Jiang [10]. Assume
that B2%2k is diagonalizable, i.e., there exists Y such that

Y -
Y—1B2k,2kY — )‘k —A
AT '
i e
Let X = §?m2ky — [.Z‘l. . ,.Z'Qk] and denote bk+16k+1 + ak+1ﬁk+1 by Tm. Since M S22k —

S22k p2k2k 4 @y el , it follows that

MS?n2ky = G2n2kyy—1goky o g el Y

or
MX = XA +dyy17p1ed,Y.
Thus
Mz; = Ni; + Yor,idk+17%+1
and
Mgy = A\ Togi + Yok ki1 Th 1
for i =1,...,k. The last equation can be rewritten as

(Jzpi) ™M = Ni(Jzpp) T + y2k,k+i/\idk+17'mTJM-

Using Theorem 2’ of [10] we obtain that {\;,z;, (Jzxy;)T} is an eigen-triplet of M — F\, where

—_—

Ferillolyor,dl [1Fres” IM||2|yzn krii]
= |dy, max ’ ’ .
2 = M| max A T el

||F)\i

Furthermore, if ||Fy, ||2 is small enough, then
16; — Aj| < cond(X;)]| F; 2

where 0; is an eigenvalue of M and cond();) is the condition number of the Ritz value );

2+ O(|[Fx;

[[@3]2]|J2k+ill2
cond(Aj) = ——m———— = ||zi|[2||Tr44]]2-
! T4 Il Z '

Similarly, we obtain that {\; !, zg4s, (J2;)T} is an eigen-triplet of M — F,_1 where

Pl lyzrpril P JM]2lyzr,iAs |
F 1l = |d max : 2 .
|| A; ||2 | k+1| ; { ||xk+z||2 s ||sz||2 }

Consequently, as A; and A; ! should be treated alike, the symplectic Lanczos algorithm should be
continued until ||Fy,||2 and ||Fy-1]|2 are small, and until cond(A;)||F;||2 and cond(\;)||Fy-1]|2
are below a given threshold for azzcuracy. Note that as in the Ritz estimate, in the criteria derived
here essential quantities are |dg41| and the last component of the desired eigenvectors |yas, ;| and
Y2k k-t
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3 The Symplectic Lanczos Algorithm in Finite-Precision
Arithmetic

In this section, we present a rounding error analysis of the symplectic Lanczos algorithm in finite-
precision arithmetic. Our analysis will follow the lines of Bai’s analysis of the nonsymmetric
Lanczos algorithm [1]. It is in the spirit of Paige’s analysis for the symmetric Lanczos algorithm
[14], except that we (as Bai) carry out the analysis componentwise rather than normwise. The
componentwise analysis allows to measure each element of a perturbation relative to its individual
tolerance, so that, unlike in the normwise analysis, the sparsity pattern of the problem under
consideration can be exploited.
We use the usual model of floating-point arithmetic, as, e.g., in [7, 8]:

fllzoy) = @oy)(L+¢)

where o denotes any of the four basic arithmetic operations +, —, %, / and |¢| < u with u denoting
the unit roundoff.

We summarize (as in [1]) all the results for basic linear algebra operations of sparse vectors
and/or matrices that we need for our analysis:

Sazxpy operation:
fllaz +y) = oz +y+e, lel < u (2laz| +[y]) + O(u?),
Inner product:

flaTy) =Ty +e, lel < ku |2|"|y| + O(u?),
Matriz-vector multiplication:
fl(Az) = Az + e, le] < mu |A] |z| + O(u?),

where k is the number of overlapping nonzero components in the vectors z and y, and m is the
maximal number of nonzero elements of the matrix A in any row.

We will now analyze one step of the symplectic Lanczos algorithm to see the effects of the
finite-precision arithmetic. Any computed quantity will be denoted by a hat, e.g., @ will denote a
computed quantity that is affected by rounding errors. (Please note, that in the previous section,
we used hatted quantities to denote the not permuted symplectic Lanczos vectors. ) After j — 1
steps of the symplectic Lanczos algorlthm we have computed d; 1, w; 1, b] 1,61, d],v] During
the jth step we will compute a;, wy;, bJ, cj, dJ+1 and 0j41.

At first we have to compute a; = v; ¥ JpMpv;. Due to its special structure, multiplication by
Jp does not cause any roundoff-error; hence it will not influence our analysis. Let Mp have at
most m nonzero entries in any row or column. Then for the matrix-vector multiplication JpMpv;
we have

51 = fl(JpMpv;) = JpMpv; + €,
where
&1 < mu |JpMp| (5] + O(u?).

Then a; is computed by an inner product

55 = fl(Ustl) = v]Tsl + é3,
where

62| < 2nu [65]751] + O(u?),
assuming that U; and 57 are full vectors. Overall, we have

(6) @y = 05" JpMp0; + fis
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where the roundoff error f} = @Téi + é5 is bounded by

F1 < mu[§[7|TpMp| [5] + 20 [5[7]5 | + O(w?)
< (m+2m)u |57 | Mp| [5] + O(?).

Next we have to compute w; = (Mpv; — bjv;)/a;. For the matrix-vector multiplication Mpv; we
obtain

§3 = fl(Mpv;) = Mp?0; + €3,
where
|€5| < mu |Mp| |5;] + O(u?).
The saxpy operation w; = Mpv; — bjv; yields
51 = fl(5 - b;5)) = & — b;5; + &,
with
6] < u (206,55 + 153)) + O(u?).
Thus overall we have

(7) w5 = Mpt) = bi; + 13,

where the rounding error vector f]-2 = €3 + €3 is bounded by

If2] < mu [Mp| |5] +u (2]b;5;] + |53]) + O(u?)
< mu |Mp| |G| +u (21b; 5] + | Mp| |55]) + O(u?)
< (m+1)u |Mp| (5] +2u [5;55] + O(u?).

