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The paper presents engineering models, optimization algorithms and design results from 

a Multidisciplinary Design Optimization (MDO) research in the framework of ESA’s 

PRESTIGE PhD program. The application focuses on the conceptual design of classical 

unmanned Expendable Launch Vehicles, and results are presented from sensitivity studies 
and validation tests on European launchers (Ariane-5 ECA and VEGA). Relatively simple 

models and a mixed global/local optimization approach allow obtaining reasonable results 

with limited computational effort. A critical analysis of the results also leads to the 

identification of the most critical modeling aspects to be improved to allow for early 

preliminary design applications. 

Nomenclature 

α = engine mixture ratio 

ε = nozzle expansion ratio 

θ = pitch angle 

ψ = yaw angle 

µ = mean value 

σ = standard deviation 

Ae = nozzle exhaust area 

AoA = total angle of attack 

a = orbit semiaxis 
CL = lift coefficient 

CD = drag coefficient 

Cm = pitching moment coefficient 

CCB = common core boosters configuration 

CpL = cost per launch 

e = orbit eccentricity 

GTOW = gross take-off weight 

i = orbit inclination 

Isp = specific impulse, nominal conditions (i.e. nozzle optimal expansion) 
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Isp,vac = specific impulse in vacuum 

Isp,sea = specific impulse at sea level 

L/D = length over diameter ratio 

LSP = launch success probability 

MR = Engine mixture ratio 

M = Mach number 
Mprop = Propellant mass (usable propellant only) 

Mdry = Dry mass = inert mass + unused propellants mass 

Ns = number of stages 

Nbs = number of booster sets 

Nb,j = number of boosters for j-th boosters set 

nax = axial acceleration 

pcc = chamber pressure 

PL = payload 

PLSF = payload scaling factor 

qdyn = dynamic pressure 

qheat = heat flux 

SET = single engine type configuration (i.e. same engine type for all stages) 
Tnom = total thrust, nominal conditions (i.e. nozzle optimal expansion) 

T,vac = total thrust in vacuum 

Tsea = total thrust at sea level 

 

I. Introduction 

he European Space Agency (ESA) proposed in 2009 to co-fund together with the Aerospace Engineering 

Department of Politecnico di Milano and the Center for Industrial Mathematics of Universität Bremen a joint 

research in the field of Multidisciplinary Design Optimization (MDO). This work is aimed at developing and 

comparing different optimization algorithms, MDO architectures and engineering methods to identify the most 

suitable for Expendable Launch Vehicles (ELV) design, up to the early preliminary level of detail and considering 

extensions to more complex applications such as manned and reusable systems. 

A research in this field stems from the consideration that, when looking at the future of space exploration, the 

area with the higher potential for the development of new vehicles is surely that involving space transportation and 

space launch systems, both for manned and unmanned scenarios. In Europe, the Future Launchers Preparatory 
Program (FLPP) 1 is aimed at paving the way for a Next Generation Launcher (NGL), both in terms of technology 

developments and system studies. In this context, the availability of a reliable MDO environment supporting the 

designers up to an early preliminary level has the potential to drastically reduce the manpower, and therefore time 

and cost, necessary for the early design phases. Through the MDO approach in fact, the design space can be more 

rapidly explored, analyzing a high number of possible solutions and obtaining Pareto optimal fronts under different 

aspects, such as mass, cost, reliability, or mission flexibility. Designers can then select the most promising solutions 

to be used as good starting points for concepts refinements with more traditional design methodologies. 

The first steps in the development of multi-disciplinary models were undertaken in the 1990s by Olds, Braun and 

others 2- 5, but the lack of computational power restrained the application to the study of specific launcher 

configurations and prevented from the introduction in the optimization cycle of complex disciplinary models; 

besides, the Global Optimization (GO) approach that appears necessary when dealing with large multi-modal and 

mixed continuous-discrete search spaces and with multiple contrasting objectives, was never used due to its limited 
maturity. More recently, some industrial 6, 7 and academic 8 researches in this area have considered automatic trade-

offs among different configurations with Genetic Algorithms (GA), leading to interesting results. However, these 

solutions are limited to a conceptual level, employing rather simple disciplinary models and lacking of efficient 

distributed architectures as well as of multi-objective and Local Optimization (LO) refinement capability. On the 

other hand, a purely local approach has been followed in an industrial environment 9, 10 allowing to achieve optimized 

design at a conceptual level starting from an initial guess in the desired region of the global search space. 

Elaborating on the background presented above, the present research combines the advantages of GO and LO, 

with the aim of introducing engineering models suitable up to an early preliminary design phase of space launch 

vehicles. This approach, synergically developed by the two involved research centers, is being implemented by 

means of a modular object oriented (C++) software tool. The end customer is the European Space Agency who will 

T 
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use it in the context of concurrent design and industrial design evaluation. In this frame, a few key aspects of the 

research can be highlighted: 

• Hybrid global and local optimization: whereas a global algorithm is required in order to tackle with 

architectural and technological discrete trade-offs, as well as with design from scratches in a large search space, 

local optimization should be exploited for efficient subproblem optimizations and solutions refinement. 

• Multi-objective optimization, with the purpose of extending the classical “Design-To-Performance” approach 
to compromises with “Design-To-Cost”, “Design-To-Reliability”, etc. 

• User interactivity, with the purpose of complementing the tool with the user’s experience: it is not intended to 

replace but to support designers, by providing full control of the optimization process. This is realized by letting 

the user continuously vary - throughout successive global and local refinements - the design variables and their 

boundaries, the set of constraints and the optimization objectives and/or their weights, effectively guiding the 

optimization process towards the desired regions of the search space. 

• Computational efficiency for both engineering models and optimization algorithms, to be coupled with parallel 

computing capabilities, of key importance in a computationally demanding area as MDO. 

