
Zentrum für Technomathematik
Fachbereich 3 – Mathematik und Informatik

Volume Integral Equation Methods for
Scattering from Gratings: The TM Case

Armin Lechleiter Dinh-Liem Nguyen

Report 11–05

Berichte aus der Technomathematik

Report 11–05 November 2011





Volume Integral Equation Methods for

Scattering from Gratings: The TM Case

Armin Lechleiter∗ Dinh-Liem Nguyen†

November 10, 2011

Abstract

We analyze electromagnetic TM scattering from a diffraction grating consisting of a di-
electric with possibly negative real part. The scattering problem can be reformulated as a
strongly singular volume integral equation, a technique that attracts continuous interest in
the engineering community, but rarely received rigorous theoretic treatment. In this paper,
we provide (generalized) G̊arding estimates in weighted and unweighted Sobolev spaces for the
integral equation. Moreover, we show that trigonometric Galerkin methods applied to a peri-
odization of the integral equation converge. Fully discrete formulas show that the numerical
scheme is easy to implement and numerical examples show the performance of the method.

1 Introduction

We consider scattering of time-harmonic electromagnetic waves from diffraction gratings, three
dimensional dielectrics that are periodic in one spatial direction and invariant in a second, orthog-
onal, direction. These optical components are used, e.g., to split up light into beams with different
directions, and they serve in optical devices as, e.g., monochromators or as optical spectrometers.

x1

x2

x3

Figure 1: The setting for the scattering problem. The diffraction grating is periodic in x1, invariant
in x3 and bounded in x2.

If the wave vector of an incident electromagnetic plane wave is chosen perpendicular to the
invariance direction of the grating, Maxwell’s equations decouple into scalar Helmholtz equations,
known as transverse magnetic (TM) and transverse electric (TE) modes (these terms are not
consistently used in the literature). In this paper, we consider the equation of the TM mode for a
non-magnetic grating,

div (a∇u) + k2u = 0, k > 0,
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under quasi-periodicity conditions for the field u. In particular, we allow the real part of the
material parameter a to take negative values, a feature that arises for, e.g., optical negative-index
metamaterials, but also for metals at certain frequencies. We use volume integral equations to
obtain solution theory for the scattering problem, and we analyze the convergence of Galerkin
methods based on trigonometric polynomials to discretize these integral equations.

In the engineering community, volume integral equations are a popular tool to numerically
solve scattering problems, see, e.g., [9, 17, 26, 27], since they allow to solve problems with com-
plicated material parameters via one single integral equation. The linear system resulting from
the discretization of the integral operator (by, e.g., collocation or finite element methods) is large
and dense. Still, the convolution structure of the integral operator allows to compute matrix-
vector multiplications by FFT techniques in an order-optimal way (up to logarithmic terms), see,
e.g., [24, 32, 34]. However, the discretization of the integral operator itself is sometimes done in a
crude way, and a convergence analysis of the technique is often missing, in particular when material
parameters are not globally smooth. For the problem that we investigate here, a particularly dif-
ficult situation occurs, because the occurring strongly singular integral operators are not compact
(but the form of the integral equations is of the second kind).

Recently, volume integral equations also started to attract interest in the applied mathematics
community. The papers [13, 14, 18, 33] provide numerical analysis for the Lippmann-Schwinger
integral equation, when the integral operator is compact. Further, [7, 16, 23] analyze strongly sin-
gular integral equations for scattering in free space. However, [23] considers media with globally
continuous material properties, and the L2-theory in [16] does not yield physical solutions if the
material parameter appearing in the highest-order coefficients are not smooth. The paper [7] proves
a G̊arding inequality for a strongly singular volume integral equation arising from electromagnetic
scattering from a (discontinuous) dielectric. This implies the convergence of Galerkin discretiza-
tions. However, setting up the full system matrix is costly both in terms of memory and CPU
time. The strong singularity of the integral kernel even makes the computation of the diagonal of
the system matrix challenging.

Our first aim in this paper is to analyze the quasiperiodic TM mode equation using volume
integral equations, generalizing an approach from [16]. In [16], similar volume integral equations
have been analyzed for free space scattering problems and positive contrast. In this paper, we prove
G̊arding inequalities in a (quasi-)periodic setting, and adapt the techniques from [16] to tackle
complex-valued material parameters possibly having a negative real part. Some of our results
also extend to anisotropic structures, and all results can be transferred to free space scattering
problems. An important aspect of the analysis is that the dielectric properties of the medium
are discontinuous at the air/grating interface (otherwise, the integral operators can be reduced to
compact ones, see, e.g., [6, Chapter 9]).

Our second aim is to rigorously analyze a numerical method to solve the TM scattering problem
by trigonometric Galerkin methods, again for discontinuous media. This technique originally stems
from [33], where a corresponding collocation method for volume integral equations involving a
compact integral operator has been analyzed. We prove that the trigonometric Galerkin method
converges with optimal order, and give fully discrete formulas how to implement this method.
Finally, we describe a couple of numerical experiments.

In essence, the advantage of the method is that it is simple to implement, and that the linear
system can be evaluated at FFT speed. Of course, the convergence order is low if the medium
has jumps, due to the use of global basis functions (if the material properties are globally smooth,
then the method is high-order convergent). Nevertheless, the technique is an interesting tool for
numerical simulation, as we demonstrate through numerical examples.

The analysis of the integral equation for material parameters with negative real part is, to the
best of our knowledge, the first application of T -coercivity (see [2–4]) to volume integral equations.
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The material parameter is, however, not allowed to take arbitrary negative values. The arising
condition to guarantee solvability does for instance not allow the refractive index to take the value
−1 inside the grating.

We would like to point out that the paper [4] analyzes Galerkin discretizations of variational
formulations of Laplace-type problems with indefinite coefficients by using extension operators that
map finite element spaces into itself. Our analysis is based on pretty similar extension operators,
but clearly those do never map a space of trigonometric polynomials into itself. To this end, we
provide an independent proof of that simple Galerkin methods applied to this problem converge,
that might be useful for other problems, too (see Theorem 6.3).

The paper is organized as follows: In Section 2 we briefly recall variational theory for the direct
scattering problem. In Sections 3 and 4 we introduce the corresponding integral equations and
prove G̊arding inequalities on a continuous level. In Sections 5 and 6 we prove G̊arding inequalities
for periodized integral equations, and error estimates for trigonometric Galerkin methods. Finally,
Section 7 gives fully discrete formulas and two numerical examples. The two appendices contain two
well-known results on differences of potential operators and extensions that do not fit comfortably
into the main body of the text.

Notation: The usual L2-based Sobolev and Lipschitz spaces on a domain Ω are denoted as
Hs(Ω) and Cn,1(Ω), respectively. Further, Hs

loc(Ω) = {v ∈ Hs(B) for all open balls B ⊂ Ω}. The
trace of a function u on ∂D from the outside and from the inside of D is γext(u) and γint(u),
respectively. The jump of u across ∂D is [u]∂D = γext(u)− γint(u). If the exterior and the interior
trace of a function u coincide, we simply write γ(u) for the trace.

2 Problem Setting

Propagation of time-harmonic electromagnetic waves in an inhomogeneous and isotropic medium
without free currents is described by the time-harmonic Maxwell’s equations for the electric and
magnetic fields E and H , respectively,

curlH + iωεE = σE, curlE − iωµ0H = 0, (1)

where ω > 0 denotes the frequency, ε is the positive electric permittivity, µ0 is the (constant and
positive) magnetic permeability, and σ is the conductivity. We assume in this paper that all three
scalar material parameters are independent of the third variable x3 and 2π-periodic in the first
variable x1. Further, ε equals ε0 > 0 and σ equals zero outside the grating.