The computation of w; is completed by
(8) wj = fl(w;/a;) = w;/a; + £}

where the rounding error vector fj3 is bounded by

—~

3] < fwja; ™|+ O(u?).

The analysis of the computation of ¢; = vJTJpM pw;/a; is entirely analogous to the analysis of
the computation of a;. We start with the matrix-vector multiplication JpMpw;

55 = fl(JpMpw;) = Jp Mpwj + és,
where
|&5| < mu |JpMp| |wj| + O(u®).
This is followed by an inner product v] JpMpw;

~

~T ~ ~T ~ ~
S¢ = fl(0;" 85) = 05 55 + és,
with

6| < 2nu |55]7]55] + O(u?).
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Finally, the computation is completed by
7= fl(3¢/a;) = S¢/aj + éx,
where
ler] < |ded; "+ O(u?).
Overall, we have
& = 6" IpMpi; [ + f},

T ~—1 AT~ | ~—1~ | o~ .
where the roundoff error f]‘-1 =a; U; és+a; é+ éris bounded by

IA

mu |5;|"|Jp Mp| |wj| |a@; | + 2nu |65|7 | Jp Mp| |5 |a@; "
+u ||| Jp Mp| |wj] |a; | + O(u?)
< (m+2n+Dula;"| |557|Ip Mp| |[@7] + O(u?).

|71

Finally, we have to compute v;1; = —d;v;_1 — ¢jv; + w; + aj_lMglvj, djiy1 = \/%T@
and vj41 = v;11/dji1. Recall that, as M is symplectic, the inverse of Mp is given by Mp' =
—JpMIZJ p. Let us start us with the matrix-vector multiplication M, lvj

§3 = fUMp'0;) = Mp'0; + é3
where
€3] < mu |Mp'| |5;| + O(u?).

Next three saxpy operations are used to finish the computation of v;i7:

5 = fl(5sa; " +W5) = &ay ' +wj + 6,
where
] < u (215571 + Jw;]) + O(u?),
and
5o = Jl(5s — 656) = fa — G50 + e,
where
lero] < u (2/6;55] + %)) + O(u?),
and
511 = fl(510 — dji5-1) = 810 — dyo51 + e,
where

x| < u (2d;55m | + [570]) + O(w?).

Overall, we have for v,

—_—

= T e AT LT M e 1 B
(9) Vi1 = —djvjo1 — EUy +wj +a;T Mp o+ f2,
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—_—

~—1 ~ ~ o~ o~
where the roundoff error vector f7,, = a;  és + €y + €10 + €11 is bounded by

150 < mu @Y [MBY |65] +u (21570 + |@5]) + u (2165 + |5])
+u (2/d;5;51] + [570]) + O(u?)
< (mA+4)u @ [MpY 6]+ 3u || + 3u 65| + 2u |dju;m1 | + O(u?).

T —
Next we compute dj1 = \/Vj51” Vjt1-
T — e~ T —

5 = 1 1) = Gv1 Uvi + b
with
lexz| < 2nu |3 |T |oja | + O(u?).

Hence,

—_ e~ T — —
dj+1 = fU(V512) = Voi i + [,

where the roundoff error f]‘-i .1 is bounded by

_ —T —
Finl <uv/am < /i o+ 0)

The symplectic Lanczos step is completed by computing vji1 = v;j51/djt1:

—

_ —— — -1 = -1 =
(10) Ui = fl(oadin ) = v5adiv + g,
with
P -1 5
|l <alvgal ldjpa |+ O(u®).

From (10) and (9) we know that

—

— T — ~ o~ —~ ~—1 1~
(11) dj+1'Uj+1 = —dj'l}jfl —Cjv; +w; + aj MP V5 + gj+1

where gj+1 is the sum of roundoff errors in computing the intermediate vector v;31 and the
symplectic Lanczos vector v;41

—

gi+1 = fig +djrafly-

Using the bounds for the rounding errors f7,, and f,, we have

~—1

(12) lgi+1] < (m+ ) |67 M| |65] + 3u (@] + 3u |&65] + 2u |d;o; |
+u [g551] + O(u?)
< (m+5)u @ |Mp'] 5] + 4u |5] + 4u |G| + 3u |dyo; |
(13) + O(u?).

Similar, from (8) and (7) we know that
(14) @5 = Mp@j = b;0; + hy,
where

hj = 7 +a;f,
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and

(m + 1)u [Mp| |5| + 2u |b;5;| + u |@;| + O(u?)
(m +2)u |[Mp| |5;| + 3u |b;7;] + O(u®).

A

IN A

(15)

While the equation ajw; = Mpuv; — bjv; is given by the (2j)th column of MpSp(N,)p' =
Sp(Ku)p', the equation dj41v;41 = —d;vj, —cjv;+w; +a;  Mp'v; corresponds to the (25 — 1)th
column of Sp(Ny,)p! = Mp'Sp(K,)p'. Hence, in order to summarize the results obtained so far
into one single equation, let

(16) Ey =[Mpgs, —hy, Mpgs, —ha, ..., Mpgpi1, — hi.

Then we have from (11) and (14)

- ~ -

G 1]dy O
-1 00 O
d 0|6 1
P PO 0 0|-1 0
Mp[vl,wl,...,vk,wk] —
dp 0
.10 0
dy 0| ¢ 1
| 0 0|-1 0|
@t b
0 @
= [01, W1, .. . , Ok, W] — diy1 Mpogiies,_y + By,
a b
0 ax
or, even shorter,
—~2n,2k  —~2k,2k 20,2k~ 2k,2k_ — .
(17) MpSp (N, )pt=Sp  (Ky )p' —dipi1MpUriiea, 1 + Eg.

Using the componentwise upper bounds for |g; 11| and |h;|, let us derive an upper bound for
||Ek||F. Clearly,

|Ekl|r < |[l[h1; b2y ..., halllr + |[MpllFlllg2, 935 - 5 gka]llF.