• Modularity of the MDO framework and flexibility of the data storage structure, aimed at improving the 

maintainability and expandability of the design environment, with the final goal of obtaining a generic MDO tool 

that can be easily extended to other classes of vehicles. 

Even though these key aspects ensure a flexible and efficient MDO environment, the main obstacle to the 

successful application of the MDO approach still lays in the difficult task of finding a compromise between models 

simplicity and accuracy. To tackle this issue, the engineering models have been developed in two successive levels 

of detail, from conceptual to early-preliminary design. Previous papers 11- 13 describe in detail models and algorithms 

introduced for the conceptual level step, and show disciplinary methods and optimization algorithms validation 

results. The present work draws on this experience, and focuses on a critical analysis of the system design results, 

with a twofold objective: to assess their accuracy, and to identify the most critical modeling aspects to be improved 

for the successive early-preliminary design step. 

The paper is therefore divided in the following sections: 

• Section II: brief overview of engineering models and Multidisciplinary Design Analysis (MDA) cycle for the 

conceptual design of ELV. 

• Section III: high level description of the developed global and local optimization architecture. 

• Section IV: critical analysis of the results in three areas: global and local trajectory optimization problem, 

sensitivity of system level figures to disciplinary errors, and MDA/MDO processes on existing European launch 

vehicles (Ariane 5 ECA and VEGA). 

• Section V: concluding remarks with focus on the main modeling aspects being targeted for upgrade in the early 

preliminary design application. 

II. ELV conceptual design models 

The engineering modeling of launch systems is a particularly complex task, even restricting the targeted vehicles 

to classical (i.e. simple cylindrical stages and boosters with no wings), expendable, unmanned launchers. To 

simplify the implementation and employ a basic “black-box” optimization architecture without parallel computing, 

the models for conceptual design have been kept simple enough to allow for execution of a full MDA on a single 

processor* in a computational time in the order of one second. Due to this requirement and the need to integrate only 

freely available external tools, the choice of the engineering models has converged towards common software 

already selected by other MDO researchers 6, 7, 9, such as NASA’s Chemical Equilibrium with Applications (CEA) 14 

and USAF’s Missile DATCOM 15. These well-known tools are complemented by ad hoc developed models in the 
disciplines of propulsion, geometry, aerodynamics, weights, trajectory, guidance and control, costs estimation and 

reliability assessment. 

Figure 1 presents the Design Structure Matrix (DSM) representing the design cycle closure for ELV conceptual 

MDA. All optimization variables, constraints and objectives, fixed user parameters and cross-disciplinary variables 

shown in the DSM are qualitatively reported in Table 1. Although more detailed description as well as validation 

results are given in Ref.  13, a brief overview of the implemented disciplinary models is given here: 

                                                        
* All computational times in the paper are referred to a 2.10 GHz single processor, 4 GB DDR2 RAM 
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• Propulsion: the analysis is performed by either picking up an Off-The-Shelf (OTS) Liquid Propulsion (LP) or 

Solid Propulsion (SP) engine in a database collected mainly from Ref.  16 and the web*, or by designing a new 

SP or LP system. For new designs, the chamber pressure is determined on the basis of the feed system or solid 

grain parameters and CEA is used to determine theoretical performance. Additional empirical, historical and 

analytical models are implemented for Isp losses, minimum operational altitude, inert masses, and dimensions. 

• Geometry: only the vehicle’s external geometry is defined, using the Langley Wireframe Geometry Standard 17 
(LaWGS) and tools from the Public Domain Aeronautical Software (PDAS)† for 2D and 3D visualization. 

• Aerodynamics: Missile DATCOM is run to determine CL, CD and Cm databases. Interference coefficients are 

used to synthesize the full launcher aerodynamics from core and boosters for non-inline configurations. 

• Weights: historical Weight Estimation Relationships (WER), mainly taken or adapted from the comprehensive 

collection in Ref.  18, are implemented for all structural and and non structural component, allowing to assess the 

Gross Take-Off Weight (GTOW) of the launch vehicle. 

• Trajectory: 3-DoF dynamics (zero-order gravity, US 76 atmosphere, no wind) is integrated with a variable 

stepsize Runge-Kutta-Fehlberg 45 algorithm. Standard guidance laws define a reference flight profile, which is 

then optimized with few pitch and yaw parameters. Discretized thrust throttling, coast phases durations and 

circularization burn ignition time complete the set of control parameters. Additionally, a Payload Scaling Factor 

(PLSF) can also be optimized to evaluate the sensitivity of the launcher dimensions to the payload performance. 
Finally, models are included to account for propulsion performance with altitude, boosters or core in-flight 

ignition, and path constraints evaluation (qheat, qdyn, nax,, static controllability, geographic heading). 

• Costs and reliability: The total Cost per Launch (CpL) is estimated through mass-based Cost Estimation 

Relationships (CERs), adapted to fully reflect all propulsion and vehicle technological trade-offs. Main sources 

are the TRANSCOST model 19 and internal ESA databases. The Launch Success Probability (LSP) is instead 

assessed through a time-dependant analysis of the failure chains in the different mission phases, with ESA 

provided components failures rates. 

 

Figure 1: DSM for classical ELV conceptual design. Pj, Xj, and Yj: fixed user parameters, optimization 

variables, and constraints/objectives outputs for discipline j, Xji: variables from discipline j to discipline i 

(feed-forward/back information are above/below the diagonal). 