If an incident electromagnetic plane wave independent of the third variable x3 illuminates the
grating, then Maxwell’s equations (1) for the total wave field decouple into two scalar partial
differential equations (see, e.g., [22] or [8]). In particular, the third component H3 of the magnetic
field satisfies the two-dimensional scalar equation

div
(
ε−1
r ∇u

)
+ k2u = 0 with εr := ε−1

0 (ε+ iσ/ω) and k := ω
√
ε0µ0, (2)

together with jump conditions on interfaces where the refractive index ε−1
r jumps: u and ε−1

r ∂u/∂ν
are continuous across across such interfaces. Note that εr is 2π-periodic in x1 and equals one
outside the grating. Working with weak solutions to (2), we assume that εr ∈ L∞(R2,C) is such
that ε−1

r ∈ L∞(R2,C) and Im (εr) ≤ 0. Note that we do not assume that Re ε−1
r ≥ c > 0.

For the two-dimensional problem (2), incident electromagnetic waves reduce to ui(x) = exp(ik x·
d) = exp(ik(x1d1 + x2d2)) where |d| = 1 and d2 6= 0. When the incident plane wave ui illuminates
the diffraction grating there arises a scattered field us such that the total field u = ui + us

satisfies (2). Since ∆ui + k2ui = 0, the scattered field satisfies

div (ε−1
r ∇us) + k2us = −div (q∇ui) in R2, (3)
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where q is the contrast defined by
q = ε−1

r − 1.

Note that ui is α-quasi-periodic with respect x1, that is,

ui(x1 + 2π, x2) = e2πiαui(x1, x2) for α := kd1.

Since ui is quasi-periodic and εr is periodic, the total field and the scattered field both are also
quasi-periodic in x1. For uniqueness of solution, the scattered field has to satisfy a radiation
condition. Here we require that us above (below) the dielectric structure can be represented by a
uniformly converging Fourier(-Rayleigh) series consisting of upwards (downwards) propagating or
evanescent plane waves, see [5, 15, 25],

us(x) =
∑

j∈Z

û±j e
iαjx1±iβj(x2−ρ), x2 ≷ ±ρ, αj = j + α, βj = (k2 − α2

j )
1/2, (4)

where ρ > sup{|x2| : (x1, x2) ∈ supp(q)}. The numbers û±j are the so-called Rayleigh coefficients of

us, defined by û±j = (2π)−1
∫ π

−π u
s(x1,±ρ) exp(−iαjx1) dx1 . A solution to the Helmholtz equation

is called radiating if it satisfies (4).
Variational solution theory for the scattering problem (3)–(4) is well-known, see [5, 8, 15], at

least under the additional assumption that

k2 6= α2
j for all j ∈ Z. (5)

This assumption means that k2 does not correspond to a Rayleigh-Wood frequency where the
number of the propagating mode changes. Using Dirichlet-to-Neumann operators one can formulate
the above scattering problem variationally in the bounded domain Ωρ := (−π, π)×(−ρ, ρ), for ρ > 0
defined in (4), using the space H1

α(Ωρ) := {u ∈ H1(Ωρ) : u = U |Ωρ for some α-quasi-periodic U ∈
H1

loc(R
2)}. For s > 0 and any set X ⊂ R2, the space Hs

α(X) of quasi-periodic functions in X
is defined analogously. The variational formulation for the scattering problem (3, 4) is to find
us ∈ H1

α(Ωρ) such that
∫

Ωρ

(ε−1
r ∇us · ∇v − k2usv) dx −

∫

Γρ

vT+(us) ds −
∫

Γ−ρ

vT−(us) ds = −
∫

Ωρ

q∇ui · ∇v dx (6)

for all v ∈ H1
α(Ωρ). The operators T

±, ϕ 7→ i
∑

j∈Z
βjϕ̂

±
j e

iαjx1 , are the so-called exterior Dirichlet-

to-Neumann operators on Γ±. The sesquilinear form in (6) is bounded on H1
α(Ωρ). It satisfies a

G̊arding inequality, if ε−1
r ≥ c > 0 in Ωρ.

In the latter case, Fredholm theory implies that existence of solution for problem (6) follows
from uniqueness of solution. Existence of non-trivial solutions to the homogeneous problem where
ui = 0 in (6) is possible, but “rare”, since analytic Fredholm theory implies that the set of wave
numbers in where non-uniqueness occurs is at most countable and has no accumulation point
other than infinity, see [5, 10, 15]. If Re ε−1

r changes sign, Fredholm properties of the variational
formulation (6) are non-trivial, at least if Im ε−1

r vanishes. For the above sesquilinear form, such
properties do not seem to appear in the literature, however, [2–4] study corresponding Laplace-
type problems with Dirichlet boundary conditions. Our analysis is rather based on a corresponding
integral equation formulation.

3 Integral Equation Formulation

In this section, we reformulate the scattering problem (2) as a volume integral equation of the
second kind and analyze this integral equation in weighted spaces. Here and in the rest of the
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paper we assume the non-resonance condition (5). Let us denote by D ⊂ Ωρ the support of
the contrast q = ε−1

r − 1, restricted to one period {−π < x1 < π}. By Gk,α we denote the
fundamental solution to the quasi-periodic Helmholtz equation in R2. This function is well-defined
for x = (x1, x2)

⊤ with x 6= (2πm, 0)⊤ for m ∈ Z,

Gk,α(x) :=
i

4π

∑

n∈Z

1

βn
exp(iαnx1 + iβn|x2|), (7)

see [19]. Since k2 6= α2
n all the βn = (k2−α2

n)
1/2 are non-zero. The following result from [15, pp. 90]

will be useful in the sequel.

Lemma 3.1. The Green’s function Gk,α can be split into Gk,α(x) = (i/2)H
(1)
0 (k|x|) +Ψ(x) in R2

where Ψ is an analytic function in that solves the homogeneous Helmholtz equation ∆Ψ+ k2Ψ = 0
in (−2π, 2π)× R.

Since we are interested in spectral schemes based on Fourier series, we also define a periodized
Green’s function by firstly setting

Kρ(x) := Gk,α(x), x = (x1, x2)
⊤ ∈ R× (−ρ, ρ), x 6= (2πm, 0)⊤ for m ∈ Z, (8)

and secondly extending Kρ(x) 2ρ-periodically in x2 to R2. The trigonometric polynomials

ϕj(x) :=
1√
4πρ

exp
(
i
[
(j1 + α)x1 +

j2π

ρ
x2

])
, j = (j1, j2)

⊤ ∈ Z2, (9)

are orthonormal in L2(Ωρ). They differ from the usual Fourier basis (see, e.g., [29, Section 10.5.2])
only by a phase factor exp(iαx1), and hence also form a basis of L2(Ωρ). For f ∈ L2(Ωρ),

f̂(j) :=

∫

Ωρ

f ϕj dx , j = (j1, j2)
⊤ ∈ Z2,

are the Fourier coefficients of f . For 0 ≤ s < ∞ we define a fractional Sobolev space Hs
per(Ωρ) as

the subspace of functions in L2(Ωρ) such that the norm ‖ · ‖2Hs
per(Ωρ)

,

‖f‖2Hs
per(Ωρ)

=
∑

j∈Z2

(1 + |j|2)s|f̂(j)|2 <∞, (10)

is finite. It is well-known that for integer values of s, these spaces correspond to spaces of (quasi-
)periodic functions that are s times weakly differentiable, and that the above norm is then equiv-
alent to the usual integral norms. Note that Hs

per(Ωρ) ⊂ Hs
α(Ωρ).