From (15) we have

—2n,2k —2n,2k —2n,2k
b, hay ooy hi]| <u [m+2) [Mp|1Sp |43 1S5 (K )el] +Ow),
and
&2n,2k 7= 2n.2k 2
(18)  [I[hay hay ooy Bl < u 18202 e [(m+2) M6 +3 1K |l + O(u).
Using (13) we obtain
—~ 2k,2k . —~2n,2k
92, 98, s gerall < w [m+5) (KL el 1M ISP

—~2n,2k | —~2k2k

—~2n,2k
+415p T [+41Sp TNy )pl| + 0@,
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and
P — 2k,2k
g2, g3, -5 gewalllr < wl|STF||p [(m+5) [Ku  lFl|M]|r
—~2k,2k
(19) +A+4 N, lr] + O,
Hence, summarizing we obtain as an upper bound for the error matrix Ey, of (17)
~ — 2k,2k —~ 2k,2k
1Bkllr < u||S™%|p [(m+5) 1K lpIM||5 + 4 [N [Pl M||F
—~2n,2k
(20) + (m+6) ||M||r +3||Ks T lF| + Ou?).

Let us note that the ||M]|% term is introduced because we are using two different equations
in order to derive the symplectic Lanczos method. Combining all our findings into one single
equation forces the ||M||% term. The equation (11) which introduces the error g1 corresponds
to the (25 — 1)th column of Sp(N,)p' = Mp'Sp(K,)p". But we summarize our results in terms
of the equation MpSp(N,)p' = Sp(K,)p . Hence we have to premultiply the error bound for
gj+1 by Mp, resulting in a ||M||% term here. The upper bounds (18) and (19) involve only ||M||F
as to be expected.

Remark 3.1 In Remark 2.1 we have noted that the usual nonsymmetric Lanczos algorithm gener-
ates two sequences of vectors, but that due to the symplectic structure, the two recurrence relations
of the standard nonsymmetric Lanczos algorithm are equivalent for the situation discussed here.
It was noted that the equation which is not used is given by

T1172m,2k [ 728,26\ T _ 117272k [ N2k, 2K\ T T
MpWp (K" )p = Wp (N, "™") p + di1 Jpuks1€34,
where
2n,2k 2n,2n o2n,2k 72k,2k
WP ’ :JP’ SP’ JP’ :[—Jpwl, Jpvy, ..., — Jpwg, Jp’l}k].

Instead of summarizing our findings into equation (17), we could have summarized

——2n2k  — 2k,2k ——9n2k  —~ 2k,2k —
(21) MEWp (K, T )p=Wp (N, )b+ dir1Jpiesien, + Fi
where

—2n,2k n.2n =212k

Wp = JEIngp T
(22) F, = [M{Jphi, Jpgay ..., MEJphy, Jpgki1] -

Using (18) and (19) we obtain as an upper bound for ||Fy||r

k,2k|

—2
1Felle < wl|S**|x [(m+2) M7 + (m +8) [[Ku ||| M||r

—~2k,2k
+ 4N e+ 4] + O(u?)

As before, the term ||M||% is introduced because we summarize all our findings into one single
equation.

It is well-known, that in finite-precision arithmetic, orthogonality between the computed Lanczos
vectors in the symmetric Lanczos process is lost. This loss of orthogonality is due to cancellation
and is not the result of the gradual accumulation of roundoff error (see, e.g., [16, 17]). What can we
say about the J—-orthogonality of the computed symplectic Lanczos vectors? Obviously, rounding
errors, once introduced into some computed Lanczos vectors, are propagated to future steps. Such
error propagation for the nonsymmetric Lanczos process is analyzed by Bai [1]. Here we will show
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that J—orthogonality between the computed symplectic Lanczos vectors is lost, following the lines
of the proof of Corollary 3.1 in [1].
J—-orthogonality between the symplectic Lanczos vectors implies that we should have

ijJpvj = -1, for all j,
’UJTJPUm = 0,
ijJpwm = 0,
’U;rjpwm = 0, for all j # m.
Let us take a closer look at these relations for the computed symplectic Lanczos vectors. Define
o~ o~ ~ —~T o~ o~ ~
K = [Ulawla"' 5vkawk] Jp [Ulawla"' ,Uk,U)k].
That is,
T~ T
k2j—1,2m—1 = j TJPUm, koj_1om = U TJPwrru
k2jom—1 = wj Jpim, kyjom = w; Jpim.
Obviously,
koj2j = koj—1,2j—1 =0
for j =1,...,k as zT Jpz = 0 for any vector . Moreover, as kam 2j—1 = —Kk2j—1,2m, we only
need to examine kyj0;—1 for j =1,... ,k, and kaj om—1, k2j—1,2m—1 and kajom for jym =1,...,k,
7 <m.
Let us start with ksj2; 1. Using (8) and (10) we have
T 5 ~
(23) kaj2i—1 = w; Jpi;
5 o B =
= (Z+MH"Ip(E+ 1]
a; dj
o It a3 Jpt +dis Jpfl
w; Jpvj +ajf; Jpvj+a;w; Jpf;
_ j j J_]AAJ Wi L4 O@w?)
ajd,
:TJ = ¢
w; v; +
(24) = LT L o®w?),
ajd,
where
~73r . = ~=T =
|Gl < @ fi Jpvj| +|djw; Jpf]|
< 2ulw;|"|Jp| |5
=T ~ 7~ —~
< 2ulg;|"|Jp| (IMp]| |5;] — [bj] |53])-
We would like to be able to rewrite kyj 21 = @TJP@ = —14 some small error. In order to do

S0, we rewrite aAJdAJ suitably. From (6) and (10) we have
Gid; = (67 JpMpG; + f1)d;
o o~ Y N
= (j+f;)TJpMpUj+f} d;
j
=T e ~ 7T
= JPMP'U]' +dj(f]- JPMP'Uj + f])
Using (7) we obtain
D =T = ~_ = ~ =T P
a]-dj = v Jp(wj+ijj—fj2)+dj(fj7 JpMpUj—}—f;)
AT