                                                        
* Most widely used sources are www.astronautix.com and engine manufacturers websites 
† PDAS is available at www.pdas.com 
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Table 1: Qualitative description of the sets of variables reported in the DSM of Figure 1 (see Nomenclature 

section for the definition of all symbols) 

P2 Payload (PL) length and diameter X12 Prop. system lengths and diameters X46 All non propulsion masses 

P3 Aerodyn. database discretization settings X14 Prop. system masses and CoG positions X56 Flight phases durations 

P4 PL max qheat and nax X15 Isp, min. operative altitude, exhaust area 

P5 PL mass and target orbit (a, e, i) X16 Prop. system masses 
X54 

Max qdyn, qheat and nax loads. NOTE: this 

feedback is eliminated by using qdyn, qheat and 

nax as both optimization variables, input to 
weights, and path constraints for the trajectory 

P6 Program and cost factors X23 Complete launch vehicle geometry Y1 Propulsion constraints and specifications 

X1 Architecture (Ns, Nbs, Nb,j,CCB,SET), 

propulsion type (OTS or new, prop, 
feed) and design (pcc, α, ε, Tnom,…) 

X24 Lengths for all stages and boosters Y2 Geometric constraints, complete LaWGS 

geometry and PDAS visualizations 

X2 Architecture X25 Aerodynamic reference area Y3 Complete vehicle aerodynamic database 

X4 
Architecture, structural trade-offs, max. 
qheat, qdyn and nax 

X26 
Fairing length and volume 

Y4 
Detailed weights breakdown structure, GTOW, 
take-off T/W constraint 

X5 
Architecture, propulsion type and 
design, trajectory control parameters 

X35 
Complete vehicle aerodynamic database 
CL, CD, Cm (M, AoA) 

Y5 
All ascent trajectory data, final orbit, path 
constraints, PLSF if optimizable 

X6 
Architecture, all technological trade-offs, 

cost & reliability oriented variables 
X45 

All non propulsion masses and CoG 

longitudinal positions 
Y6 

Detailed cost breakdown structure, mission 

success probability vs. mission time, CpL, LSP 

 
Given a reference mission (payload mass and target orbit), the above disciplinary analyses therefore allow to 

close the design cycle, so that the ELV design can be optimized in single or multi-objective optimization mode with 

respect to four main aspects: 1) minimum GTOW, 2) minimum CpL, 3) maximum LSP and 4) maximum PLSF, 

subject to a variety of geometric, propulsive, controllability, loads and target orbit constraints. 

III. Global and local optimization algorithms 

The problem of efficiently integrating several disciplines in a single optimization problem leads to the design of 

the MDO architecture, the formulation of the overall optimization problem and the selection of a suitable 

optimization strategy. 

The most straightforward Black-Box Optimization (BBO) approach is preferred due to the simple and fast 

analysis process. This can be classified as a No Decomposition (ND), Multi Disciplinary Feasible (MDF) problem 

formulation with System Level Optimization (SLO) architecture. 

In Black-Box Optimization, the MDA is not divided in blocks but it forms a single block. It takes as inputs from 

the top level optimizer the design and trajectory optimization variables and it returns as outputs back to the 

optimizer the current values of the design objectives and constraints. The optimizer then recursively calls the model 

evaluation procedure moving toward feasibility and optimality. 
The MDF formulation of the problem, as opposed to other methodologies such as Individual Discipline Feasible 

or All-At-Once architectures 20, is suitable for small and dense problems, or when no iterative loops are necessary to 

obtain multidisciplinary feasibility. The optimization algorithm controls only the optimization variables of the 

problem (that can either be at system-level or related to a single or more disciplines), limiting their number to the 

minimum possible. The full multidisciplinary feasibility is ensured at each optimization iteration, so that all outputs 

of each discipline exactly match the inputs of the others through the interdisciplinary mappings, and vice versa. It is 

a straightforward formulation suitable for the kind of problem we want to solve. 

Another investigated approach to the MDO architecture is to include a Nested Optimization Loop (NOL) in the 

trajectory design. The trajectory optimization variables are in fact not shared with other subsystems, so that the 

variables defining the design of the launcher can be frozen at system level and a nested trajectory optimization loop 

can be performed within the MDA. Full multidisciplinary feasibility is maintained in both the outer and the inner 
loops. This approach can be identified as MDF - Hierarchic Decomposition (HD) since information to the guidance 

module are coming from the top level. It has two main advantages: a sustantial decrease of the number of 

optimization variables in the outer cycle. Moreover the possibility to employ more efficient local strategies in the 
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solution of the trajectory optimization sub-problem since all variables are continuous and a good first guess solution 

is available through the guidance strategies. However, an optimization problem has to be solved for each MDA, 

even far from the optimum leading to a more complex computational problem. 

The overall optimization problem has been classified as Mixed Integer Non Linear Programmin problem 

(MINLP). It presents a large number of mixed discrete and continuous optimization variables and nonlinear 

inequality constraints. The selected global optimization strategies are the following: 

• Global Stochastic approach based on Evolutionary Algorithms, with the collaborative hybridization of three 

different algorithms: Non-Dominated Sorting Genetic Algorithm (NSGA-II) 21, Double Grid Multi Objective 

Particle Swarm Optimization (DGMOPSO) 11, and Multi Objective Ant Colony Optimization for continuous 

domains (MOACOr) 22. The idea is to steer the algorithm toward the strategy that achieved the best results, in 

terms of contribution to the current Pareto Front, in the previous iteration. For single-objective optimization 

problems, the original Particle Swarm Optimization (PSO) 23 algorithm has been chosen, since it has been shown 

to be generally more efficient than the more traditional single-objective genetic algorithms. 

• Deterministic derivative free optimization technique that employs direct search methods, the Mesh Adaptive 

Direct Search (MADS) 24, 25. The MADS algorithm is implemented in an open source library called Nonsmooth 

Optimization by Mesh Adaptive Direct Search (NOMAD)*. This method generates iterates on a tower of 

underlying meshes, starting from a set of trial points given by the user, on the design variable space domain, 
adapting the fineness of the mesh approaching local optima. 

