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Abstract

In this paper, we investigate sparsity regularization for electrical impedance tomography (EIT). Here,
we combine sparsity regularization with the energy functional approach. The main results of our paper
is the well-posedness and convergence rates of the sparsity regularization method.
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1 Introduction

The problem of identifying the conductivity coefficient σ in the elliptic equation

−div (σ∇φ) = 0 in Ω, (1)

from the Neumann-to-Dirichlet map, is of interest in electrical impedance tomography (EIT). For surveys
on the problem, we refer the reader to [1, 9, 8, 5, 38, 22]. This problem is well-known to be severely ill-posed
and has to be stabilized by some regularization methods. There have been a few regularization methods for
the problem in the literatures [2, 10, 11, 29, 30, 32, 35, 36, 40, 42]. However, the quality of reconstructed
conductivity parameters is not satisfactory in comparison with those in other fields.

Let H̃1 (Ω) be a subspace of H1 (Ω) with zero mean on the boundary Γ, i.e.

H̃1 (Ω) = {v ∈ H1 (Ω) :
∫

Γ

vds = 0}.

The spaces H̃1/2 (Γ) and H̃−1/2 (Γ) are defined similarly. These spaces are equipped with the usual norms.
We denote by

A = {σ ∈ L∞ (Ω) : λ ≤ σ ≤ λ−1 a.e and supp
(
σ − σ0

)
⊂ Ω′},

for some fixed λ ∈ (0, 1) , where Ω′ is an open set with the smooth boundary that contained compactly in
Ω. The set A is endowed with the Lq (Ω)−norm (1 ≤ q ≤ ∞).

The basis mathematical model for the forward problem in electrical impedance tomography is the elliptic
partial differential equation

− div (σ∇φ) = 0 in Ω; σ
∂φ

∂n
|Γ = j ∈ H̃−1/2 (Γ) . (2)

To obtain the unique weak solution of this problem, we normalize the solution by requiring
∫

Γ
uds = 0, i.e.

u ∈ H̃1 (Ω) and define the Neumann operator FN (·) j by

FN (·) j : A → H̃1 (Ω) , σ 7→ FN (σ) j is the weak solution of (2).

Similarly, the Dirichlet operator FD (·) g : A → H̃1 (Ω) , σ 7→ FD (σ) g, the weak solution of the equation

−div (σ∇φ) = 0 in Ω; φ |Γ = g ∈ H̃1/2 (Γ) (3)
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and the Neumann-to-Dirichlet operator NtD (σ) is defined by

NtD (σ) : H̃−1/2 (Γ)→ H̃1/2 (Γ) , j 7→ NtD (σ) j = FN (σ) j |Γ . (4)

An EIT experiment consists of applying an electrical current to the surface of the object and then
measuring the resulting electrical potential on the boundary. In practice, the procedure is repeated several
times with different currents, which yields partial information about the Neumann-to-Dirichlet map NtD.
Thus, our inverse problem is stated as follow: Given the Neumann-to-Dirichlet operator NtD, find σ∗ such
that NtD(σ∗) = NtD.

Note that for any σ ∈ A, if NtD (σ) j = g, then

FN (σ) j − FD (σ) g = 0.

Thus, given the Neumann-to-Dirichlet operator NtD, we might identify the conductivity σ∗ from solving
the system of equations

FN (σ) jk − FD (σ) gk = 0

with gk = NtDfk. This motivates our approach. The choice of currents jk is crucial and has been investigated
by many authors. In [25, 24, 23, 7, 13] the authors have investigated the so-called optimal current in some
sense. Using several currents have also been examined in [28, 27]. For simplicity, we here assume that only
one current j that is optimal in some sense is used. However, the results in this paper are still valid for
several currents as in [28].

We assume that there exists some σ∗ ∈ Aad such that NtD (σ∗) = NtD. Fix j ∈ H̃−1/2 (Γ) and denote
g = NtD (σ∗) j and assume that only noisy data

(
jδ, gδ

)
∈ H̃−1/2 (Γ)× H̃1/2 (Γ) of (j, g) such that∥∥j − jδ∥∥2

H̃−1/2(Γ)
+
∥∥g − gδ∥∥2

H̃1/2(Γ)
≤ δ2 (5)

with δ > 0, are available. Our problem now is to identify σ∗ from
(
jδ, gδ

)
.

To solve this problem, we minimize the energy functional

Fδ (σ) =
∫

Ω

σ|∇
(
FN (σ) jδ − FD (σ) gδ

)
|2dx (6)

over an admissible set Aad. Since the problem is ill-posed, sparsity regularization is used to solve it in a
stable way. This leads to considering the minimization problem

min
σ∈Aad

Fδ (σ) + αΦ
(
σ − σ0

)
, (7)

where α > 0 is the regularization parameter and

Φ (ϑ) :=
∑

ωk| 〈ϑ, ϕk〉 |p (1 ≤ p ≤ 2) (8)

with {ϕk} being an orthonormal basis (or frame) of the Hilbert space H1
0 (Ω′) and ωk ≥ ωmin for all k. Here,

the admissible set Aad := A ∩Q with Q = {σ ∈ A : σ − σ0 ∈ H1
0 (Ω′)}.

The energy functional Fδ (·) in (6) has been used in [28, 27]. However, they aimed at constructing
numerical algorithms to reconstruct the conductivity σ. Here, we aim at studying the well-posedness and
convergence rates of the method. In order to obtain the well-posedness of the method, problem (7) is
examined on Aad instead of A. The idea of choosing Aad follows the paper of Jin and Maass [26]. We
need this constraint to obtain the compactness of Et defined below, which is sufficient for obtaining the
well-posedness of the method. In order to obtain convergence rates, we follow the ideas of Hao and Quyen
[19, 20].