=T = = . oaT = o =T T
= wvj Jpwj+ijj JPUJ'—'UJ' pr;-l-dg(f]7 JPMP'Uj +fJ1)

~T —~ ~a~ — =R ~T — ~ T N —
= vj Jpwj—l—bjdj(vj—f;)TJpvj—vj prf‘l‘d](f; JPMPUj+fJ'1)-
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For the last equation we used again (10). This rewriting allows us to make us of the fact that
zT Jz = 0 for any vector z. Thus

-~ 2T = =T - =T P Uty
ajdj = v Jpwj—vj prf-i—djf; Jp(Mp’l}j—bjUj)-l-djfjl
ST, = =T, 5 2750, = 5 T
= v Jij_'Uj JPfj +djfj JP(wj_fj)+djfj
=T =
=: vj Jpw,-+§2

—~T ~
(25) = —w; Jpu;+ (o,

where we used (7). The roundoff error is bounded by

Gl <165 Tef2l+ 1] FTT 1 Te] (] + 1520 +1d; 17]]
< (m+)u |67 Jp| [Mp| |5] +2u [b;] 57| Tp| |51
+u [5;|7 | Jp| ;] + (m + 2n)u |d;| |55|7|Tp Mp| |55] + O(u?)
< (m+2)u |57 Jp| [Mp| |5] +2u [b;] 57| Tp| |55]

T+ [5[T 1Jp| (Ml 165 + 1551 1530)
+ (m+ 2n)u [5[7|7p| [Mp| 5] + O(u?)
< @m+ 2+ 2u |57V Tp| [Mp] 5]+ 3u 5] [5]7175] 5] + O(u?).

Combining (24) and (25) we have

=T _ =
w; Jp’Uj +G +0(u2)

kajoj-1 = ——F 2
—wj Jpuj+ G
+
= -1+ —Afﬁ fz +0(u?)
—w; JpUj+
= —1+4+k; +0(u?).
Using the Taylor expansion of f(x) = %TJFC% at t =1 — (o,
_ Jj f”(t) 2 .
flx) = fO+ft)(x—-1t)+ T(m — t)* + higher order terms
= ate G +2C2 G+ G -’;@ (3 + higher order terms,
z T T
we obtain
+
il < 2l o)
[wj Jpuj]
AL 5 bl 16;|T ™
(26) < Amtn+2)ufy)| |JP||AA/§[~P| |ﬁa| +5u b | 5 1TPL 155 g2y,
|lwj Tpdj|

Next we turn our attention to the terms kajom—1,k2—1,2m—1, and kzj2m,. The analysis of

these three terms will be demonstrated by considering ka; 2m = u’J\jTJ pWm,. Let us assume that we
have already analyzed all previous terms, that is, all the terms in the 2m x 2m leading principal
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submatrix of K, printed in bold face,

ki1 e ki25-1 k1 2; e ki2m-1 ki 2m
koj_11 -+ kegjo125-1 kojo125 -0 kezj—12m-1 Koj—1,2m

koji - ko; 25-1 kojo;  --- Kojom-1 kojom
kojr11 -0 kegjri2i—1 Kojri2; oo Kejri2m-1 R2jriom
k2m—1,1 Tt k2m—1,2j—1 k2m—1,2j T k2m—1,2m—1 k?m—1,2m

k2m,1 T k2m,2j—1 k2m,2j T k2m,2m—1 k2m,2m

Our goal is to rewrite kaj2m in terms of any of these already analyzed terms. First of all, note,
that for j = m we have kap, 2, = 0. Hence for the following discussion we assume j < m. From
(14) we have

amk2jom = @TJP(MP@ — b + him)
= @ JpMpim — bmkajam—1 + ;" Jphm.
Using (11) we obtain for @TJpMpﬁ,\n
dn®@; JpMplm = —dm1W; JpMpUp=s — o1y JpMpm=1 + ;' JpMptim=
+ afntl_lu/ijJpvfnfl + ’U/J;TJPMpgm.
Using (14) twice yields
@y JpMpi = —dp 105" TP 2t 2 + b 2V 2 — hn2)
- Cr/nt1@TJP(a7/nt1ant1 + b 1Um1 — hm—1)
+ @TJPMPQUTn\_l + aﬁ?l_lkgj,gm_3 + @TJPMPgm
= @TJPMPw;ltl - d;:a;?2k2,-,2m74 - d:lb;jZij,meﬁu
- CT/ntlar/ntlijJm—Z - Cr/nt1b7/nt1k2j,2m—3 + aﬁ171k2j,2m—3
+ A1 @5 Jphim—2 + Cnr @5 Jphm—1 + ;" JpMpgm.
The last term that needs our attention here is u/J}TJ pMpui, 1. From (14) we have
C/l\jﬂ/);TJpMprntl = (MP@ — bA]’ﬁ} + hj)TJPMPantl
= @TM};JPMPU)Tntl - I;;'@TJPMPw:z\—l + h;‘(’JPMowntl
= & Jpwmo1 + bjwmo1 " JpMptG; + hT Jp Mpuwm=,
as M is symplectic. Using (11) yields
d\j@TJPMPan\—l = kyj_12m-2+ h]TJPMPantl
+ @bjumm1 " Tp(din v + dioo1 + G5 — @) — gj4)
= d}'l;;(d;\—i-lkZm—2,2j+l + C/l;'kZm—ZijS + Cikam—2,2j—1 + k2am—2,2m)

T — ~7 —~ T
+ k2j—1,2m—2 + hj JpPMpuwm—1 — ajbjwm=1" Jpgjt1-

Therefore,
—~ 1 o~ o -
dmakaj,Qm = a; ij—1,2m—2 - dmbkaj,Qm—l - cm—lam—1k2j,2m—2 - Cm—lbm—lej,Qm—S

e _— _—
+ ampm-1 kzj,zm—s - dm—lam—2k2j,2m—4 - dm—lbm—zkzj,zm—s
+ bjdikom—2,2j—3 + bjCikam—22j—1 + bjdjr1kom—2,2j41 + bikom—2.2m
+ dm—1w;” Jphym—2 + ¢ 1wy Jphy—1 + dpw;” Jphy,