• Nested Optimization Loops that integrate local optimization techniques (Sequential Quadratic Programming 

and Interior Point methods) and heuristic techniques (Tabu Search method) in two nested loops. The heuristic 

strategy handles the discrete variables in an outer loop solving a pure Integer Programming Problem generating a 

feasible set of integer solutions for the inner Non Linear Programming (NLP) problem. 

The final achieved design solutions can be refined with single-objective local optimization runs, freezing the 

discrete variables at the value found by the former global optimization strategy. 

The NLP solver selected for the refinement of the solutions, for the nested trajectory optimization loop and for 

the nested heuristic/local optimization startegy is We Optimize Really Huge Problems (WORHP) 26,†. WORHP is a 

combined SQP (Sequential quadratic programming) and primal-dual IP (Interior-Point) method, that was designed 

to solve sparse large-scale NLP problems with more than hundreds of millions of variables and constraints. It has 

been developed by the joint work of the teams from the University of Bremen and the team from the University of 
W¨urzburg. Its robustness was proved by the CUTEr test set, consisting of 920 sparse large-scale and small dense 

problems, of which WORHP is able to solve 915. Moreover WORHP successfully solved several space application 

problems, e.g. reentry, ascent and low thrust trajectory optimization problems. 

IV. Conceptual level ELV design results 

This section presents a critical analysis of design results obtained with the engineering methods and optimization 

algorithms described in Sections  II and  III, focusing on the accuracy of the models in terms of global performance 

indexes and on the identification of the modeling aspects being the larger cause of errors. Although other vehicles 

have been analyzed, the two European launchers Ariane 5 ECA and VEGA are used throughout this section as test 

cases. 

First, global and local trajectory optimization capabilities are presented. This allows to understand the level of 

confidence in the payload mass assessment that can be achieved with the developed trajectory models. Building on 

this, a Montecarlo analysis is shown that aims at estimating the expectable (1σ) errors in payload mass, starting from 

the errors on the design parameters determined in the disciplinary-level validation phase. Finally, MDA and MDO 

results are discussed, with focus on three aspects: the performance assessment accuracy of the overall 

multidisciplinary design cycle, the improvements in the launcher’s design obtained through optimization, both in 
terms of variables space and constraints/objectives space, and the capability to represent trade-offs with respect to 

multiple objectives, in particular mass, cost and payload mass excess. 

A. Global and local trajectory optimization 
Test cases for the trajectory optimization as well as for all MDA/MDO problems are the European Ariane 5 and 

VEGA, with the following mission specifications: 

                                                        
* The NOMAD software library is available at http://www.gerad.ca/nomad 
† The WORHP software library is available at http://www.worhp.de 
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• Ariane-5 ECA: standard Geostationary Transfer Orbit (GTO) (250x35943 km, 6 deg) from Kourou, nominal 

payload of 10050 kg, fairing jettison triggered at 1035 W/m2, max axial acceleration 4.55 g, max dynamic 

pressure 57000 kPa. 

• VEGA: circular polar Low Earth Orbit (LEO) at 700 km from Kourou, nominal payload of 1500 kg, fairing 

jettison triggered at 1035 w/m2, max axial acceleration 7.5 g, max dynamic pressure 57000 kPa. 

Using the actual launcher design parameters, trajectories for Ariane 5 and VEGA have been optimized with both 
the global PSO, performing 3 runs of 300 iterations and 250 particles for stochastic effects, and the local WORHP. 

The ascent trajectory model defines a phase structure that includes standard guidance laws for the generation of first 

guess pitch and yaw profiles, as well as of thrust throttle and coast phases duration. This way local optimization 

processes are started with a reasonable first guess (i.e. a “flying” trajectory rather than one ending in a crash on the 

planet), allowing for fast convergence to the final optimum. Moreover, particular attention has been paid so that the 

trajectory modeling results in a smooth optimization problem. For example, automatic stopping of the integration 

when the target orbital energy is reached is useful to reduce computational times in case of global optimization, but 

causes a huge number of small discontinuities and oscillations in the final orbit constraints due to the integration 

discretization. This constitutes a large hindrance to the local algorithms, which get trapped in different feasibility 

regions when slightly varying the first guess or any of the launcher design or algorithm’s parameters, drastically 

affecting the robustness of the process. Particularly good results have been achieved when this and other smoothness 
issues have been solved, allowing to obtain comparable or better solutions with respect to PSO in much shorter 

computational times. 

The optimization problems for Ariane 5 ECA and VEGA slightly differ in terms of variables and flight phases. 

In particular, for the Ariane5 ECA to GTO, the trajectory model is divided in 4 phases, the throttle of the liquid 

engines is constant at 100% and the solid boosters have a simplified two-level thrust profile. Hence, only trajectory 

optimization variables related to payload mass and pitch and yaw profiles are used, for a total of 10 continuous 

variables. Instead, VEGA’s ascent to a polar LEO is divided in 9 phases, including a coast phase between Z23 and 

Z9 flights and the upper stage coast and circularization burn. As in the previous case the trajectory optimization 

variables are related to payload mass, pitch and yaw profiles, with the addition of the coast times, for a total of 12 

variables. In both cases constraints are imposed on the final orbital parameters as well as on Qdyn, Qheat, Nax, 

atmospheric AoA and static controllability. 

Results from the trajectory optimizations are presented in Table 2, showing comparable values for PSO and 
WORHP. Note that the stochastic effects do not lead to excessive standard deviations in the payload mass among the 

different PSO runs, but this is obtained through a large number of model evaluations (75000) and therefore long 

computational times, in the order of 1.5-2.0 hours per each run. This is approximately halved when a multiprocessor 

OpenMP implementation for shared memory machines is used on a standard dual-core pc, but global algorithms still 

result much less efficient than the local WORHP, which is able to find the optimal solutions in 5 to 20 minutes. 