Note that in EIT problem, it is very often that the conductivity coefficient σ∗ consists of the background
σ0 plus several interesting features that have relatively simple mathematical descriptions, i.e. the number
of nonzero components of σ− σ0 are finite in a basis (or frame) of a space. Based on this prior information,
there are advantages to use sparsity regularization.

Sparsity regularization has been of interest by many researchers for the last years. The well-posedness
and some convergence rates of the method have been analyzed for linear inverse problems [12] as well as for
nonlinear inverse problems [18]. It is shown that sparsity regularization is simple for use and very efficient
for inverse problems with sparse solutions. This method has been investigated and applied very successfully
to some fields such as for compressive imaging [16, 37, 39, 41]. Recently, sparsity regularization has been
applied to EIT problem [27, 17, 26]. Numerical experiments in [27, 17] have demonstrated its great potentials.
Following the least squares approach in [18], the well-posedness and some convergence rates of the method
have been also obtained in [26]. Numerical algorithms have also been proposed [31, 12, 6, 4, 34, 3].
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2 Auxiliary Results

Before proving the main results of sparsity regularization for EIT, we consider some properties of FN (·) j,
FD (·) g and Fδ (·) on A with respect to the Lq (Ω)-norm, which are needed for studying the well-posedness
and convergence rates of the method as well as for numerical algorithms. Some of them have been proven
in [26], which are derived by exploiting Meyers’ gradient estimate [33] as follow.

Theorem 1 (Meyers’ theorem) Let Ω be a bounded Lipschitz domain in Rd (d ≥ 2) . Assume that σ ∈
L∞ (Ω) satisfies λ < σ < λ−1 for some fixed λ ∈ (0, 1) . For z ∈ (Lr (Ω))d and y ∈ Lr (Ω) , let φ ∈ H1 (Ω) be
a weak solution of the equation

−div (σ∇φ) = −div (z) + y in Ω.

Then, there exists a constant Q ∈ (2,+∞) depending on λ and d only, Q → 2 as λ → 0 and Q → ∞ as
λ→ 1, such that for any 2 < r < Q, φ ∈W 1,r

loc (Ω) and for any Ω′ ⊂⊂ Ω

‖∇φ‖Lr(Ω′) ≤ C
′
(
‖φ‖H1(Ω) + ‖z‖Lr(Ω) + ‖y‖Lr(Ω)

)
,

where the constant C ′ depends on λ, d, r,Ω′ and Ω.

Remark 2 1. By using Lax-Milgram’s lemma, one can show that for any σ ∈ A, there exist constants
CN and CD (only depend on λ and Ω) such that

‖FN (σ) j‖H1(Ω) ≤ CN ‖j‖H−1/2(Γ) , ‖FD (σ) g‖H1(Ω) ≤ CD ‖g‖H1/2(Γ) .

2. On the space H̃1 (Ω) , the standard H1 (Ω)−norm and the H1 (Ω)−semi-norm are equivalent (see e.g.
[26, Lemma 2.2]), which implies that for any u ∈ H̃1 (Ω), there exists a constant C̃ such that

‖∇u‖L2(Ω) ≥ C̃ ‖u‖H1(Ω) .

Lemma 3 Let q ∈
(

2Q
Q−2 ,∞

]
, j ∈ H̃−1/2 (Γ) and g ∈ H̃1/2 (Γ) . Then, for any σ, σ + ϑ ∈ A, we have

‖FN (σ + ϑ) j − FN (σ) j‖H1(Ω) ≤ C1 ‖ϑ‖Lq(Ω′) ‖j‖H̃−1/2(Ω)

and
‖FD (σ + ϑ) g − FD (σ) g‖H1(Ω) ≤ C2 ‖ϑ‖Lq(Ω′) ‖g‖H̃1/2(Ω) ,

where the positive constants C1 and C2 depend on λ, d, q,Ω′ and Ω.

Proof. For FN (·) j, the proof is in [26, Lemma 2.3]. For FD (·) g, the proof is similar.

Remark 4 By the above lemma, FD (·) y is Lipschitz continuous on A with respect to the Lq (Ω)−norm for
q ∈

(
2Q
Q−2 ,∞

]
. Note that for σ, σ + ϑ ∈ A and 1 ≤ q1 ≤ q2, we have

|Ω|−1/q1 ‖ϑ‖Lq1 (Ω) ≤ |Ω|
−1/q2 ‖ϑ‖Lq2 (Ω) ,

and
‖ϑ‖q2Lq2 (Ω) ≤

(
2λ−1

)q2−q1 ‖ϑ‖q1Lq1 (Ω) .

This means that the convergence of ϑ to zero with respect to the Lq1 (Ω)−norm and the Lq2 (Ω)−norm
are equivalent. Therefore, the operators FN (·) j and FD (·) g are also continuous on A with respect to the
Lq (Ω)-norm for q ≥ 1.

We now consider the differentiability of the operators FN (·) j and FD (·) g. For σ, σ+ tϑ ∈ A with t > 0,
from the definition of FN (σ) j and FN (σ + tϑ) j, we have

−div (σ∇FN (σ) j) = 0 and − div ((σ + tϑ)∇FN (σ + tϑ) j) = 0.