+ d\j_lh}-’JPMPU)Tntl — bjwfn\—1TJng+1 + @TJPMPgm-
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A similar analysis can be done for k3; 2m—1 and kzj_1,2m—1. This shows how the rounding errors
propagate through the matrix K. In exact arithmetic we should have K = Jp. Jp is a block
diagonal matrix; each diagonal block is of the form [_01 (1)] Due to the J-orthogonality we
have diag(K) = diag(Jp) = 0. Moreover, the jth 2 x 2 diagonal block of K — Jp is given

by [—(;]- 'Bj] + O(u?) where k; = O(u) as in (26). For all other entries of K — Jp we have

(K — Jp)jr = O(u) as well. Our findings will be useful in the following section when discussing
the question of loss of J—orthogonality versus convergence of a Ritz pair.

4 Convergence versus Loss of J—Orthogonality

It is well-known that in the symmetric Lanczos procedure, loss of orthogonality between the
computed Lanczos vectors implies convergence of a Ritz pair to an eigenpair, see, e.g., [15]. Here
we will discuss the situation for the symplectic Lanczos algorithm, following the lines of Section
4 of Bai’s analysis of the nonsymmetric Lanczos algorithm in [1]. We will see that a conclusion
similar to the one for the symmetric Lanczos process holds here, subject to a certain condition.

From the previous section, we know that the computed symplectic Lanczos vectors obey the
following equalities:

—~2n,2k 2,2k —~ 2k,2k —_— —~ 2k, 2k
(27) MpSp = Sp Bp - [dk+17'k+16§k_1 - Ek] (Nu )P7
—2n,2k —2n,2k —~ 2k,2k — o —~2k2k _
(28) M;Wp = Wp (BP ); + [dk+1 Jpvk+1egk + Fk] (Ku )PT,
with
—~2n,2k —~2n,2k
(29) (Sp T e = K= g 0+ Ay = CT,
—2n,2k —2n,2k
(30) Wp = gEeng T zk2k
—~ 2k,2k — 2k,2k —~ 2k,2k . . .
where Bp = (K, )p' (Ny, )p, the rounding error matrices Ej and F}, are as in (16)
and, resp., (22), Ay, is a block diagonal matrix with 2 x 2 block on the diagonal,
T 0 K1 0 K
Ak_dla‘g([ —K1 0 :|7"'7|:_Klk 0 :|)>

and Cj is a strictly lower block triangular matrix block size 2. That is (Cg)e; = 0 for £ =
1,...,2k,j=¢,...,2k, and (Ck)22¢e—1 =0for £ =1,... k.

To simplify our discussion, we make two assumptions, which are also used in the analysis of the
symmetric Lanczos process [16, p. 265] and in the analysis of the nonsymmetric Lanczos process
[1]. The first assumption is local J—orthogonality, that is, the computed symplectic Lanczos vectors
are J-orthogonal to their neighboring Lanczos vectors:

Gy [w:TTH_Ol sma=[5 0]

This implies that the 2 x 2 block on the subdiagonal of C}, are zero

0 0 0 0 0 07
0 0 0 0 0 0
X 0 0 0 0 0
X X 0 0 0 0
CG=|x x x 0 00|
X X X X 0 00
X X X X X 0 0|
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where the X denote 2 x 2 blocks. ok ok
The second assumption is that the eigenvalue problem for the 2k x 2k butterfly matrix Bp =

—~2k,2k_  —2k2k
(K, )p (Ny )p is solved exactly, that is,

— 2k,2k

(32) Y, 'Bp Y = diag(A, AT Ak AR
This implies that the computed Ritz vector for A; is given by

—2n,2k
%j = OP Y251,

while the computed Ritz vector for /\j_1 is given by

—~2n,2k
w; =op Yaj-

Our goal is to derive expressions for z] Jprry1 and w] Jprry1 that describe the way in which
J—orthogonality is lost. In exact arithmetic, these expressions are zero. Our approach follows

—2n,2k
Bai’s derivations in [1, Proof of Theorem 4.1]. Premultiplying (28) by (Sp )T and taking the
transpose yields

—2n,2k T —2n,2k — 2k,2k —2n,2k TA2n,2k
(Wp )" MpSp = Bp ~(Wp T)TSp
— 2k,2k —2n,2k

+ (K )p [dk+1 JpUrtiesy, + Fk] Sp

. . —2n,2k A
Premultiplying (27) by (Wp ~ )? we obtain
—2n,2k —~2n,2k 20,2k —~2n,2k —~ 2k,2k
(Wp™ " H)TMpSp = (W ")TSp " Bp
——2n,2k _ — 2k,2k
- Wwe )T [dk+1Tk+legk—1 —Ep| (N )p.
Subtracting these two equations, we obtain
—2n,2k . ~2n,2k —~ 2k,2k  —~ 2k,2k —2n,2k . —2n,2k
(Wp )'Sp Bp — Bp (Wp )'Sp
— o~ 2k2k ~2n,2k  — 212k g —~2k,2k
= di(Ku ) pleasrtom JESp +dia (W ) rneg (N )P
—~2k,2k —~2n,2k  —2n,2k —~2k,2k
+ (K, )RS =W ) BN e
— /\Zk 2% 722k — /\2n 2%
= depi (K )peantiga JBSP = dipa (W ) i€y
— 2k,2k —~2n,2k ,—2n,2k —~ 2k,2k
(33) +(Ky )p'FSe T =W T ) BN e
We are most interested in deriving an expression for
—~2n,2k . —2n,2k o
(Sp" )T Jprerieg—y  (or (Wp ) Tpriies_y)

from the above equation. From this we can easily obtain expressions for ijJprkH or ijJerl
as desired. In order to do so, we note that most of the matrices in (33) have a very special

2%k —~2n,2k
form. Let us start with the left-hand side. From (29) we have (Sp o )T JpSp "o Kk =
Jf,k’% +Cr + A — C,Z'. This implies
21,2k —~ 27,2k —~2n,2k n2n o202k
(Wp " )ISp " = JEREk(GETTT s gt
= gkp

2k,2k 2k,2k 2k,2k 2k,2k ~T
I +JP Ck+Jp Ak_Jp Cy,
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where J2F?*Cy, and (J2F**CT)T have the same form as Cy, and Jo"** Ay, is a diagonal matrix,
TR, = diag([ —m O ] . [ s 0 ]).