From the models accuracy point of view, it is clear that the trajectory models tend to overestimate the payload 

mass, specifically by 13% for Ariane and 8% for VEGA. Although this may in part be due to inaccuracies in the 

launcher parameters data, two modeling aspects also contribute to an optimistic evaluation of the payload mass: 

steering losses throughout the ascent are fully neglected and the specific impulse is assumed constant. Introduction 

of a steering ∆V in the propellant budget as well as of an empirical evalution of the effect of throat erosion, 

particularly relevant in case of SP motors, may therefore allow to improve the payload assessment accuracy. 

Table 2: Trajectory optimization results for Ariane 5 ECA and VEGA test cases, payload mass values 

obtained with PSO and WORHP for launcher parameters frozen to the actual design values 

 Reference PSO best  PSO stdev WORHP 

Ariane 5 ECA to GTO 10050 kg 11440.3 kg (+13.4%) 69.4 kg 11453.1 kg (+14.0%) 

VEGA to polar LEO 1500 kg 1616.9 kg (+7.8%) 20.6 kg 1624.7 kg (+8.0%) 

B. Sensitivity analyses 
Payload mass performance sensitivity analyses start from the modeling errors identified within a disciplinary 

level validation phase, presented in Ref.  13 and summarized in Table 3, where maximum absolute value, average 

and standard deviation of the errors on several design parameters are reported. Errors are evaluated on a database of 

European, US, Russian and Japanese ELVs, collected from Ref.  15 and web sources. 

Sensitivity analyses are then executed by varying one or more of the actual design parameters of Ariane 5 or 

VEGA, and optimizing the trajectory to the evaluate the payload performance variation with respect to the reference 

cases reported in the previous subsection. Two different types of sensitivity analysis have been performed: 
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• One-variable-at-a-time: by perturbing only one of the parameters in Table 3 by the quantities µ+σ and µ-σ, the 

impact of the 1σ worst case error on this parameter can be evaluated, taking into account both the modeling 

fidelity and relevance of all disciplinary outputs. This analysis, repeated for all variables and for all 

stages/boosters of Ariane and VEGA, shows how the most critical discipline is the weights analysis, with up to 

15% error on the payload. In particular, the large payload sensitivity to the upper stage mass ( ),
1/

PL dry us
M M∂ ∂ = −  

suggests to increase the effort in the modeling of the upper stage mass components. On the contrary, the vacuum 

specific impulse of the different stages and boosters, although having a large influence on the PL performance, is 

modeled with much higher accuracy and therefore results less critical. Finally, the exhaust area (determining the 

Isp altitude variation) and the aerodynamic coefficients both seem to have a small impact on the PL mass (<2%). 

• Montecarlo analyses: by randomly varying all parameters at the same time according to Gaussian distributions 

of the errors (µ and σ from Table 3), the launcher payload performance distribution can be derived, again in 

terms of Gaussian µ and σ. These respectively define the bias towards payload mass over or underestimation and 

the expectable variability in the launcher’s performance due to modeling errors. This latter parameter is 

extremely important in a MDO context, allowing to achieve confidence that a given optimized design solution is 

actually better with respect to the discarded options, if the difference is larger than σ. 

Table 3: Disciplinary models validation summary: max, mean and std of errors on the output parameters 

Discipline Parameter Max abs error [%] Mean error µ [%] Error stdev σ [%] 

Propulsion Isp,vac [s] 3.09 -0.59 1.27 

Propulsion Ae [m
2] 31.19 -0.85 15.03 

Propulsion Mengine [kg] 28.74 -0.00 11.15 

Aerodynamics CD 81.80 +4.28 9.27 

Aerodynamics CL 98.47 +9.10 14.27 

Weights Mfairing [kg] 33.62 -8.68 16.40 

Weights Mdry,SPboosters [kg] 21.09 -0.04 13.50 

Weights Mdry,SPstages [kg] 36.06 +8.31 16.07 

Weights Mdry,LPupperstage [kg] 21.24 -5.30 14.18 

Weights Mdry,LPlowerstage [kg] 37.60 +5.63 13.47 

Results of the Montecarlo analyses are presented in Figure 2 and Figure 3, and summarized in Table 4. The mean 

values of the performance distributions show a bias towards respectively over and underestimation of the payload 

mass for Ariane 5 and VEGA, with 11217.0 kg and 1487.6 kg. This different behaviour can be again traced back 

mainly to the weight models, and in particular to the different mean errors for the dry masses of stages and boosters: 

Ariane 5 cryogenic upper stage shows in fact a negative mean error, therefore resulting in higher mean payload 

mass, whereas all VEGA solid stages masses have a positive mean error, that more than offsets the lower mass of 

the small storable upper stage. As regards to the standard deviation of the performance distributions, σ=16% for 

Ariane 5 and σ=8% for VEGA have been obtained. These are reasonable figures for expected 1σ launcher 

performance error in a conceptual-level design environment employing simplified engineering models. 