Lemma 3.1 implies in particular that Kρ has an integrable singularity, that is, the Fourier

coefficients K̂ρ(j) are well-defined. For the next result, we set

λj := k2 − (j1 + α)2 −
(
j2π

ρ

)2

for j ∈ Z2.

If λ 6= 0, the following result is also contained in [28, Section 7.1].

Theorem 3.2. Assume that k2 6= α2
n for all n ∈ Z. Then the Fourier coefficients of the kernel Kρ

from (8) are given by

K̂ρ(j) =





cos(j2π)e
iβj1

ρ−1√
4πρ λj

for λj 6= 0,

i
4j2

(
ρ
π

)3/2
else,

j = (j1, j2)
⊤ ∈ Z2.
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Remark 3.3. K̂ρ(j) is well-defined for λj = 0: Since k2 6= α2
n for all n ∈ Z, the definition of λj

implies that j2 6= 0 whenever λj = 0.

Proof. It is easy to check that (∆+ k2)ϕj = λjϕj for j = (j1, j2)
⊤ ∈ Z2. If λj 6= 0, Green’s second

identity implies that

K̂ρ(j) =

∫

Ωρ

Kρ(x)ϕj(x) dx = λ−1
j lim

δ→0

∫

Ωρ\B(0,δ)

Gk,α(x)(∆ + k2)ϕj(x) dx

= λ−1
j lim

δ→0

[(∫

∂Ωρ

+

∫

∂B(0,δ)

)(
Gk,α

∂ϕj

∂ν
− ∂Gk,α

∂ν
ϕj

)
ds (11)

+

∫

Ωρ\B(0,δ)

(∆ + k2)Gk,α(x)ϕj(x) dx

]
, (12)

where ν denotes the exterior normal vector to B(0, δ). The last volume integral vanishes since
(∆ + k2)Gk,α = 0 in Ωρ \ B(0, δ) for any δ > 0. Let us now consider the first integral in (11).
The boundary of Ωρ consists of two horizontal lines Γ±ρ and two vertical lines {(x1, x2) : x1 =
±π, −ρ < x2 < ρ}. Hence, the normal vector ν on these boundaries is either (±1, 0)⊤ or (0,±1)⊤.
Straightforward computations yield that

Gk,α(x1,±ρ) = i
4π

∑
n∈Z

eiβnρ

βn
eiαnx1 , ∂2Gk,α(x1,±ρ) = ∓ 1

4π

∑

n∈Z

eiβnρeiαnx1 , (13)

ϕj(x1,±ρ) = 1√
4πρ

e−iαj1x1 cos(j2π), and ∂2ϕj(x1,±ρ) = − ij2π

ρ
ϕ(x1,±ρ). (14)

In consequence,

∫

Γ±ρ

(
Gk,α

∂ϕj

∂ν
− ∂Gk,α

∂ν
ϕj

)
ds = −

∫

Γρ

∂2Gk,αϕj ds +

∫

Γ−ρ

∂2Gk,αϕj ds

= −2

∫

Γρ

∂2Gk,αϕj ds .

Using the above formulae for ∂2Gk,α and ϕj in (13) and (14), respectively, we find that

−2

∫

Γρ

∂2Gk,αϕj ds =
cos(j2π)√

4πρ
exp(iβj1ρ).

Computing the partial derivatives of Gk,α and ϕj with respect to x1 analogously to the above
computations, one finds that the integrals on the vertical boundaries of Ωρ vanish due to the
α-quasi-periodicity of both functions. Thus, we obtain that

∫

∂Ωρ

(
Gk,α

∂ϕj

∂ν
− ∂Gk,α

∂ν
ϕj

)
ds =

cos(j2π)√
4πρ

exp(iβj1ρ). (15)

Now we consider the second integral in (11). From Lemma 3.1 we know that Gk,α(x) =
i
4H

(1)
0 (k|x|) + Ψ(x) where Ψ is a smooth function in Ωρ. Obviously,

lim
δ→0

∫

∂B(0,δ)

(
Ψ
∂ϕj

∂ν
− ∂Ψ

∂ν
ϕj

)
ds = 0.
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The asymptotics of H
(1)
0 and its derivative for small arguments,

H
(1)
0 (r) =

2i

π
log r +O(1) and (H

(1)
0 )′(r) =

2i

πr
+O(1) as r → 0,

allow to show that

lim
δ→0

∫

∂B(0,δ)

(
Gk,α

∂ϕj

∂ν
− ∂Gk,α

∂r
ϕj

)
ds ,= − 1√

4πρ
, (16)

see, e.g., [29, Theorem 2.2.1]. Combining (15) with (16) yields that

Kρ(j) =
1√

4πρλj
(cos(j2π)e

iβj1ρ − 1) for λj 6= 0.

For λj = 0 we use de L’Hôspital’s rule to find that

Kρ(j) = lim
γ→(j1+α)2+(j2π/ρ)2

cos(j2π) exp(iρ
√
γ − (j1 + α)2)− 1√

4πρ [γ − (j1 + α)2 − (j2π/ρ)2]
=

iρ3/2

4π3/2j2
.

Proposition 3.4. Assume that k2 6= α2
n for all n ∈ Z. Then the convolution operator Kρ, defined

by

(Kρf)(x) =

∫

Ωρ

Kρ(x− y)f(y) dy for x ∈ Ωρ,

is bounded from L2(Ωρ) into H
2
per(Ωρ).

Proof. Since ϕj(x − z) =
√
4πρϕj(x)ϕj(z), we exploit the periodicity of z 7→ Kρ(z)ϕj(z) to find

that

(Kρϕj)(x) =

∫

Ωρ

Kρ(x− y)ϕj(y) dy =

∫

x−Ωρ

Kρ(z)ϕj(x− z) dz

=
√
4πρϕj(x)

∫

Ωρ

Kρ(z)ϕj(z) dz =
√
4πρ K̂ρ(j)ϕj(x).

Let f ∈ L2(Ωρ) with Fourier coefficients f̂(j) for j ∈ Z2, and set fN =
∑

|j|≤N f̂(j)ϕj . Then

KρfN =
∑

|j|≤N

f̂(j)Kρϕj =
√
4πρ

∑

|j|≤N

f̂(j)K̂ρ(j)ϕj

and
‖KρfN‖2H2

per(Ω2ρ)
≤ 4

√
πρ

∑

|j|≤N

[
1 + (j1 + α)2 + (j2π/ρ)

2
]2 |f̂(j)|2|K̂ρ(j)|2.

From the computation of the coefficients K̂ρ(j) in Theorem 3.2 we know that there is C = C(k)

such that |K̂ρ(j)| ≤ C/(1 + (j1 + α)2 + (j2π/ρ)
2). Hence ‖KρfN‖H2

per(Ω2ρ) ≤ C‖fN‖L2(Ω2ρ) for
a constant C independent of N ∈ N. Passing to the limit as N → ∞ shows the claim of the
proposition.