It implies that

−div
(
σ
∇ (FN (σ + tϑ) j − FN (σ) j)

t

)
= div (ϑ∇FN (σ + tϑ) j)
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with σ ∂
∂n (FN (σ + tϑ) j − FN (σ) j) /t|Γ = 0. Taking t→ 0, by the continuity of FN we have φ′ = F ′N (σ) j (ϑ) ,

the solution of the equation
−div (σ∇φ′) = div (ϑFN (σ) j)

with the Neumann boundary condition σ ∂φ
′

∂n = 0 on Γ.
Similarly, we also have φ = F ′D (σ) g (ϑ) to be the solution of the equation

−div (σ∇φ) = div (ϑFD (σ) g)

with the Dirichlet boundary condition φ|Γ = 0.
We have F ′N (σ) j : Lq (Ω′) → H̃1 (Ω) , ϑ 7→ φ′ and F ′D (σ) g : Lq (Ω′) → H̃1 (Ω) , ϑ 7→ φ. The following

lemma shows that the operators FN (·) j and FD (·) g are not only directional differentiable but also the
Fréchet differentiable.

Lemma 5 For each σ ∈ A, both FN (·) j and FD (·) g have the continuous Fréchet derivative at σ with
respect to the Lq (Ω′)−norms, q ∈

(
2Q
Q−2 ,∞

]
. Moreover, let ϑ be a perturbation to σ belonging to L∞ (Ω′)

and extended by zero outside Ω′, we have

1) F ′N (σ) j (ϑ) = φ′ is the unique solution of the equation

−div (σ∇φ′) = div (ϑ∇FN (σ) j) (9)

with a homogeneous Neumann boundary condition.

2) F ′D (σ) g (ϑ) = φ is the unique solution of the equation

−div (σ∇φ) = div (ϑ∇FD (σ) g) (10)

with a homogeneous Dirichlet boundary condition.

Moreover, the following estimations hold

‖F ′N (σ) j[ϑ]‖L(Lq(Ω′),H̃1(Ω)) ≤ C3 ‖j‖H̃−1/2(Γ) ‖ϑ‖Lq(Ω′) , (11)

‖F ′D (σ) g[ϑ]‖L(Lq(Ω′),H̃1(Ω)) ≤ C4 ‖g‖H̃1/2(Γ) ‖ϑ‖Lq(Ω′) . (12)

Proof. The Fréchet differentiability of FN (·) j is proven in [26, Lemma 2.4 and Theorem 2.2]. The
Fréchet differentiability of FD (·) g is proven similarly. We now prove two last inequalities. Since the proofs
are similar to each other, we only prove for F ′N (·) j. The weak solution formula of equation (9) is∫

Ω

σ∇φ′ · ∇vdx = −
∫

Ω

ϑ∇FN (σ) j · ∇v for all v ∈ H̃1 (Ω) . (13)

From (13), choosing v = φ′ ∈ H̃1 (Ω), using Holder’s inequality, Theorem 1 and Remark 2, we obtain

C̃λ ‖φ′‖H̃1(Ω) ≤ ‖ϑ‖Lq(Ω′) ‖∇FN (σ) j‖Lr(Ω) with
1
q

+
1
r

=
1
2

⇒ ‖F ′N (σ) j (ϑ)‖H̃1(Ω) = ‖φ′‖H̃1(Ω) ≤
CMCN

C̃λ
‖ϑ‖Lq(Ω′) ‖j‖H−1/2(Γ) .

Next, we consider the continuity and differentiability of the energy functional Fδ (σ) .

Lemma 6 For any (j, g) ∈ H̃−1/2 (Γ)× H̃1/2 (Γ) , the functional

F (σ) :=
∫

Ω

σ|∇ (FN (σ) j − FD (σ) g) |2dx

has the following properties:

1. F (·) is Fréchet differentiable with respect to the Lq (Ω′)−norm for q ∈
(

2Q
Q−2 ,∞

]
and

F ′ (σ)ϑ = −
∫

Ω

ϑ
(
|∇FN (σ) j|2 − |∇FD (σ) g|2

)
dx.
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2. The second Fréchet derivative F ′′ of F (·) exists and is uniformly bounded with respect to the Lq (Ω′)-
norm for q ∈

(
2Q
Q−2 ,∞

]
.

Proof.
1. F (·) is Fréchet differentiable since FN (·) j and FD (·) g are Fréchet differentiable. We have

F ′ (σ)ϑ =
∫

Ω

ϑ|∇ (FN (σ) j − FD (σ) g) |2dx

+ 2
∫

Ω

σ (∇F ′N (σ) j (ϑ)−∇F ′D (σ) g (ϑ)) . (∇FN (σ) j −∇FD (σ) g) dx (14)

Using the weak solution formulas of F ′N (σ) j (ϑ) , F ′D (σ) g (ϑ) and FN (σ) j, we have∫
Ω

σ∇F ′N (σ) j (ϑ) · ∇FN (σ) jdx = −
∫

Ω

ϑ|∇FN (σ) j|2dx,

∫
Ω

σ∇F ′N (σ) j (ϑ) · ∇FD (σ) gdx = −
∫

Ω

ϑ∇FN (σ) j · ∇FD (σ) gdx,∫
Ω

σ∇F ′D (σ) g (ϑ) · ∇FD (σ) gdx = −
∫

Ω

ϑ|∇FD (σ) g|2dx,∫
Ω

σ∇FN (σ) · ∇F ′D (σ) g (ϑ) dx = 0.

Inserting these equalities into (14) and simplifying, we get

F ′ (σ)ϑ = −
∫

Ω

ϑ
(
|∇FN (σ) j|2 − |∇FD (σ) g|2

)
dx.

2. Clearly F ′ (·) has the Fréchet derivative and

F ′′ (σ) (ϑ, ϑ) = −2
∫

Ω

ϑ (∇FN (σ) j.∇F ′N (σ) j (ϑ) +∇FD (σ) g · ∇F ′D (σ) g (ϑ)) dx.