Table 4: Montecarlo analysis results, payload performance Gaussian distribution 

 Ariane 5 ECA VEGA 

Payload mass distribution mean value µ 11217.0 kg (+11.6%) 1487.6 kg (-0.2%) 

Payload mass distribution stdev σ 761.8 kg (+15.9%) 239.1 kg (+7.6%) 
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Figure 2: Montecarlo sensitivity analysis results for 

Ariane 5 ECA payload performance distribution 
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Figure 3: Montecarlo sensitivity analysis results for 

VEGA payload performance distribution 

C. MDA for Ariane 5 ECA and VEGA 
Before introducing the full MDO capabilities, results are presented for stand-alone MDAs of Ariane 5 and 

VEGA, with the purpose of providing additional figures of payload performance accuracy in confirmation of the 

Montecarlo analyses. For MDAs, all input design variables (i.e. Xj in Figure 1) are frozen to the actual values, and 

the complete design cycle is executed, including a nested trajectory optimization to determine the payload 

performance for the launcher primary mission.  
Since propulsion parameters computed within the MDA closely match the available data, only mass and 

geometry properties are reported in Table 5 and Table 6, whereas Figure 4 and Figure 5 present the drag coefficient 

for different AoA. Overall system level figures such as take-off mass, payload mass, cost per launch and reliability 

are instead summarized in Table 7. All data are presented in comparison with the actual values taken from manual or 

internal ESA data. Although the total wet masses at launch match very well the actual values for both launchers, the 

mass breakdowns show significant differences. In particular, Ariane upper stage dry mass is underestimated by 2.7 

tons with respect to the ESC-A stage plus Vehicle Equipment Bay, due to insufficient modeling of the different 

structural and non structural components located in an upper stage. For VEGA, P80 and Z23 motors dry masses are 

sensibly overestimated (25% and 19%), probably because VEGA nozzles employ new technologies and materials 

which are not captured with historical SP motors weight models. In light of these design errors, the nested trajectory 

optimization results confirm what observed in the Montecarlo analyses, with a +24.1% payload mass with respect to 

the reference value for Ariane 5 and -8.0% for VEGA. 
Although it has been possible to quantitatively assess the accuracy of the developed models with respect to 

performance indexes, only a qualitative understanding of the fidelity of the cost and reliability models is possible, 

since detailed cost breakdown structures or failure data are not available for comparison. However, launch costs 

appear to be in general overestimated with respect to the available prices for Ariane 5 ECA and VEGA. The 

calculated CpL includes however the development costs spreaded over 120 launches (under the assumption of 6 

launches per year, 20 years of operations), which mat noy be fully considered in the advertised launch price. The 

LSP=0.975 obtained for VEGA matches very well the target 98% reliability, whereas a pessimistic LSP=0.927 for 

Ariane 5 ECA (97% success rate with 1 failure out of 29 launches) suggests that liquid propellants reliability is 

underestimated with the developed models. As a final remark, a wider validation effort for the cost and reliability 

disciplines has been performed considering non European launchers (Sojuz, Atlas, Delta and Falcon families), 

showing that the correct ranking among the different launchers in terms of CpL and LSP is reproduced. Although 
full confidence cannot be placed on the absolute values of CpL and LSP, this supports the use of the models for the 

representation of performance vs. cost vs. reliability trade-offs. 
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Table 5: Mass and geometry, comparison of MDA 

results and actual values for Ariane 5 ECA 
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Figure 4: Aerodynamic drag coefficient, comparison 

of MDA results and actual profile for Ariane 5 ECA 
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Table 7: summary of system level MDA results for Ariane 5 and VEGA, in comparison with actual values 

 Ariane 5 ECA actual Ariane 5 ECA MDA VEGA actual VEGA MDA 

Payload mass 10050.0 kg 12476.3 kg 1500 kg 1380.0 kg 

Total launch mass 763.395 tons 764.835 tons 138.089 tons 139.391 tons 

Total launcher length 52.53 m 49.19 33.63 m 36.63 m 

Total cost per launch 150 M€ 171 M€ 30 M€ 37 M€ 

Development costs - 37 M€ - 7 M€ 

Production costs - 99 M€ - 19 M€ 

Operations costs - 36 M€ - 12 M€ 

Launch success probab. 0.966 (historical) 0.927 0.980 (estimated) 0.975 

D. Single-objective MDO for Ariane 5 ECA and VEGA 
With the twofold purpose of evaluating how the optimization process steers the design in both the variables and 

objectives space and of verifying the representation of trade-offs with respect to multiple objectives, different MDO 

runs have been executed, freezing all discrete optimization variables and allowing for rather small variability of the 

continuous design parameters. First, the single objective PSO algorithm has been used to minimize the total launch 

mass with fixed payload, then DG-MOPSO has been applied to a min launch mass vs. min launch cost and to a min 

launch mass vs. max payload mass multi-objective optimization problems. Reliability has not been included among 
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the objectives since it largely depends on the discrete variables, in particular number of staging and re-ignition 

events, propulsion technologies (solid against liquid, feed system type, throttle level) and redundancy approach 

(engine out capability, avionics and power system outline). 

Three PSO runs have been executed, allowing for long computation times in order to verify the convergence 

properties and determine the extent to which the stochastic nature of the global algorithms affects the final solution. 

Local refinement processes have followed, using the global solutions as starting points. Global and local 
optimization results for Ariane 5 and VEGA are shown in Figure 6 and Figure 7. For Ariane, the MDO problem 

consists of 14 continuous design optimization variables and 12 trajectory optimization variables. A good 

convergence is reached in 1000 iterations (100000 MDA evaluations, single processor CPU time of ~13 hours), with 

~2% consistency of final objective value among the different runs. Similar convergence histories are obtained for 

VEGA, for a larger problem consisting of 25 continuous design variables and 15 trajectory variables, with a ~3% 

variability in the final objective value and increased CPU times (~16 hours) due to a longer ascent trajectory. 
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Figure 6: Ariane 5 ECA min GTOW MDO process, 
PSO convergence and WORHP refined solutions 

(triangles) for 3 runs with different random seeds 
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Figure 7: VEGA min GTOW MDO process,        

PSO convergence and WORHP refined solutions 

(triangles) for 3 runs with different random seeds 
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comparison of external geometries 
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The local optimization process in general improves the design obtained by PSO, but the refinement of the final 

solutions from three different runs leads to different local minima. Although the difference is not large (<2%), this 

suggests that improvements on the smoothness of the model may allow to shorten the global optimization in favour 

of the local refinement, improving the efficiency of the overall process. 