Recall that D ⊂ Ωρ is the support of contrast q; let us additionally introduce Ω := (−π, π)×R.
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Lemma 3.5. Assume that k2 6= α2
n for all n ∈ Z. Then the volume potential Vk defined by

(Vkf)(x) =

∫

D

Gk,α(x− y)f(y) dy , x ∈ Ω,

is bounded from L2(D) into H2
α(ΩR) for all R > 0.

Proof. Consider χ ∈ C∞(Ω) such that χ = 1 in D, 0 ≤ χ ≤ 1 in Ωρ \ D and χ(x) = 0 for
|x2| > ρ. Then Vkg = χVkg + (1− χ)Vkg. Note that (1− χ)Vkg =

∫
D
(1− χ)G(· − y)g(y) dy is an

integral operator with a smooth kernel, since the series in (7) converges absolutely and uniformly
for |x2| ≥ ρ > 0, as well as all its partial derivatives. The integral operator (1 − χ)Vk is bounded
from L2(D) into H2

α(ΩR), since

‖∂β1

1 ∂β2

2 ((1− χ)Vkg)‖2L2(ΩR) ≤
∫

ΩR

∫

D

|∂β1

1 ∂β2

2 [(1− χ(x))Gk,α(x − y)]|2 dy dx ‖g‖2L2(D)

for all β1,2 ∈ N such that β1 + β2 ≤ 2.
It remains to show the boundedness of χVk from L2(D) into H2(Ωρ). Let g ∈ L2(D) and

consider the operator K2ρ from Proposition 3.4, mapping L2(Ω2ρ) into H
2
per(Ω2ρ) ⊂ H2

α(Ω2ρ),

(K2ρg)(x) =

∫

D

K2ρ(x− y)g(y) dy for x ∈ Ω2ρ.

If x ∈ Ωρ, then |x2 − y2| ≤ 2ρ, that is, K2ρ(x − y) = Gk,α(x − y). Hence, K2ρg = Vkg in Ωρ, and
hence χK2ρg = χVkg in Ωρ. Since χ is a smooth function, we conclude that χVk is bounded from
L2(D) into H2

α(Ωρ).

Note that the potential Vkf can be extended to a quasi-periodic function in H2
loc(R

2), due to
the quasi-periodicity of the kernel.

Lemma 3.6. For g ∈ L2(D)2 the potential w = div Vkg belongs to H1
α(Ωρ) for all ρ > 0. It is the

unique radiating weak solution to ∆w + k2w = −div g in Ω, that is, is satisfies
∫

Ω

(∇w · ∇v − k2wv) dx = −
∫

D

g · ∇v dx (17)

for all v ∈ H1
α(Ω) with compact support, and additionally the Rayleigh expansion condition (4).

Proof. Lemma 3.5 and quasi-periodicity of the kernel of Vk imply that w is a function in H1
α(Ωρ) for

all ρ > 0. It is sufficient to prove (17) for all smooth quasi-periodic testfunctions v with compact
support. It is also well-known that p = Lk(g) ∈ H2

α(Ω) is a weak solution to the Helmholtz
equation, that is, ∫

Ω

(∇pj · ∇∂jv − k2pj∂jv) dx = −
∫

D

gj∂jv dx

for j = 1, 2, 3. An integration by parts shows that (note that no boundary terms arise, due to the
choice of the testfunction)

∫

Ω

(∇div p · ∇v − k2div p v) dx = −
∫

D

g · ∇v dx ,

which implies (17) due to div p = w. Since the components of the potential p = Lk(g) satisfy the
Rayleigh condition, a simple computation shows that the divergence w = divw does also satisfy
the latter condition.
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It remains to prove uniqueness of a radiating solution to (17) when g vanishes. Then w belongs
to H1

α(Ωρ) for any ρ > 0 and satisfies the variational formulation (6) for ε−1
r = 1 with right-hand

side equal to zero. Choosing v = us in (6) and taking the imaginary part of the equation shows
that ∑

j: k2>α2
j

|k2 − α2
j |1/2

(
|û+j |2 + |û−j |2

)
= 0.

We conclude that all the propagating modes {j ∈ Z : k2 > α2
j} vanish. Hence,

w(x) =
∑

j:k2<α2
j

û±j e
iαjx1∓|α2

j−k2|1/2(x2−ρ), x2 ≷ ±ρ, (18)

that is, w decays exponentially as x2 → ±∞. The unique continuation property for elliptic
equations (see [21, Lemma 4.15] for a version that is applicable in our context) yields the equality

∫ π

−π

w(x)e−iαjx1 dx1 = 2π û+n e
|α2

j−k2|1/2(x2−ρ) =: w+
n (x2) for x2 ∈ R.

Obviously, w+
n grows exponentially as x2 → −∞ if and only if û+n 6= 0. Since w decreases exponen-

tially as x2 → −∞ due to (18), we conclude that all coefficients û+n vanish. Another application
of the unique continuation property yields that w vanishes.

Let us now come back to the differential equation (3) for the scattered field us. If we set
f = q∇ui, then the variational formulation of (3) is

∫

Ω

(∇us · ∇v − k2usv) dx = −
∫

D

(q∇us + f) · ∇v dx (19)

for all v ∈ H1
α(Ω) with compact support in Ω. From Lemma 3.6 we know that the radiating solution

to this problem is given by v = div Vk(q∇v + f). Hence, we aim to find a solution v ∈ H1
α,loc(Ω)

to the integral equation
v − div Vk(q∇v) = div Vk(f) in Ω. (20)

4 G̊arding Inequalities

For scattering problems in free space, integral equations similar to (20) have been investigated
in [16] for positive contrast q. In particular, this reference establishes a G̊arding inequality for
I − div Vk(q∇·) in a weighted H1-space. In this section, we firstly apply a similar technique as
in [16] to derive a G̊arding inequality for I − div Vk(q∇·) in a weighted quasi-periodic H1-space.
Secondly, we extend this estimate to unweighted spaces, and we also treat material parameters
with negative real (such that Re (q) < −2).

From (20) it is obvious that the knowledge of u in D is sufficient to determine u in Ω \D by
integration. Thus, we define the operator Lk by Lkv = div Vkv for v ∈ L2(D) and consider (20)
restricted to D,

u = Lk(q∇u + f) in H1
α(D). (21)

To study G̊arding inequalities for volume integral equations, we introduce suitable weighted Sobolev
spaces. An important assumption for the rest of the text is that the real part of the contrast does
not vanish on D, Re (q) 6= 0 on D. Then we denote by H1

α,q(D) the completion of H1
α(D) with

respect to the norm ‖ · ‖H1
α,q(D), defined by

‖u‖2H1
α,q(D) := ‖

√
|Re (q)|∇u‖2L2(D)2 + ‖u‖2L2(D).

9



Note that ‖u‖H1
α,q(D) is an equivalent norm in H1

α(D) provided that |Re (q)| is bounded from below
by some positive constant. In general,

‖u‖H1
α,q(D) ≤ (1 + ‖

√
|Re (q)|‖L∞(D))‖u‖H1

α(D). (22)

Note also that the norm of H1
α,q(D) is linked to the sesquilinear form

aq(u, v) =

∫

D

[
sign(Re (q))q∇u · ∇v + uv

]
dx , u, v ∈ H1

α,q(D). (23)

Indeed, ‖u‖2H1
α,q(D) = Re [aq(u, u)] for u ∈ H1

α,q(D). Here, sesquilinear forms are, by definition,

linear in the first argument and anti-linear in the second. The form aq is also non-degenerate, and,
if q is real, then aq is simply the inner product associated with the norm of H1

α,q(D),

〈u, v〉H1
α,q(D) =

∫

D

[
|q|∇u · ∇v + uv

]
dx , u, v ∈ H1

α,q(D).