By the weak solution formulas of F ′N (σ) g (ϑ) and F ′D (σ) j (ϑ) , it implies that∫
Ω

ϑ∇FN (σ) j · ∇F ′N (σ) j (ϑ) dx = −
∫

Ω

σ|∇F ′N (σ) j (ϑ) |2dx

and ∫
Ω

ϑ∇FD (σ) g · ∇F ′D (σ) g (ϑ) dx = −
∫

Ω

σ|∇F ′D (σ) g (ϑ) |2dx.

Therefore,

F ′′ (σ) (ϑ, ϑ) = 2
∫

Ω

σ|∇F ′N (σ) j (ϑ) |2dx− 2
∫

Ω

σ|∇F ′D (σ) g (ϑ) |2dx.

Finally, by (11) and (12), F ′′ is uniformly bounded.

Remark 7 From the uniform boundedness of F ′′, we deduce that F ′ is Lipschitz continuous on A with
respect to the Lq (Ω′)−norm for q ∈

(
2Q
Q−2 ,∞

]
. However, we can not show that F is a convex functional.

3 The Well-posedness

We are now in a position to consider the well-posedness of sparsity regularization. To this end, the following
property of Φ is necessary.

Lemma 8 The functional Φ defined by (8) has the following properties

1) Φ is non-negative, convex and weakly lower semi-continuous.
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2) There exists a positive constant C such that for any u ∈ H,

Φ (u) ≥ ωminCp/2 ‖u‖p .

This implies that Φ is weakly coercive, i.e. Φ (u)→∞ as ‖u‖ → ∞.

3) If {un}n∈N ⊂ H weakly converges to u ∈ H and Φ (un) converges to Φ (u) , then Φ (un − u) converges
to zero.

Proof. Φ is non-negative, convex and weakly lower semi-continuous because it is the sum of non-negative,
convex and weakly continuous functionals. The proofs of 2) and 3) can be found in [18, Remark 3.] and [18,
Lemma 2.], respectively.

Lemma 9 Let Φ : H1
0 (Ω′) → R ∪ {∞} be defined by (8). Then, the set Et := {ϑ := σ − σ0 : σ ∈

Aad and Φ (ϑ) ≤ t} is compact in L2 (Ω) for all t ∈ R.

Proof. Suppose that {ϑn := σn − σ0} ⊂ Et for some fixed t ∈ R+. From the coercivity of Φ, {ϑn} is
bounded in H1

0 (Ω′) and thus there exists a subsequence of {ϑn}, denoted again by {ϑn}, weakly converging
to ϑ := σ − σ0 in H1

0 (Ω′) . By Kondrashov embedding theorem [15], it strongly converges in Lq (Ω) for any
q < 6 in case of d = 2, 3. Thus, it strongly converges in L2 (Ω) and σ ∈ Aad due to the closedness of Aad
in L2 (Ω) . Since Φ is weakly lower semicontinuous in H1

0 (Ω), Φ (ϑ) ≤ limn inf Φ (ϑn) ≤ t. This implies that
ϑ ∈ Et. Therefore, Et is a compact set in L2 (Ω) .

Lemma 10 For j ∈ H̃−1/2 (Γ) and g = NtD (σ∗) j, the set

ΠAad
:= {σ ∈ Aad : FN (σ) j = FD (σ) g}

is nonempty, bounded and closed in the space L2 (Ω). Thus, the problem

min
σ∈ΠAad

Φ
(
σ − σ0

)
has at least one solution that is called Φ-minimizing solution of EIT. If p > 1 then Φ-minimizing solution is
unique.

Proof. It is easy to show that ΠAad
is nonempty and bounded. We now prove that it is a closed set. Suppose

that the sequence {σn} ⊂ ΠAad
converges to σ in L2 (Ω). From the weak solution formula of FN (σn) j, we

have ∫
Γ

jvds =
∫

Ω

σn∇FN (σn) j.∇vdx =
∫

Ω

σn∇φn.∇vdx,

for all v ∈ H̃1 (Ω) . Here, φn = FN (σn) j = FD (σn) g. From Remark 2, the sequence {φn} is bounded and
thus there exists a subsequence, denoted again by {φn} , which weakly converges to φ in H1 (Ω) .

Since σn → σ in the L2 (Ω)-norm and φn weakly converges to φ in H1 (Ω), we obtain∫
Ω

σn∇φn · ∇vdx−
∫

Ω

σ∇φ · ∇vdx

=
∫

Ω

(σn − σ)∇φn · ∇vdx+
∫

Ω

σ∇ (φn − φ) · ∇vdx→ 0, as n→∞,

for all v ∈ H̃1 (Ω) . Thus, we have ∫
Ω

σ∇φ · ∇vdx =
∫

Γ

jvds,

for all v ∈ H̃1 (Ω) . It means that φ = FN (σ) j. Similarly, we also have φ = FD (σ) g. Thus, σ ∈ ΠAad
or

ΠAad
is a closed set in L2 (Ω) .

Finally, we prove that there exists at least one Φ-minimizing solution of EIT. Suppose that there does not
exist a Φ-minimizing solution in ΠAad

. Then, there exists a sequence {σk} ⊂ ΠAad
such that Φ

(
σk − σ0

)
→ c

and
c < Φ

(
σ − σ0

)
for all σ ∈ ΠAad

. (15)
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Since Φ
(
σk − σ0

)
→ c as k →∞, {σk−σ0} is bounded inH1

0 (Ω′) . Therefore, by Lemma 8, there exists a sub-
sequence of {σk−σ0}, denoted again by {σk−σ0}, weakly converging to σ−σ0 in H1

0 (Ω′) and σ ∈ ΠAad
. From

the weakly lower semi-continuity of Φ in H1
0 (Ω′), it follows that Φ

(
σ − σ0

)
≤ limk→∞ inf Φ

(
σk − σ0

)
= c.