As regards to the design solutions obtained with the min GTOW global and local MDO processes, results are 

shown in Figure 8 and Figure 9, reporting the geometries of the best global and local solutions found in comparison 
with the reference MDA geometry, and in Table 8 and Table 9 summarizing some of the most relevant design 

variables. 

For Ariane 5, a minimum launch mass of 504 tons is obtained with PSO, further reduced to 498 tons by WORHP 

refinement, corresponding to a 34% reduction with respect to the launcher’s GTOW from the MDA. This result 

confirms the performance overestimation reported in subsection  IV. C, showing that an additional performance 

increase can be obtained with the MDO process. Since the design parameters of Vulcain-2 and HM-7B liquid 

engines have not been allowed to change, the optimization mainly acts on the propellant loading of core, upper stage 

and boosters, as well as on the boosters thrust and length-over-diameter ratio. Table 8 shows a drastic reduction in 

the size of SP boosters (Mprop and Tnom), justified by the lower Isp with respect to LP engines. Propellant mass of the 

core is also reduced, in front of an increase in the upper stage loading. This suggests a non mass-optimal allocation 

of propellant in the actual design of Ariane 5, although the structural ratio of the upper stage is largely 

underestimated by the weight models, hence favoring an higher load. Among the other design optimization 
variables, the maximum allowed trajectory loads Qdyn, Qheat and Nax are decreased in the optimization process, since 

this allows reducing the structural mass while still meeting the path constraints. The dynamic pressure is the only 

active path constraint, and the optimal solutions present a steeper trajectory with respect to the MDA ascent, to 

allow flying the lower max Qdyn profile. 

Table 8: Ariane 5 ECA min GTOW MDO results: main design variables for MDA, global and local solutions 

Parameter MDA (actual design) PSO best optimal WORHP optimal 

Mprop,core [tons] 173.3 137.5 138.7 

Mprop,upperStage [tons] 14.4 17.0 17.0 

Mprop,boosters [tons] (each) 240.1 143.0 139.4 

Tnom,boosters [MN] (each) 5.796 3.979 4.088 

L/Dboosters 7.61 7.24 6.83 

GTOW [tons] 764.8 504.4 498.1 

CpL [M€] 170.9 139.9 139.1 

Table 9: VEGA min GTOW MDO results: main design variables for MDA, global and local solutions 

Parameter MDA (actual design) PSO best optimal WORHP optimal 

Mprop,P80 [tons] 87.7 76.9 76.6 

Mprop,Z23 [tons] 23.8 25.0 25.4 

Mprop,Z9  [tons] 10.6 10.7 9.6 

Mprop,avum [kg] 550 770 770 

L/DP80 2.84 3.40 3.40 

L/DZ23 1.39 1.63 1.62 

GTOW [tons] 139.4 127.9 126.9 

CpL [M€] 36.9 34.8 34.7 

For VEGA, minimum launch masses of 128 tons with PSO and 127 tons after WORHP refinement are achieved, 

corresponding to an 8% reduction with respect to the MDA design. Although the performance of VEGA has been 

shown to be underestimated, the design optimization allows reducing the total mass. Propellant mass distribution 

and length-over-diameter ratios are the design variables most affected by the MDO, and are reported in Table 9. 

Again, the better performance of LP engines favors an increase in the propellant load of the AVUM upper stage, 

which is pushed to the upper bound, whereas the P80 first stage is reduced in size and Z23 and Z9 remain close to 
the actual design. The mass optimized launcher is longer with respect to the MDA design (see Figure 9), although its 

mass is smaller, due to an increase in the L/Φ ratios, both pushed to the upper bound for aerodynamic reasons. Note 

that the static controllability path constraint only considers the torque requested during the pitch-over phase to 

counteract the non-null AoA, whereas a perfect gravity turn is assumed for the rest of the atmospheric flight. 

Introduction in the modeling of wind or other non nominal flight conditions would lead to a more conservative 
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controllability evaluation. This as well as simplified methods to evaluate the launcher’s flexibility would contrast the 

aerodynamic push towards thinner configurations, resulting in more realistic configuration trade-offs. As regards to 

the SP motors, nominal thrusts are not sensibly varied, except for a ~5% reduction for the first stage. However, an 

almost 20% decrease in the chamber pressure of both P80 and Z23 indicates that a reduction in the motor’s dry mass 

outweights the loss of Isp performance, confirming the inadequate modeling of the VEGA SP engines inert masses. 

Finally, as for Ariane, Qdyn, Qheat and Nax are sensibly decreased in the optimization, with the axial acceleration being 
the active constraint in the case of VEGA. 

E. Multi-objective MDO for Ariane 5 ECA and VEGA 
MDO for min GTOW and min CpL have been executed with DG-MOPSO algorithm with the same input data 

(discrete variables settings, continuous variables bounds) as for the single-objective runs. However, for Ariane 5 a 

single optimal solution similar to the minimum mass PSO design has been obtained, instead of a well spread Pareto 

front. Contrary to what could be expected, propellant loading is not shifted from the liquid core to the solid boosters 

to obtain minimum cost solutions. This indicates that the reduction in cost due to the different technology is more 

than offset by the larger overall mass of the system. The development and production CERs for the large solid 

boosters give in fact rather high cost estimates, and due to lack of detailed cost breakdown structures for existing 

launchers, a better the correlation of the CERs has not been possible. It has however been verified that by arbitrarily 

varying the SP CERs slopes, it is possible to obtain mass vs. cost Pareto fronts showing larger SP boosters for 

minimum cost solutions. Due to lack of data to support this reduction, the original CERs have however been 
maintained in the model. 