Lemma 4.1. The operator v 7→ Lk(q∇v) is bounded from H1
α,q(D) into itself.

Proof. Due to Theorem 3.5, Lk is bounded from L2(D)2 into H1
α(D). Furthermore, v 7→ q∇v is

bounded from H1
α,q(D) into L2(D)2, since

‖q∇u‖L2(D) ≤ ‖√q‖L∞(D)‖u‖H1
α,q(D). (24)

Moreover, the imbedding H1
α(D) ⊂ H1

α,q(D) is bounded due to (22). Hence, v 7→ Lk(q∇v) is
bounded on H1

α,q(D).

If u ∈ H1
α(D) ⊂ H1

α,q(D) solves the Lippmann-Schwinger equation (21), then Lemma (4.1)
implies that u solves the same equation in H1

α,q(D). Since aq is non-degenerate, solving the
Lippmann-Schwinger equation in H1

α,q(D) is equivalent to solve

aq(u− Lk(q∇u), v) = aq(f, v) for all v ∈ H1
α,q(D). (25)

If u ∈ H1
α,q(D) solves the latter variational problem for some f ∈ H1

α(D), then u = Lk(q∇u) + f
belongs to H1

α(D), due to (24) and since Lk is bounded from L2(D) into H1
α(D).

Proposition 4.2. Assume that f ∈ H1
α(D). Then any solution to the Lippmann-Schwinger equa-

tion (21) in H1
α(D) is a solution in H1

α,q(D) and vice versa.

Our aim is now first to prove a (generalized) G̊arding inequality for the variational problem (25).
Second, we use the latter result to derive a G̊arding inequality for the original integral equation (21)
in H1

α(D). The following lemma will turn out to be useful.

Lemma 4.3. Suppose that X and Y are Hilbert spaces. Let A, B be bounded linear operators
from X into Y and consider the sesquilinear form a : X×X → C, defined by a(u, v) = 〈Au,Bv〉Y
for u, v ∈ X. If one of the operators A and B is compact, then the linear operator Q : X → X,
defined by 〈Qu, v〉X = a(u, v) for u, v ∈ X, is compact, too.

Proof. It is easily seen that Q is a well-defined bounded linear operator. Obviously,

|〈Qu, v〉X | = |a(u, v)| ≤ C‖Au‖Y ‖Bv‖Y for u, v ∈ X.

Assume that A is compact, and note that

‖Qu‖X = sup
06=v∈X

|〈Qu, v〉X |
‖v‖X

≤ C‖Au‖Y .
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If a sequence un converges weakly to zero in X , then Aun contains a strongly convergent subse-
quence in Y . Consequently, Qun also contains a strongly convergent zero sequence. This in turn
means that Q is compact. One can analogously derive the compactness of Q in case that B is
compact, since a(u, v) = 〈B∗Au, v〉.

The next lemma shows G̊arding inequalities for the operator v 7→ v − Lk(q∇v) using the
sesquilinear form aq from (23). The second part of the claim uses a periodic extension operator

E : H1
α(D) → H1

α(Ω), E(u)|D = u, E(u)|Ω\ΩR
= 0,

introduced in Appendix B. The operator norm of E is

‖E‖H1
α(D)→H1

α(Ω2ρ) =
(
1 + ‖E‖2

H1
α(D)→H1

α(Ω2ρ\D)

)1/2
.

Theorem 4.4. (a) Assume that Re (q) > 0 on D. Then there exists a compact operator K+ on
H1

α,q(D) such that

Re [aq(v − Lk(q∇v), v)] ≥ ‖v‖2H1
α,q(D) − Re 〈K+v, v〉H1

α,q(D), v ∈ H1
α,q(D). (26)

(b) Assume that Re (q) < −1, and that

‖E‖H1
α(D)→H1

α(Ω2ρ) < inf
D

|Re (q)|1/2. (27)

Then there exists a constant C > 0 and a compact operator K− on H1
α,q(D) such that

−Re [aq(v − Lk(q∇v), v)] ≥ C‖v‖2H1
α,q(D) − Re 〈K−v, v〉H1

α,q(D), v ∈ H1
α,q(D). (28)

Remark 4.5. If Im (q) = 0 in D, then both statements (26) and (28) are nothing but standard
G̊arding estimates: The form aq defines an inner product on H1

α,q(D), and, e.g., (26) can be

rewritten as Re
〈
v − Lk(q∇v), v

〉
≥ ‖v‖2 − Re 〈K+v, v〉 for v ∈ H1

α,q(D).

Proof. (a) We start with the case Re (q) > 0 in D and prove that I−Li(q∇·) is a coercive operator.
Let v ∈ H1

α,q(D) and define w by

w = Li(q∇v) = div

∫

D

Gi,α(· − y)q(y)∇v(y) dy in Ω. (29)

Then w ∈ H1
α(Ω) decays exponentially to zero as |x2| tends to infinity. Moreover, ∆w − w =

−div (q∇v) holds in Ω in the weak sense due to Lemma 3.6, that is,
∫

Ω

[
∇ψ∗∇w + ψw

]
dx = −

∫

D

q∇ψ∗∇v dx for all ψ ∈ H1
α(Ω). (30)

Setting ψ = w, we find that −Re
∫
D q∇w∗∇v dx = ‖w‖2H1(Ω). Hence,

Re [aq(v − Lk(q∇v), v)] = Re

∫

D

[
q|∇v|2 + |v|2 − q∇v∗∇w − wv

]
dx

=

∫

D

[
Re (q)|∇v|2 + |v|2 − Re (wv)

]
dx +

∫

Ω

[
|∇w|2 + |w|2

]
dx

≥ ‖v‖2H1
α,q(D) −

1

2
‖v‖2L2(D) +

1

2

∫

D

[
|v|2 + |w|2 − 2Re (wv)

]
︸ ︷︷ ︸

=|v−w|2

dx .

11



In consequence,

Re [aq(v − Lk(q∇v), v)] ≥ ‖v‖2H1
α,q(D) −

1

2
〈v, v〉L2(D) − Re 〈(Lk − Li)v, v〉H1

α,q(D)

for all v ∈ H1
α,q(D). Due to Lemma 4.3 and the compact embedding of H1

α,q(D) in L2(D), there
exists a compact operator K1 on H1

α,q(D) such that

1

2
〈v, v〉L2(D) = Re 〈K1v, v〉H1

α,q(D).

Further, the operatorK2 := Lk−Li is compact onH1
α(D) due to the smoothness of the kernel shown

in Appendix A. Hence K2 is also compact on H1
α,q(D) since the imbedding H1

α(D) ⊂ H1
α,q(D) is

bounded. Setting K+ := K1 +K2, we obtain that

Re
〈
v − Lk(q∇v), v

〉
H1

α,q(D)
≥ ‖v‖2H1

α,q(D) − Re 〈K+v, v〉H1
α,q(D) for all v ∈ H1

α,q(D).

(b) Now we consider the case that Re (q) < −1, and assume additionally that (27) holds. As
in the first part of the proof, we use the variational formulation (30) for w, defined as in (29), to
find that

−Re [aq(v − Lk(q∇v), v)] = Re

∫

D

[
q|∇v|2 − |v|2 − q∇v∗∇w + wv

]
dx

=

∫

D

[
Re (q)|∇v|2 − |v|2 +Re (wv)

]
dx + ‖w‖2H1

α(Ω)

≥ ‖w‖2H1
α(Ω) − ‖v‖2H1

α,q(D) − Re

∫

D

wv dx .