0 -k 0 —kKy

Therefore, we can rewrite the left-hand side of (33) as

202k . ~2n2k —~2k2k  — 2k2k —2n,2k 5 =272k
(Wp ) Sp P - Bp (Wp ) Sp

_ [ I2k2k+J2k2kC +J2k2kA +J2k2k0k] —~ 2k,2k

— 2k,2k
_ B [—12’“’2’“ + IRk 4 TR A 4 pr’“’QkaT]

J2k.2k Az’”k == 2k,2k o o
774 B —Bp ke,

2,2k A B 2R2k o= 2R2k o o

+ I:JP, ALBp ’ — Bp ’ JP Ay
2k,2k AT 5 22k o~ 2k2k o o

+ I:JP, C,?BP ’ — Bp ’ JP C,? .

By the local J-orthogonality assumption (and, therefore, by the special form of J2k kO ), i
follows that

A2k2k — 2k,2k
2k,2
Tk B ’

L .= —Bp J*cy

is a strictly lower block triangular matrix with block size 2. With the same argument we have
that

1 ~2k,2k  —~2k,2k
U( ) — J2k 2chB _ BP 2k’2kC]Z1

is a strictly upper block triangular matrix with block size 2. Since the 2 x 2 diagonal blocks of
2,2k A B 2R2E 5= 2R2k ap ok .
Jp “"ApBp - Bp Jp “" Ay are zero, we can write

—~2k,2k  — 2k,2k
JHERNBE Y~ Bp TR A = 1)+ U,

where L;f) is strictly lower block triangular and U ,52) strictly upper block triangular. Hence,

—2n,2k 5 —~2n,2k —~ 2k,2k — 2k,2k —~2n,2k - —~2n,2k
T TSp =

Wp " HTSp T Bp T —Bp o (Wp ) LV + 1+ Ul +Uu®.

Now let us turn our attention to the right-hand side of (33). The row vector

7y o~2n2k
Vk+1 JPSP —[ vee X 00]
—2k2k
has nonzero elements in its first (2n — 2) positions. As (K, )p €2k = breag—1 + areay, we have
that
3 — 2k,2k T 5212k
L( )= dk+1( Vpleartrr1 JpSp

is a strictly lower block triangular matrix with block size 2. Similarly we have that

— 21,2k o

U = den (Wp ) el

is a strictly upper block triangular matrix with block size 2. Hence, we can rewrite (33) as

L+ - LY + vl + P - U

—~2k,2k —~2n,2k ——2n,2k —~2k,2k
(34) = (K. )5 FSp —(Wp" ) Ed(N )P
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— 2k,2k T/\2n 2% 22k g~ 2k2k
This implies that the diagonal blocks of (K, ) ELSp —(Wp ) Er(Ny )p must
be zero. Therefore, we can write
—2k,2k _ —~2n2k ,—2n,2k —~ 2k,2k
(K., ' FTSe " —(Wp HTE(N, p=L +UM

where L,(c4) is strictly lower block triangular and U ,54) is strictly upper block triangular. By writing
down only the strictly upper block triangular part of (34) we have

U(3) U(l) + U(Z) Ul§4)
or
_— AZ'H, 2](} zk 2k = 2k 2](}

Ao (Wp ) Triel, = J2R2 T By —Bp  J2R2cl +u® — U,

This is equivalent to

—2n,2k

dk+1(SP VLT el
—~2k,2k -~ 2k,2k
S [JQk 26CT B — B ket L p® U1£4)]
—~ 2k,2k 2k, 2k
(35) — CTBP _ (BP )—T'Cflz1 _ J}QJE,?]{: I:UISQ) _ Uk(4)] ,

—~2k,2k )
where we have used the fact that Bp is symplectic.
From (32) we get

— 2k,2k — 2k, 2k

Bp Y2j—1 = Ajy2;—1 and Bp Y2; :)‘j_ly2j-
This implies
— 2k,2k 2k, 2k
ygjfl(BP ) /\ Z/QJ 1 and y2](BP )~ Tz’\ijTj-

Premultiplying (35) by szj and postmultiplying by y2;_1 yields

—2n, Qk) J2n 20—

dk+1?/2T] (Sp Trii (€35Y2j—1)

— 2k,2k — 2k,2k
= Y5Ot Bp "~ yajo1 —ya;(Bp ) TCFysjo1 —yay JpE [U(2) U;§4)] Y251
= X\jya;CL y2j—1 — Ajya;Ch y2j—1 — yzﬂ% 2k I:Uk(:Q) - U(4)] Y2j—1

_ yg’jjfakﬂk [U1£4) . U,§2)] Yajo1-

Similarly, premultiplying (35) by yQTj_1 and postmultiplying by y»; yields

22k on 90 —~ 26,2k [77(4 2
diryz;(Sp ) TR i € yas = Yaj1 T [U,g '-U )] Y2

Therefore, with the assumptions (31) and (32) we have

Theorem 4.1 Assume that the symplectic Lanczos algorithm in finite-precision arithmetic satis-
fies (27) — (30). Let
~2k2k  —~2k2k _
Lf) n U}gz) _ Jzk 2k A BP —Bp leak’%Ak