This gives a contradiction to (15).
Note that if p > 1, then Φ is strictly convex and thus the Φ-minimizing solution is unique.
Next, we consider the well-posedness of problem (7) that consists of existence, stability, convergence.

Theorem 11 (Existence) For any
(
jδ, gδ

)
∈ H̃−1/2 (Γ)× H̃1/2 (Γ) , problem (7) has at least one solution.

Proof. Suppose that {σn} is a minimizing sequence. It implies that {Φ
(
σn − σ0

)
} is uniformly bounded.

By Lemma 8 there exists t ∈ R+ such that {σn − σ0} ⊂ Et and
∥∥σn − σ0

∥∥p
H1

0 (Ω′)
≤ Ct. Since Et is compact

in L2 (Ω) and {σn − σ0} is bounded in H1
0 (Ω′), there exist a subsequence of {σn}, denoted again by {σn},

and a σ∗ ∈ Aad such that σn − σ0 weakly converges to σ− σ0 in H1
0 (Ω′) and σn → σ in L2 (Ω). Since Fδ is

continuous with respect to the L2 (Ω)−norm and Φ is weakly lower semi-continuous in H1
0 (Ω′), we have

Fδ (σ) ≤ lim
n

inf
(
Fδ (σn) + αΦ

(
σn − σ0

))
= inf
σ∈Aad

Fδ (σ) + αΦ
(
σ − σ0

)
.

Therefore, σ is a solution of (7).

Theorem 12 (Stability) For a fixed regularization α > 0, let the sequence (jn, gn) converge to
(
jδ, gδ

)
in

H̃−1/2 (Γ)× H̃1/2 (Γ) and let

σn ∈ argmin
σ∈Aad

∫
Ω

σ|∇ (FN (σ) jn − FD (σ) gn) |2dx+ αΦ
(
σ − σ0

)
.

Then there exist a subsequence {σnk} of the sequence {σn} and a minimizer σpα,δ of (7) such that∥∥∥σnk − σpα,δ
∥∥∥
H1

0 (Ω′)
→ 0 as k →∞.

In addition, if the minimizer σpα,δ is unique, then {σn − σ0} converges to apα,δ − σ0 in the Hilbert space
H1

0 (Ω′).

Proof. Denote Fn (σ) =
∫

Ω
σ|∇ (FN (σ) jn − FD (σ) gn) |2dx. By the definition of σn, we have

Fn (σn) + αΦ
(
σn − σ0

)
≤ Fn (σ) + αΦ

(
σ − σ0

)
≤ λ−1

(
‖FN (σ) jn‖2H1(Ω) + ‖FD (σ) gn‖2H1(Ω)

)
+ αΦ

(
σ − σ0

)
≤ λ−1

(
C2
N ‖jn‖

2
H̃−1/2(Γ) + C2

D ‖gn‖
2
H̃1/2(Γ)

)
+ αΦ

(
σ − σ0

)
≤ λ−1C1 max

(
C2
N , C

2
D

)
+ αΦ

(
σ − σ0

)
(16)

for any σ ∈ Aad, where the constants CN , CD are given in Remark 2 and C1 is independent of n such that
‖(jn, gn)‖2H̃−1/2(Γ)×H̃1/2(Γ) ≤ C1 for all n. This follows that {Φ

(
σn − σ0

)
} is uniformly bounded and thus

there exists t ∈ R+ such that {ϑn := σn − σ0} ⊂ Et and ‖ϑn‖p
H1

0 (Ω′)
≤ Ct for all n. Since Et is compact in

L2 (Ω) and {ϑn} is bounded in H1
0 (Ω′), there exist a subsequence of {σn} denoted by {σnk} and an element

σpα,δ ∈ L2 (Ω) such that ϑnk weakly converges to σpα,δ − σ0 in H1
0 (Ω′) and {σnk} strongly converges to σpα,δ

in L2 (Ω) . Since Aad is closed in L2 (Ω) , σpα,δ ∈ Aad. On the other hand, since Fδ is continuous in L2 (Ω)
and Φ is weakly lower semi-continuous in H1

0 (Ω′), we have

Fδ

(
σpα,δ

)
= lim

k
Fδ (σnk) (17)

and
Φ
(
σpα,δ − σ

0
)
≤ lim

k
inf Φ

(
σnk − σ0

)
. (18)

Moreover,

Fδ (σ)− Fnk
(σ)

=
∫

Ω

σ∇[FN (σ)
(
jδ − jnk

)
− FD (σ)

(
gδ − gnk

)
] · ∇θdx, (19)
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where θ = FN (σ)
(
jδ + jnk

)
− FD (σ)

(
gδ + gnk

)
. Since (jnk , gnk) →

(
jδ, gδ

)
in H̃−1/2 (Γ) × H̃1/2 (Γ) , the

right-hand side of (19) uniformly converges in A to zero as k →∞. Therefore,

Fδ (σ) = lim
k
Fnk

(σ) , lim
k

inf Fδ (σnk) = lim
k

inf Fnk
(σnk) . (20)

From (20), (16), (17) and (18), we obtain

Fδ

(
σpα,δ

)
+ αΦ

(
σpα,δ − σ

0
)

(17),(18)
= lim

k
inf Fδ (σnk) + α lim

k
inf Φ

(
σnk − σ0

)
(20)

≤ lim
k

inf Fnk
(σnk) + α lim

k
inf Φ

(
σnk − σ0

)
≤ lim

k
inf
(
Fnk

(σnk) + αΦ
(
σnk − σ0

))
≤ lim

k
sup

(
Fnk

(σnk) + αΦ
(
σnk − σ0

))
(16)

≤ lim
k

sup
(
Fnk

(σ) + αΦ
(
σ − σ0

))
(20)
= Fδ (σ) + αΦ

(
σ − σ0

)
(21)

for all σ ∈ Aad. It means that σpα,δ is a minimizer of (7).
From (21), setting σ = σpα,δ and by (20), we get

lim
k

(
Fδ (σnk) + αΦ

(
σnk − σ0

))
= Fδ

(
σpα,δ

)
+ αΦ

(
σpα,δ − σ

0
)
.