The mass-based nature of the CERs is mostly confirmed by the multi-objective MDO runs on VEGA test case. 

Nevertheless, a cost vs. mass trade-off has been identified in the allocation of propellant mass among the three solid 

motors, as shown in Figure 10. Due to a discontinuity in the slope of SP stages CERs, occurring at an interface 

between small and large SP motors (assumed at Mprop=40 tons), small motors such as Z23 and Z9 tend to be 

favoured with respect to the larger P80 in terms of cost. Hence minimum cost/mass solutions are obtained 

respectively with a lower/higher propellant mass for P80, balanced by an increase/decrease of propellant in the 

second and third stages to match the payload performance. 
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Figure 10: VEGA min GTOW vs. min CpL MDO 

results, Pareto fronts 
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Figure 11: VEGA min GTOW vs. min CpL MDO 

results, external geometry 

From the multi-objective results presented above, it is clear that realistic min cost vs. min mass design trade-offs 

can be obtained with the present version of the developed models only when the discrete optimization variables are 

not frozen to a given reference architecture. Moreover, Pareto-optimal solutions are strongly affected by the 

parameters in both the WERs and CERs, highlighting an issue which is intrinsic to the nature of historical based 

mass and cost estimation. This again stresses the need for component level mass estimation methods, based on the 

physics rather than on historical databases. Although there are no feasible alternatives to mass-based cost estimation 

for preliminary design, a better correlation of the CERs parameters against actual cost breakdown structures would 

also be desirable. 
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Maximum payload mass vs minimum launch mass multi-objective optimization, defining a purely performance-

based trade-off, allows on the other hand to obtain a well spread range of design solutions for different payload 

masses delivered to the target orbit. Figure 12 shows the Pareto front obtained when allowing the PLSF to vary in a 

[70, 100]% range with respect to the reference 10.05 tons of payload, with the geometries of the min mass and max 

payload solutions represented in Figure 13. It has to be noted that the design parameters are very similar for all 

solutions in the front, except for the scaling of the propellant masses in the stages and boosters to match the target 
performance. The successful application of multi-objective min GTOW vs max PLSF optimizations increases the 

flexilibility of the MDO environment, ensuring the capability to contemporarily study a family of design solutions 

with flexible payload values for later program level decisions. 
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Figure 12: Ariane 5 ECA min GTOW vs. max PLSF 
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Figure 13: Ariane 5 ECA min GTOW vs. max PLSF 

MDO results, external geometry 

V. MDO of ELVs, lessons learned and perspectives 

The paper has focused on the critical analysis of the design results obtained with a conceptual-level MDO 

environment for ELVs, with the main goal of quantitatively assessing the suitability of simplified engineering 
methods for the early phases of launchers design. Ariane 5 ECA and VEGA test cases have shown reasonable 

accuracies with respect to global performance figures in the 10-25 % range, with very limited computational effort. 

However, for the successful application of the MDO approach to industrial design, an improvement of this accuracy 

and a better representation of physical phenomena as well as of cost and reliability related trade-offs appear 

necessary. With this purpose in mind, the analysis of the results from trajectory optimimizations, sensitivity 

analyses, MDAs, single and multi-objective MDO processes has led to the identification of several critical modeling 

aspects, that constitute the basis of an effort currently under way to improve the fidelity of the developed design 

environment. In particular, several lessons learned from these analyses are summarized here: 

• Trajectory models lead to a generic overestimation of launchers performance in the order of 8-13%, mainly due 

to the lack of steering losses and, especially for SP motors, of Isp degradation with time. Although optimizer 

trade-offs are only partially affected by the error, which is rather similar for all launcher configurations, the 
introduction of these modeling features would improve the performance assessment accuracy, increasing the 

overall fidelity of the MDO model. 

• Smoothness of the trajectory model is particularly critical for the robust and efficient local optimization of 

ascent trajectories, as testified by considerable improvements in the results following the identification of few 

significant discontinuity issues. 

• As for the trajectory, problem smoothness is of substantial importance for MDO local refinements. 

Improvements with respect to this aspect are still being investigated to allow for faster local convergence. 

• Weights estimation has been identified as the most critical discipline from several types of analysis (one-

variable-at-a-time sensitivity analysis, MDAs and MDOs). In particular, upper stages and advanced SP motors 
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nozzles masses are not well represented by the adopted models. In general, the introduction of a more refined 

evaluation of the trajectory loads followed by structural sizing of the different components is a priority deemed 

necessary for the extension of the design environment to early preliminary design. Another important feature in 

this area is the flexibility assessment, that together with a better static controllability evaluation considering off-

nominal flight conditions such as wind, should improve the fidelity of launcher configuration trade-offs. 

• MDO runs for European test cases have allowed verifying the capability to steer the main optimization 
variables to improve the design in terms of performance. Min launch mass vs max payload mass multi-objective 

optimization is also successful in identifying Pareto-optimal solutions for wide payload ranges. However, the 

mass-based nature of the CERs does not allow to obtain well-spread min cost vs min mass Pareto fronts with the 

current set of WERs and CERs parameters, which sensibly affect the design results. This also supports the need 

for higher fidelity evaluation of the structural and non-structural masses.  

In addition to the model enhancements suggested in the above key points, several other features are deemed 

necessary for better applicability in an industrial context. Of particularly interest is the introduction of safety 

analyses, such as boosters and lower stages impact point determination or the upper stage de-orbiting/passivation 

evaluation. Moreover, concurrent optimization of several launcher configurations for different payloads and/or 

target orbits is fundamental for the current European strategy, and would largely increase the flexibility of the MDO 

environment. 
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