We plug in ψ = −E(v) into (30) and take the real part of that equation, to find that

‖|Re q|1/2∇v‖2L2(D) ≤ ‖w‖H1
α(Ω)‖E(v)‖H1

α(Ω) ≤ ‖E‖H1
α(D)→H1

α(Ω2ρ) ‖w‖H1
α(Ω)‖v‖H1

α(D)

≤ ‖E‖ ‖w‖H1
α(Ω)

(
‖|Re (q)|−1/2‖∞‖v‖H1

α,q(D) + ‖v‖L2(D)

)
.

This implies that

‖v‖2H1
α,q(D) −

[
1 + ‖Re (q)‖∞

]
‖v‖2L2(D)

≤ ‖E‖ ‖|Re(q)|−1/2‖∞ ‖w‖H1
α(Ω)

(
‖v‖H1

α,q(D) + ‖|Re (q)|1/2‖∞‖v‖L2(D)

)
.

Rewriting the right-hand side of the latter inequality using the binomial theorem, and dividing by
the term in brackets on the right, we obtain that

‖v‖H1
α,q(D) −

[
1 + ‖Re (q)‖∞

]1/2‖v‖L2(D) ≤ ‖E‖ ‖|Re(q)|−1/2‖∞ ‖w‖H1
α(Ω). (31)

Note that the constant

λ1 := ‖E‖H1
α(D)→H1

α(Ω2ρ) ‖|Re (q)|−1/2‖L∞(D)

is, by assumption (27), less than one. If we set, for a moment, C = [1 + ‖Re (q)‖∞]1/2, then (31)
and Cauchy’s inequality imply that

λ21‖w‖2H1
α(Ω) ≥ ‖v‖2H1

α,q(D) + C2‖v‖2L2(D) − 2C‖v‖H1
α,q(D)‖v‖L2(D)

≥ (1− ε2)‖v‖2H1
α,q(D) + C2(1− 1/ε2)‖v‖2L2(D), ε ∈ (0, 1).
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In consequence,

− Re [aq(v − Lk(q∇v), v)] ≥
(
1− ε2

λ21
− 1

)
‖v‖2H1

α,q(D)2

− Re

∫

D

wv dx − C2(1− 1/ε2)‖v‖2L2(D), ε ∈ (0, 1). (32)

Since λ1 < 1 there exists ε ∈ (0, 1) such that 1 − ε2 > λ21, that is, (1 − ε2)/λ21 − 1 > 0. The last
two terms on the right-hand side of (32) can be treated as compact perturbations just as in part
(a) of this proof.

Remark 4.6. All results so far can be extended to an anisotropic contrast Q : Ω → C2×2

such that ReQ = (Q + Q∗)/2 is a symmetric matrix-valued function a.e. in D, and such that
the absolute value ReQ is either positive or negative definite in D (which determines the sign
sign(ReQ) of ReQ). The term ‖

√
|ReQ|∇u‖ in the definition of H1

α,q has to be replaced by

‖(∇u)⊤(sign(ReQ)ReQ)1/2∇u‖, and the corresponding term in the definition of aq has to be re-
placed by sign(ReQ) (∇u)⊤Q∇v.

For scalar q, the generalized G̊arding inequalities from the last theorem can be transformed to
estimates in the unweighted space H1

α(D) using the following lemma.

Lemma 4.7. Assume that D is a domain of class C2,1 and that µ ∈ C2,1
α (D). Then

T : H1
α(D) → H1

α(D), T v := div
[
µVk(q∇(v/µ))− Vk(q∇v)

]
,

is a compact operator.

Proof. We denote by µ∗ ∈ C2,1
α (Ωρ) an extension of µ ∈ C2,1

α (D) to Ωρ (see Appendix B on periodic
extension operators). Then µ∗|D = µ. Consider the two quasi-periodic functions

w1 = µ∗Vk(q∇(v/µ)) and w2 = Vk(q∇v) in Ωρ.

Both functions satisfy differential equations,

∆w1 + k2w1 =

{
−qµ∇(v/µ) + 2∇µ · ∇w1 + w1∆µ in D,

2∇µ∗ · ∇w1 + w1∆µ
∗ in Ωρ \D,

and ∆w2 + k2w2 = −q∇v in D and ∆w2 + k2w2 = 0 in Ωρ \D. Hence, w = w1 − w2 solves

∆w + k2w =

{
−qµ∇(1/µ)v + 2∇µ · ∇w1 + w1∆µ =: g1 in D,

w1∆µ
∗ + 2∇µ∗ · ∇w1 =: g2 in Ωρ \D,

The functions g1 and g2 belong to H1
α(D) and H1

α(Ωρ \ D), respectively. Their norms in these
spaces are bounded by the norm of µ in C1,1

α (D) times the norm of v in H1
α(D). Due to Lemma 3.5,

the jump of the trace and the normal trace of w1,2 across ∂D vanishes. Hence, the Cauchy data
of w are also continuous across the boundary of D.

Since the volume potential Vk is bounded from L2(D) into H2
α(D), it is clear that w belongs

to H2
α(D). Moreover, we are now in a position where we can apply elliptic transmission regularity

results [20, Theorem 4.20] to conclude that w is even smoother than H2. These regularity results
will in turn imply the compactness of the operator T : v 7→ divw on H1

α(D). (Note that this step

13



������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

Ωρ

W0

Wj

x1 = πx1 = −π

x2 = ρ

x2 = −ρ

Figure 2: The sets Wj cover the domain D (one period of the support of the contrast q). These
sets are used in the proof of Theorem 4.7.

requires the smoothness assumptions on D and µ.) Since [20, Theorem 4.20] is formulated for a
bounded domain, we briefly mention how to extend this result to the periodic setting.

First, we extend w by periodicity to Ω′
ρ := (−3π, 3π) × (−ρ, ρ) and proceed analogously with

g1,2. Then we choose a finite open cover {Wj}Jj=1 consisting of smooth domains Wj ⊂ Ω′
ρ such

that ∂D∩Ω ⊂ ⋃J
j=1Wj . In these smooth domains, we can then apply [20, Theorem 4.20] to obtain

that
‖w‖H3(Wj) ≤ C

[
‖w‖H1

α(Ωρ) + ‖g1‖H1
α(D) + ‖g2‖H1

α(Ωρ\D)

]
.

Combining this estimate with an interior regularity result (e.g., [20, Theorem 4.18]) in a set W0

such that D ⊂ ∪J
j=0Wj (see Figure 2), we finally obtain that

‖w‖H3(D) ≤ C
[
‖w‖H1(Ωρ) + ‖g1‖H1(D) + ‖g2‖H1(Ωρ\D)

]
≤ C‖v‖H1

α(D).

The following lemma shows that the G̊arding estimates in the weighted spaces H1
α,q(D) can be

transformed into estimates in H1
α(D) if, roughly speaking, the real-valued constrast q is smooth

enough and if (∇q)/q is bounded.

Theorem 4.8. Assume that the contrast q is real-valued, that |q| ≥ q0 > 0 in D, and that√
|q| ∈ C1,1(D). Moreover, assume that D is of class C2,1.
(a) For positive q > 0 there exists a compact operator K+ on H1

α(D) such that

Re 〈v − Lk(q∇v), v〉H1
α(D) ≥ ‖v‖2H1

α(D) − Re 〈K+v, v〉H1
α(D), v ∈ H1

α(D).