Together with (17) and (18), we deduce that Φ
(
σnk − σ0

)
→ Φ

(
σpα,δ − σ0

)
. Finally, since {σnk − σ0}

weakly converges to σpα,δ − σ0 in H1
0 (Ω′) and Φ

(
σnk − σ0

)
→ Φ

(
σpα,δ − σ0

)
as k → ∞, it implies that

Φ
(
σnk − σpα,δ

)
→ 0 as k → 0 and thus

∥∥∥σnk − σpα,δ
∥∥∥
H1

0 (Ω′)
→ 0 by Lemma 8.

In the case the minimizer σpα,δ is unique, the convergence of the original sequence {σn} to σpα,δ follows
by a subsequence argument.

Theorem 13 (Convergence) For any positive sequence {δn} → 0, let αn := α (δn) be such that

αn → 0 and
δ2
n

αn
→ 0 as n→∞.

Furthermore, let {(jn, gn)} be a sequence in H̃−1/2 (Γ)× H̃1/2 (Γ) satisfying

‖jn − j‖2H̃−1/2(Γ) + ‖gn − g‖2H̃1/2(Γ) ≤ δ
2
n

and
σn ∈ argmin

σ∈Aad

∫
Ω

σ|∇ (FN (σ) jn − FD (σ) gn) |2dx+ αnΦ
(
σ − σ0

)
.

Then, there exist a subsequence {σnk} of {σn} and a Φ-minimizing solution σ+ of EIT such that {σnk −σ0}
converges to σ+ − σ0 in H1

0 (Ω′) . Furthermore, if σ+ is unique then the whole sequence converges.

Proof. Let σ ∈ Aad be a solution of FN (σ) j = FD (σ) g. The definition of σn implies that

Fn (σn) + αnΦ
(
σn − σ0

)
≤ Fn (σ) + αnΦ

(
σ − σ0

)
≤ λ−1

∫
Ω

|∇ (FN (σ) jn − FD (σ) gn) |2 + αnΦ
(
σ − σ0

)
≤ λ−1

(
‖FN (σ) (jn − j)‖2H1(Ω) + ‖FD (σ) (gn − g)‖2H1(Ω)

)
+ αnΦ

(
σ − σ0

)
≤ λ−1 max

(
C2
N , C

2
D

)
δ2
n + αnΦ

(
σ − σ0

)
. (22)

In particular, when δ → 0 and δ2/α→ 0,

Fn (σn)→ 0, lim
n

sup Φ
(
σn − σ0

)
≤ Φ

(
σ − σ0

)
. (23)
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Since Fn (σn)→ 0, F (σn) :=
∫

Ω
σn|∇ (FN (σn) j − FD (σn) g) |2dx→ 0, see (19).

By (23), {Φ
(
σn − σ0

)
} is bounded and thus there exists t ∈ R+ such that {ϑn = σn − σ0} ⊂ Et and

‖ϑn‖p
H1

0 (Ω′)
≤ Ct for all n. Since Et is compact in L2 (Ω) and {ϑn} is bounded in H1

0 (Ω′), there exist a
subsequence {σnk} of {σn} and σ+ ∈ Aad such that σnk − σ0 weakly converges to σ+ − σ0 in H1

0 (Ω′) and
σnk → σ+ in L2 (Ω). Since FN and FD are continuous in L2 (Ω), we have

FN (σnk) j → FN
(
σ+
)
j and FD (σnk) g → FD

(
σ+
)
g (24)

On the other hand, by Remark 2

F (σnk) =
∫

Ω

σnk |∇ (FN (σnk) j − FD (σnk) g) |2dx

≥ λ ‖∇ (FN (σnk) j − FD (σnk) g)‖2L2(Ω)

≥ λC̃ ‖FN (σnk) j − FD (σnk) g‖2H̃1(Ω) ≥ 0. (25)

From (24), (25) and F (σnk) → 0 as k → ∞, we get FN (σ+) j = FD (σ+) g or σ+ ∈ ΠAad
. Moreover, since

Φ is weakly lower semi-continuous in H1
0 (Ω′) and (23), we get

Φ
(
σ+ − σ0

)
≤ lim

k
inf Φ

(
σnk − σ0

)
≤ lim

k
sup Φ

(
σnk − σ0

)
≤ Φ

(
σ − σ0

)
. (26)

Therefore, σ+ is a Φ-minimizing solution of EIT.
Finally, choosing σ = σ+ in (26), we have Φ

(
σnk − σ0

)
→ Φ

(
σ+ − σ0

)
as k → ∞. Since {σnk − σ0}

weakly converges to σ+ − σ0 in H1
0 (Ω′) and Φ

(
σnk − σ0

)
→ Φ

(
σ+ − σ0

)
as k → ∞, it implies that

Φ (σnk − σ+)→ 0 and ‖σnk − σ+‖H1
0 (Ω′) → 0 as k → 0 by Lemma 8.

If the minimizer σ+ is unique, the convergence of the original sequence {σn − σ0} to σ+ − σ0 follows
from a subsequence argument.