—~ 2k,2k —2n,2k —2n,2k —~ 2k, 2k
LY+ = (K. p'FISp  —Wp  )TE(N.  )p
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where Lgf) and LE:) are strictly lower block triangular matrices, and U, ,52) and U ,54) are strictly

upper block triangular matrices with block size 2. Then the computed symplectic Lanczos vectors
—~2n,2k —~2n,2k .
w; = Sp y2; and z; = Sp Yaj—1 satisfy

2k, 2k 4 2
(36) TJ2n 20— yngP [U’g - U,S )] Y2j-1 Y1
Te+1 = — == ’
dit1(e3py2i-1) drt1(e3py2i-1)
k,2k 4 2
37 TJ2n 2n ——  _ ygj_ljé ’ I:Ulg ) B UIE )] Y2j —. '¢2
( ) Tk+1 = d/\ T =: d/\ T
k+1(€2kyzg) k+1(ezk?/2a)

The derived equations are similar to those obtained by Bai for the nonsymmetric Lanczos
process. Hence we can interpret our findings analogously: Equations (36) and (37) describe the
way in which the J-orthogonality is lost. Recall that the scalar di41 and the last eigenvector
components (el y2;_1) and (el y2;) are also essential quantities used as the backward error cri-
teria for the computed Ritz triplets {\;, zi, (Jw;)T} and {\;*, w;, (Jz;)T} discussed in Section 2.
(Also recall that |el y¢| > 0 if B**2?k is unreduced.) Hence, if the quantities |11| and |¢)s| are
bounded and bounded away from zero, then (36) and (37) reflect the reciprocal relation between
the convergence of the symplectic Lanczos process (i.e., tiny d;:l(egkyzj, 1) and CE:l(eszij)) and
the loss of J-orthogonality (i.e., large rmTJpwj and rmTJpzj).

Let us conclude our analysis by estimating |¢1| and |¢2|. Let us assume (again analogous to
Bai’s analysis) that A, = 0, i.e., @TJP@ = —1, which simplifies the technical details of the
analysis and appears to be the case in practice, up to the order of machine precision. Under this
assumption, we have U, ,£2) = 0. Moreover, we have

4
1| 10 #llyss 12 ly2i—1 2,

lth2

IN

4
WU e lly2 |2l y2j—1 -

IN

Let us derive an estimate for ||U,§4)|| r. U ,&4) is the strictly upper block triangular part of

—~ 2k,2k 2,2k —2n,2k —~ 2k,2k
(Ku )P TSP - (WP )TEk (Nu )P-

A generous upper bound is therefore given by

4 — 2,2k o o 2k, 2k
101 < K e llFE NS e + 202 e Bell el N e
— 2k,2k 2k, 2k
< |18 H|r [||K ||F||Fk||F + Bkl [Nu 7
~ — 2k,2k
< u ||52"’2k||%{(m+5) ||K P13 21
—~2k2k | 2 — 2k, 2k
+ 7 KRN e+ 4 1
— 2k,2k — 2k,2k
+m+2) IK 7 ||plIM]|E + (m+8) [|Ky |71 M]|r
—~2k2k —2k,2k 5
+4[[NuE|IM][F + (m + 6) [[ Vo ||F||M||F} +O0(u?).
The term
—2k,2k
1B 18 e
— 2n,2k — 2,2k — 2k,2k
is an upper bound for the norm of Bp . The squared terms ||K, |2 and ||N [

)

are introduced as the original equations derived (17) and (21) are given in terms of K, and
—~2k,2k —~ 2n,2k

u , but not in terms of Bp
Summarlzlng, we obtain the following corollary, which gives an upper bound for |¢1| and [i)2].
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Corollary 4.1 Assume that Ay, = 0 in Theorem 4.1. Then

—~ 2k,2k —~2k,2k . — 2k,2k —~2k,2k
[v] < ucond(/\j){(m+5) Ky llelING eI MI[F +7 Ky elINe e

2k

—~ 2k, 2k —~ 2k,2k —~ 2k
+ (m+2) Ky |lelIM|[F+ (m+8) ||[Ky|[FIIM]|r + 41Ky lr

—~2k,2k —2k,2k
+4 ([N [FIM||E + (m+6) [Ny IIFIIMIIF}+0(U2),

where Y € {41,12} and
cond()\;) = cond(A;") = |52 2|3 ||ya;] |2 lyn; 1|2

is the condition number of the Ritz values \; and /\;1.

Numerical examples show that this bound is too pessimistic.

Unfortunately, for the symplectic Lanczos process (as for any nonsymmetric Lanczos-like pro-
cess), near breakdown may cause the norms of the symplectic Lanczos vectors [|v;||2 and ||w;]|2 to
grow unboundedly. Theorem 4.1 and Corollaﬁy\ 4.1 indicate that if the J-orthogonality between
7e+1 and w; (and z;) is lost, then the value di11(el,y2j_1) is proportional to |¢1| (and the value
d/k:l(eg’kygj) is proportional to |1)2|). Given the upper bound from Corollary 4.1, and suppos-
ing that cond();) is reasonably bounded, the loss of J—orthogonality implies that d/k:l(eg’kyzj_l)
(and d/k:l(eg’kygj)) are small. Therefore, in the best case we can state that if the effects of finite-
precision arithmetic, Ey and F} in (27) and (28), are small, then small residuals tell us that the
computed eigenvalues are eigenvalues of matrices close to the given matrix.

As the results derived are not surprising let us give just one example to demonstrate the
practical behavior of the convergence of a Ritz value versus the loss of J—orthogonality among the
symplectic Lanczos vectors.