(b) If q < 0 and if (27) holds, then there exists a compact operator K− on H1
α(D) such that

−Re 〈v − Lk(q∇v), v〉H1
α(D) ≥ C‖v‖2H1

α(D) − Re 〈K−v, v〉H1
α(D), v ∈ H1

α(D),

where C is the constant from (28).

Proof. We only prove case (a) here, supposing that q > q0 > 0 in D. The proof for case (b)
is analogous, essentially one needs to replace

√
q by

√
|q|. For simplicity, let us from now on

abbreviate
µ :=

√
q ∈ C1,1(D).
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Choose an arbitrary u ∈ H1
α(D) and consider v = u/µ. Our assumptions on q imply that v ∈

H1
α,q(D), since

‖v‖2H1
α,q(D) ≤ (2 + ‖1/µ‖2∞ + 2‖(∇µ)/µ‖2∞)‖u‖2H1

α(D).

In Theorem 4.4(a) (see also Remark 4.5) we showed that

Re 〈v − Lk(q∇v), v〉H1
α,q(D) ≥ ‖v‖2H1

α,q(D) − Re 〈K1v, v〉H1
α,q(D).

where K1 is a compact operator on H1
α,q(D). This implies that

Re 〈u − Lk(q∇u), u〉H1
α(D) ≥‖u‖2H1

α(D) +Re 〈K1(u/µ), u/µ〉H1
α,q(D)

+Re 〈K2u, ∇u〉L2(D) +Re 〈K3u, u〉L2(D),

where

K2u =∇
[
div
[
µVk(q∇(u/µ))− Vk(q∇u)

]]
−∇

[
∇µ · Vk(q∇(u/µ))

]
+ (∇µ)Lk(q∇(u/µ)),

and K3u =q∇(1/µ) ·
[
∇Lk(q∇(u/µ))

]
+ Lk(q∇(u/µ))/µ− Lk(q∇u).

Lemma 4.7 shows that first term in the first line of the last equation yields a compact operator from
H1

α(D) into L2(D). The boundedness of the potentials Vk from L2(D) into H2
α(D) and of Lk from

L2(D)2 into H1
α(D), and the smoothness of µ, allows to conclude that K2 : H1

α(D) → L2(D) is a
compact operator and K3 : H1

α(D) → L2(D) is a bounded operator. Hence, Lemma 4.3 implies
the existence of a compact operator K+ on H1

α(D) such that

〈K+u, v〉H1
α(D) = Re 〈K1(u/µ), v/µ〉H1

α,q(D) +Re 〈K2u,∇v〉L2(D) +Re 〈K3u, v〉L2(D)

for u, v ∈ H1
α(D), which proves the claim.

Remark 4.9. The regularity assumptions on ∂D can be lowered using regularity theory for cor-
ner domains. Here we merely use the results and assumptions of [20, Theorem 4.18] to avoid
technicalities.

5 Periodization of the Integral Equation

In this section we reformulate the volume integral equation

u = Lk(q∇u+ f) in H1
α(D) (33)

in a periodic setting and show the equivalence of the periodized equation and the original one.
The purpose of this periodization, first introduced by Vainikko [33], is that the resulting integral
operator is, roughly speaking, diagonalized by trigonometric polynomials. Fast FFT-based schemes
become available to discretize the periodized integral operator and iterative schemes can be used
to solve the corresponding operator equations. To establish convergence rates for these schemes,
it is crucial to establish G̊arding inequalities for the periodized integral operator.

For our purpose we additionally need to smoothen the kernel before periodizing. For R > 2ρ
we choose a function χ ∈ C3(R) that is 2R-periodic, that satisfies 0 ≤ χ ≤ 1 and χ(x2) = 1 for
|x2| ≤ 2ρ, and such that χ(R) vanishes up to order three, χ(j)(R) = 0 for j = 1, 2, 3 (compare
Figure 3) Let us define a smoothed kernel Ksm by

Ksm(x) = χ(x2)KR(x) for x ∈ R2, x 6=
[
2πm, 2Rn

]⊤
, m, n ∈ Z, (34)
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Figure 3: One period of the function χ is smooth, it equals one for |x2| ≤ 2ρ, and it vanishes at
±(R) up to order three. In this sketch, ρ = 1 and R = 4.

where KR is the kernel from (8). Note that Ksm is α-quasi-periodic in x1, 2R-periodic in x2, and
a smooth function on its domain of definition (that is, away from the singularities). We recall the
trigonometric orthonormal basis of L2(ΩR) from (9),

ϕj(x) = (4πR)−1/2 exp
(
i(j1 + α)x1 + i

j2π

R
x2

)
, j = (j1, j2)

⊤ ∈ Z2, (35)

and the associated Sobolev spaces Hs
per(ΩR) from (10).

Lemma 5.1. The integral operator Lper : L
2(ΩR)

2 → H1
per(ΩR) defined by Lperf = div

∫
D
Ksm(·−

y)f(y) dy is bounded.

Proof. We split the integral operator in two parts,

Lperf = div

∫

D

Ksm(· − y)f(y) dy = div

∫

D

χ(· − y2)KR(· − y)f(y) dy

= div

∫

D

KR(· − y)f(y) dy + div

∫

D

[χ(· − y2)− 1]KR(· − y)f(y) dy .

By Theorem 3.4, the integral operator with the kernel KR is bounded from L2(ΩR)
2 into H1

α(ΩR).
Further, the definition of χ shows that χ(x2 − y2) − 1 = 0 for |x2| ≤ ρ and y ∈ D. The kernel
(χ−1)KR is hence smooth in ΩR, and the corresponding integral operator is compact from L2(ΩR)

2

into H1
α(ΩR). Hence, Lper is bounded from L2(ΩR)

2 into H1
α(ΩR). The periodicity of the kernel

Ksm in the second argument finally implies that Lperf belongs to H1
per(ΩR) ⊂ H1

α(ΩR).

Let us now consider the periodized integral equation

u− Lper(q∇u) = Lper(f) in H1
per(ΩR). (36)

Theorem 5.2. (a) If f ∈ L2(ΩR)
2 is supported in D, then Lper(f) is equal to Lk(f) in Ωρ.

(b) Problem (33) is uniquely solvable in H1
α(D) for any right-hand side f ∈ L2(D)2 if and

only if (36) is uniquely solvable in H1
per(ΩR) for any right-hand side f ∈ L2(ΩR)

2 such that

supp(f) ⊂ D.
(c) If q ∈ C1,1(D) and if f = q∇ui for a smooth α-quasiperiodic function ui, then any solution

to (36) belongs to Hs
per(ΩR) for s < 3/2.

Proof. (a) For all x and y ∈ ΩR such that |x2 − y2| ≤ 2ρ it holds that Ksm(x − y) = χ(x2 −
y2)KR(x−y) = Gk,α(x−y). In particular, for x ∈ Ωρ and y ∈ D ⊂ Ωρ it holds that |x2−y2| ≤ 2ρ.
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Consequently,

(Lper(f))(x) = div

∫

Ω2ρ

Ksm(x − y)f(y) dy = div

∫

D

Ksm(x− y)f(y) dy

= div

∫

D

Gk,α(x− y)f(y) dy = (Lk(f))(x), x ∈ D.