4 Convergence Rates

For σ ∈ Aad and q ∈
(

2Q
Q−2 ,∞

]
, the operators

F ′N (σ) j : Lq (Ω′)→ H̃1 (Ω) and F ′D (σ) g : Lq (Ω′)→ H1
0 (Ω)

are linear and continuous. Denote by

(F ′N (σ) j)∗ : H̃−1 (Ω)→ Lq1 (Ω′) and (F ′D (σ) g)∗ : H−1 (Ω)→ Lq1 (Ω′)

the dual operators of F ′N (σ) j and F ′D (σ) g, respectively. Here, H̃−1 (Ω) :=
(
H̃1 (Ω)

)∗
, H−1 (Ω) :=(

H1
0 (Ω)

)∗ and q1 is defined by 1
q + 1

q1
= 1. Note that since H1

0 (Ω) ⊂ H̃1 (Ω) , it implies H̃−1 (Ω) ⊂ H−1 (Ω) .
Then, 〈

(F ′N (σ) j)∗ w∗1 , ϑ
〉

(Lq1 (Ω′),Lq(Ω′))
= 〈w∗1 , F ′N (σ) j (ϑ)〉(H̃−1(Ω),H̃1(Ω)) (27)〈

(F ′D (σ) g)∗ w∗2 , ϑ
〉

(Lq1 (Ω′),Lq(Ω′))
= 〈w∗2 , F ′D (σ) g (ϑ)〉(H−1(Ω),H1

0 (Ω))

with w∗1 ∈ H̃−1 (Ω) and w∗2 ∈ H−1 (Ω) .
Some convergence rates of sparsity regularization for EIT are given in the following theorem. The ideas

of the proof are similar to those in [19, 20]. However, we need more requirements on the source condition.

Theorem 14 Let q ∈
(

2Q
Q−2 ,∞

]
, σ+ be a Φ-minimizing solution of EIT and apα,δ be a solution of (7).

Assume that there exists a function w∗ ∈ H̃−1 (Ω) such that

ξ :=
(
F ′N
(
σ+
)
j − F ′D

(
σ+
)
g
)∗
w∗ ∈ ∂Φ

(
σ+ − σ0

)
(28)

and

F ′N
(
σ+
)
j (ϑ) ∈ H1

0 (Ω) , ∀ϑ ∈ L∞ (Ω′) . (29)
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Then,
Fδ

(
σpα,δ

)
= O

(
δ2
)

and Dξ

(
σpα,δ, σ

+
)

= O (δ) ,

as δ → 0 and α ∼ δ.
In particular, if p ∈ (1, 2], we have∥∥∥σpα,δ − σ+

∥∥∥
H1

0 (Ω′)
= O

(
δ1/2

)
.

Proof. By the definition of σpα,δ, we get

Fδ

(
σpα,δ

)
+ αΦ

(
σpα,δ − σ

0
)
≤ Fδ

(
σ+
)

+ αΦ
(
σ+ − σ0

)
. (30)

Then, we have

Fδ

(
σpα,δ

)
+ αDξ

(
σpα,δ, σ

+
)

= Fδ

(
σpα,δ

)
+ α

(
Φ
(
σpα,δ − σ

0
)
− Φ

(
σ+ − σ0

)
−
〈
ξ, σpα,δ − σ

+
〉

(Lq1 (Ω′),Lq(Ω′))

)
≤ Fδ

(
σ+
)
− α

〈
ξ, σpα,δ − σ

+
〉

(Lq1 (Ω′),Lq(Ω′))

≤ λ−1 max
(
C2
N , C

2
D

)
δ2 − α

〈
ξ, σpα,δ − σ

+
〉

(Lq1 (Ω′),Lq(Ω′))
. (31)

On an other hand, denoting Ψ := F ′N (σ+) j − F ′D (σ+) g, from (27) and(28), we get〈
ξ, σpα,δ − σ

+
〉

(Lq1 (Ω′),Lq(Ω′))
=
〈
w∗,Ψ

(
σpα,δ − σ

+
)〉

(H̃−1(Ω),H̃1(Ω))
(29)
=
〈
w∗,Ψ

(
σpα,δ − σ

+
)〉

(H−1(Ω),H1
0 (Ω))

. (32)

By Riesz’s representation theorem, there exists an element w ∈ H1
0 (Ω) such that〈

w∗,Ψ
(
σpα,δ − σ

+
)〉

(H−1(Ω),H1
0 (Ω))

=
〈
w,Ψ

(
σpα,δ − σ

+
)〉

H1
0 (Ω)

. (33)

Since σ+ ≥ λ > 0, the scalar product

[φ, v]H1
0 (Ω) :=

∫
Ω

σ+∇φ · ∇vdx, for all φ, v ∈ H1
0 (Ω)

is equivalent to 〈φ, v〉H1
0 (Ω) on H1

0 (Ω) . Therefore, there exists an element ŵ ∈ H1
0 (Ω) independent of σpα,δ

such that 〈
w,Ψ

(
σpα,δ − σ

+
)〉

H1
0 (Ω)

=
∫

Ω

σ+∇ŵ · ∇Ψ
(
σpα,δ − σ

+
)
dx.