Example 4.2 Tests were done using a 100 x 100 symplectic block-diagonal matriz
-1

M = diag(200,100, 50,47, ... ,4,3,[ % 3],1/200,1/100,1/50,1/47,...,1/4,1/3,[ % 3] ).
Lanczos step wi Jprri dp41 (egkml)
1 0.11% 10" | —0.37x 107"
2 0.17%1071% | 0.28 %1070
3 —0.40%107'% | —0.10% 107"
4 0.26 %1071 | 0.15% 10792
5 —0.35%10~8 | —0.11 % 10798
6 —0.54%10"2 | 0.74%x10°%
7 —0.78% 10" | 0.51%10706
8 —0.97%1071° | 0.41%107°7
9 0.12% 10798 | —0.33 %1008
10 0.16% 10797 | 0.24%107%
11 0.17% 10796 | —0.23 % 10710
12 —0.15%107% | 0.27% 107!
13 —0.38 x 10795 0.10 x10~11
14 —0.46 %1079 | 0.88% 10~
15 0.99 % 10792 | —0.40% 1071°
16 —0.14% 10190 | 0.27% 1016

Table 2: loss of J—orthogonality versus convergence of Ritz value

A random starting vector vy is used. The largest Ritz value approximates the largest eigenvalue
A1 =200 of M. Table 2 illustrates the loss of J—orthogonality among the symplectic Lanczos vec-
tors in terms of w{ Jprrt1 and the convergence of a Ritz value in terms of the residual dy41 (€2, z1).
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The results for z{ Jprri1 and d;;l(egka:g) are almost the same. As predicted by Theorem 4.1, the
loss of J—orthogonality accompanies the convergence of a Ritz value to the largest eigenvalue Ay
(and the convergence of a Ritz value to the smallest eigenvalue \| 1) in terms of small residuals.

References

[1] Z. BAIL, Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem,
Math. Comp., 62 (1994), pp. 209-226.

[2] G. BANSE, Symplektische Eigenwertverfahren zur Losung zeitdiskreter optimaler Steuerungs-
probleme, PhD thesis, Universitdt Bremen, Fachbereich 3 - Mathematik und Informatik, Bre-
men, Germany, 1995.

[3] P. BENNER AND H. FASSBENDER, An implicitly restarted symplectic Lanczos method for the
symplectic eigenvalue problem, Berichte aus der Technomathematik, Report 98-01, (1998).

[4] ——, The symplectic eigenvalue problem, the butterfly form, the SR algorithm, and the Lanc-
z0s method, Linear Algebra Appl., (1998), pp. 19-47.

[5] H. FASSBENDER, Symplectic Methods for Symplectic Eigenproblems, Habilitationsschrift, Uni-
versitit Bremen, Fachbereich 3 - Mathematik und Informatik, Bremen, Germany, 1998.

[6] R. FREUND, Transpose-free quasi-minimal residual methods for non-Hermitian linear sys-
tems, in Recent advances in iterative methods. Papers from the IMA workshop on iterative
methods for sparse and structured problems, held in Minneapolis, MN, February 24-March
1, 1992., G. G. et al., ed., vol. 60 of IMA Vol. Math. Appl., New York, NY, 1994, Springer—
Verlag, pp. 69-94.

[7] G. GoLuB AND C. VAN LOAN, Matriz Computations, Johns Hopkins University Press, Bal-
timore, 3rd ed., 1996.

[8] N. HiGHAM, Accuracy and Stability of Numerical Algorithms, STAM Publications, Philadel-
phia, PA, 1996.

[9] D. HINRICHSEN AND N. K. SON, Stability radii of linear discrete-time systems and symplectic
pencils, Int. J. Robust Nonlinear Control, 1 (1991), pp. 79-97.

[10] W. KAHAN, B. PARLETT, AND E. JIANG, Residual bounds on approzimate eigensystems of
nonnormal matrices, SIAM J. Numer. Anal., 19 (1982), pp. 470-484.

[11] P. LANCASTER AND L. RODMAN, The Algebraic Riccati Equation, Oxford University Press,
Oxford, 1995.

[12] C. LANCZOS, An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators, J. Res. Nat. Bur. Standards, 45 (1950), pp. 255 — 282.

[13] V. MEHRMANN, The Autonomous Linear Quadratic Control Problem, Theory and Numerical

Solution, no. 163 in Lecture Notes in Control and Information Sciences, Springer-Verlag,
Heidelberg, July 1991.

[14] C. PAIGE, Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matriz,
J. Inst. Math. Applics., 18 (1976), pp. 341-349.

[15] B. PARLETT, A new look at the Lanczos algorithm for solving symmetric systems of linear
equations, Linear Algebra Appl., 29 (1980), pp. 323-346.

[16] ——, The Symmetric Figenvalue Problem, Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

[17] H. SIMON, Analysis of the symmetric Lanczos algorithm with reorthogonalization methods,
Linear Algebra Appl., 61 (1984), pp. 101-132.






Berichte aus der Technomathematik ISSN 1435-7968

http://www.math.uni-bremen.de/zetem/berichte.html
— Vertrieb durch den Autor —

Reports Stand: 10. Marz 1999

98-01. Peter Benner, Heike Faflbender:
An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Figenvalue Problem,
Juli 1998.

98-02. Heike Falbender:
Sliding Window Schemes for Discrete Least-Squares Approzimation by Trigonometric Poly-
nomials, Juli 1998.

98-03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Orti:
Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998.

98-04. Peter Benner:
Computational Methods for Linear-Quadratic Optimization, August 1998.

98-05. Peter Benner, Ralph Byers, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Solving Algebraic Riccati Equations on Parallel Computers Using Newton’s Method with
Ezact Line Search, August 1998.

98-06. Lars Griine, Fabian Wirth:
On the rate of convergence of infinite horizon discounted optimal value functions, November

1998.

98-07. Peter Benner, Volker Mehrmann, Hongguo Xu:
A Note on the Numerical Solution of Complexr Hamiltonian and Skew-Hamiltonian Eigen-
value Problems, November 1998.

98-08. Eberhard Biansch, Burkhard Héhn:
Numerical simulation of a silicon floating zone with a free capillary surface, Dezember 1998.

99-01. Heike Faflbender:
The Parameterized SR Algorithm for Symplectic (Butterfly) Matrices, Februar 1999.

99-02. Heike Falbender:
Error Analysis of the symplectic Lanczos Method for the symplectic Eigenvalue Problem,
Marz 1999.