This implies that 〈
ξ, σpα,δ − σ

+
〉

(Lq1 (Ω′),Lq(Ω′))
=
∫

Ω

σ+∇ŵ · ∇Ψ
(
σpα,δ − σ

+
)
dx. (34)

By (13), we get∫
Ω

σ+∇ŵ · ∇F ′N
(
σ+
)
j
(
σpα,δ − σ

+
)
dx = −

∫
Ω

(
σpα,δ − σ

+
)
∇FN

(
σ+
)
j · ∇ŵdx

= −
∫

Ω

σ+∇FN
(
σ+
)
j · ∇ŵdx+

∫
Ω

σpα,δ∇FN
(
σ+
)
j · ∇ŵdx

= −
∫

Ω

σpα,δ∇FN
(
σpα,δ

)
j · ∇ŵdx+

∫
Ω

σpα,δ∇FN
(
σ+
)
j · ∇ŵdx

=
∫

Ω

σpα,δ∇
(
FN
(
σ+
)
j − FN

(
σpα,δ

)
j
)
· ∇ŵdx. (35)
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Similarly, since ŵ ∈ H1
0 (Ω) , we have∫

Ω

σ+∇ŵ · ∇F ′D
(
σ+
)
g
(
σpα,δ − σ

+
)
dx =

∫
Ω

σpα,δ∇
(
FD
(
σ+
)
g − FD

(
σpα,δ

)
g
)
· ∇ŵdx. (36)

Therefore, by (34), (35) and (36), we have

Σ :=
〈
ξ, σpα,δ − σ

+
〉

(Lq1 (Ω′),Lq(Ω′))
=
∫

Ω

σpα,δ∇
(
FD

(
σpα,δ

)
g − FN

(
σpα,δ

)
j
)
· ∇ŵdx

=
∫

Ω

σpα,δ∇
(
FD

(
σpα,δ

)
g − FD

(
σpα,δ

)
gδ
)
· ∇ŵdx

−
∫

Ω

σpα,δ∇
(
FN

(
σpα,δ

)
jδ − FD

(
σpα,δ

)
gδ
)
· ∇ŵdx

+
∫

Ω

σpα,δ∇
(
FN

(
σpα,δ

)
jδ − FN

(
σpα,δ

)
j
)
· ∇ŵdx

= Σ1 + Σ2 + Σ3. (37)

Using the Cauchy-Schwart inequality, Remark 2 and Lemma 3, with q ∈
(

2Q
Q−2 ,∞

]
we get

|Σ1| ≤
∥∥∥∇(FD (σpα,δ) g − FD (σpα,δ) gδ)∥∥∥

L2(Ω)

∥∥∥σpα,δ∇ŵ∥∥∥
L2(Ω)

≤ CD
λ
‖∇ŵ‖L2(Ω)

∥∥g − gδ∥∥
H̃1/2(Γ)

. (38)

Similarly, we have the following estimates for Σ2 and Σ3

|Σ2| ≤
(∫

Ω

σpα,δ|∇
(
FN

(
σpα,δ

)
jδ − FD

(
σpα,δ

)
gδ
)
|2dx

)1/2(∫
Ω

σpα,δ|∇ŵ|
2dx

)1/2

≤
(
Fδ

(
σpα,δ

))1/2

λ−1/2 ‖∇ŵ‖L2(Ω)

≤ 1
2α
Fδ

(
σpα,δ

)
+
α

2
λ−1 ‖∇ŵ‖2L2(Ω) (39)

and

|Σ3| ≤
∥∥∥∇(FN (σpα,δ) jδ − FN (σpα,δ) j)∥∥∥

L2(Ω)

∥∥∥σpα,δ∇ŵ∥∥∥
L2(Ω)

≤ λ−1 ‖∇ŵ‖L2(Ω) CN
∥∥jδ − j∥∥

H̃−1/2(Γ)
. (40)

By (37)-(40), we get

|Σ| ≤ λ−1 ‖∇ŵ‖L2(Ω) max (CN , CD) δ +
1

2α
Fδ

(
σpα,δ

)
+
α

2
λ−1 ‖∇ŵ‖2L2(Ω) . (41)

From this inequality and (31), we have

1
2
Fδ

(
σpα,δ

)
+ αDξ

(
σpα,δ, σ

+
)
≤ β1δ

2 + β2δα+ β3α
2 := Σ4, (42)

where
β1 = λ−1 max

(
C2
N , C

2
D

)
,

β2 = λ−1 ‖∇ŵ‖L2(Ω) max (CN , CD) , β3 =
1
2
λ−1 ‖∇ŵ‖2L2(Ω) .

With α ∼ δ, it follows that

Fδ

(
σpα,δ

)
= O

(
δ2
)

and Dξ

(
σpα,δ, σ

+
)

= O (δ) .

In particular, for p ∈ (1, 2] there exists a constant Cp > 0 such that

Dξ

(
σpα,δ, σ

+
)
≥ Cp

∥∥∥σpα,δ − σ+
∥∥∥2

H1
0 (Ω′)

,
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see [18, Lemma 10.]. Therefore, we have∥∥∥σpα,δ − σ+
∥∥∥
H1

0 (Ω′)
= O

(√
δ
)
.

Remark 15 1. To obtain the convergence rates, we do not require the smallness in the source condition
[26, 14, 21, 18], which is often required in inverse problems when the least squares approach is used,
but it requires (29). The reason is that it ensures the validity of the equality (32).

2. In [26] the least squares approach incorporating with sparsity regularization is used for EIT. To obtain
these convergence rates, the authors not only need the smallness in the source condition but also need
the enough closeness of λ to 1, see [26, Theorem 4.7] and [26, Corollary 2.1]. Furthermore, their result
does not include the case p = 1. Here, we only need the condition (29) and the convergence rates cover
the case p = 1.

5 Conclusion

We have investigated sparsity regularization for electrical impedance tomography. The sparsity regulariza-
tion method incorporated with the energy functional approach was analyzed and the well-posedness and
convergence rates of the method was obtained under the source condition.
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[19] D. N. Hào and T. N. T. Quyen. Convergence rates for Tikhonov regularization of coefficient identification
problems in Laplace-type equation. Inverse Problems, 26:125014, 2010.
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