(b) Assume that u ∈ H1
α(D) solves (33) and define ũ ∈ H1

per(ΩR) by ũ = Lper(q∇u+ f) (where
we extended f by zero outside D). Since u solves (33), and due to part (a), we find that ũ|D = u.
Hence Lper(q∇ũ+ f) = Lper(q∇u+ f) in H1

per(ΩR), which yields that

ũ = Lper(q∇ũ+ f) in H1
per(ΩR). (37)

Now, if f ∈ L2(D)2 vanishes, then uniqueness of a solution to (33) implies that u ∈ H1
α(D) vanishes,

too. Obviously, ũ = Lper(q∇u) vanishes, and hence (37) is uniquely solvable. The converse follows
directly from (a).

(c) Assume that u ∈ H1
per(ΩR) solves (36) for f = q∇ui. Part (a) implies that the restriction

of u to Ωρ solves u − Lk(q∇u) = Lk(q∇ui) in H1
α(Ωρ). Hence, Lemma 3.6 implies that u is a

weak quasiperiodic solution to div ((1+q)∇u)+k2u = −div (q∇ui) in Ωρ. Transmission regularity
results imply that u belongs to H2

α(D) ∩H2
α(Ωρ \D), and it is well-known that this implies that

u ∈ Hs
α(Ωρ) for s < 3/2 (see, e.g., [11, Section 1.2]).

Recall that we assumed that D is compactly contained in Ωρ, that is, there is ε > 0 such that
D ⊂ Ωρ−2ε Hence, the representation

u(x) = Lper(q∇(u+ ui))(x) = div

∫

D

Ksm(x− y)q(y)∇(u(y) + ui(y)) dy , x ∈ ΩR \ Ωρ−ε

shows that the restriction of u to ΩR\Ωρ−ε is a smooth quasiperiodic function, since the kernel of the
above integral operator is smooth. Consequently, a localization argument shows that u ∈ Hs

per(ΩR)
for s < 3/2.

Next we prove that the operator I − Lper(q∇·) from (36) satisfies a G̊arding inequality in
H1

per(ΩR). For negative material parameters, the result relies on the operator

R : H1
per(ΩR) → H1

per(ΩR), R(v) =

{
v − 2E(v) in ΩR \D,
−v in D,

(38)

where E : H1
α(D) → H1

α(Ω) is the extension operator that we already used in Section 4 (see also
Appendix B). Note that Rv indeed belongs to H1

per(ΩR): the jump [R(v)]∂D vanishes, and E(v)
vanishes for |x2| > R.

Theorem 5.3. Assume that
√
|q| ∈ C1,1(D), that |q| ≥ q0 > 0, and that D is of class C2,1.

(a) If q > 0, then there exists C > 0 and a compact operator K+ on H1
per(ΩR) such that

Re 〈v − Lper(q∇v), v〉H1
per(ΩR) ≥ C‖v‖2H1

per(ΩR) − Re 〈K+v, v〉H1
per(ΩR) (39)

for all v ∈ H1
per(ΩR).

(b) If q < 0 and if

infD |q|
1 + ‖E‖2

H1
α(D)→H1

α(ΩR\D)

> 1 + ‖E‖H1
α(D)→H1

α(ΩR\D), (40)
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then there exists C > 0 and a compact operator K− on H1
per(ΩR) such that

Re 〈v − Lper(q∇v), R(v)〉H1
per(ΩR) ≥ C‖v‖2H1

per(ΩR) − Re 〈K−v, v〉H1
per(ΩR) (41)

for all v ∈ H1
per(ΩR).

Remark 5.4. The idea of the proof is to split the integrals defining the inner product on the left
of (39) into the three integrals on D, Ωρ \D, and on ΩR \Ωρ. For the term on D one exploits the
G̊arding inequalities from Theorem 4.8. The terms on Ωρ \D and on ΩR \ Ωρ can be shown to be
compact and positive up to compact perturbations, respectively.

Proof. (a) Let v ∈ H1
per(ΩR). First, we split up the integrals arising from the inner product on the

left of (39) into integrals on D, on Ωρ \D, and on ΩR \Ωρ. Second, we use the G̊arding inequality
from Theorem 4.8 to find that

Re 〈v − Lper(q∇v), v〉H1
per(ΩR) ≥ C‖v‖2H1

α(D) + 〈Kv, v〉H1
α(D) + ‖v‖2

H1
α(ΩR\D)

− Re
[
〈Lper(q∇v), v〉H1

α(ΩR\Ωρ)
+ 〈Lper(q∇v), v〉H1

α(Ωρ\D)

]
. (42)

Recall that the operator K is compact on H1
α(D). Further, the evaluation of Lper(q∇·) on ΩR \Ωρ

defines a compact integral operator mapping H1
α(D) to H1

α(ΩR \Ωρ), because the (periodic) kernel
of this integral operator is smooth. (This argument requires the smooth kernel Ksm introduced
in the beginning of this section.) Unfortunately, the last term in (42) cannot be written as as a
compact sesquilinear form, and needs a detailed investigation.

For x ∈ Ωρ \D and y ∈ D the kernel Ksm(x−y) equals Gk,α(x−y), which is a smooth function
of x ∈ Ωρ \D and y ∈ D. Moreover, ∆Gk,α(x− y) + k2Gk,α(x− y) = 0 for x 6= y. Integration by
parts in Ωρ \D shows that

Lk(q∇v)(x) = div

∫

D

Gk,α(x− y)q(y)∇v(y) dy

= −
∫

D

∇yGk,α(x− y) · ∇(qv)(y) dy +

∫

D

∇yGk,α(x− y) · ∇q(y)v(y) dy

= −k2
∫

D

Gk,α(x− y)q(y)v(y) dy − Lk(v∇q)(x)

−
∫

∂D

∂Gk,α(x− y)

∂ν(y)
γint(q)(y)γ(v)(y) ds , x ∈ Ωρ \D,

where ν is as usual the exterior normal vector to D. The integral operator appearing in the last
term of the last equation is the double layer potential DL, defined by

DL(ψ) =

∫

∂D

∂Gk,α(· − y)

∂ν(y)
ψ(y) ds , in Ω \ ∂D.

It is well-known that DL defines a bounded operator from H
1/2
α (∂D) into H1

α(ΩR \ D) and into
H1

α(D) (see, e.g., [1, 31]). This implies that the jump of the double-layer potential

Tψ := [DLψ]∂D = γext(DLψ)− γint(DLψ)

from the outside of D to the inside of D is a bounded operator on H
1/2
α (∂D). It is well-known

that in our case T is even a compact operator on H1/2(∂D), since D is of class C2,1. Additionally,

the equality γext(DLψ) = −ψ/2 + Tψ holds for ψ ∈ H
1/2
α (∂D).
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We will from now on skip the trace operators to ease notation, e.g., we write DL(qv) instead
of DL(γint(q)γ(v)). Then

− 〈∇Lk(q∇v), ∇v〉L2(Ωρ\D) = 〈k2∇Vk(qv) +∇Lk(v∇q), ∇v〉L2(Ωρ\D)

+ 〈∇DL(qv), ∇v〉L2(Ωρ\D), for v ∈ H1
per(ΩR). (43)

The mapping properties of Vk shown in Lemma 3.5 and the smoothness of q imply that v 7→
k2∇Vk(v·) + ∇Lk(v∇q) is compact from H1

per(ΩR) into L2(D). To finish the proof of part (a)
we show that the last term in (43) can be written as a sum of a positive and compact term. For
simplicity, we set w = DL(qv). Then

〈∇DL(qv),∇v〉L2(Ωρ\D) =

∫

Ωρ\D
∇w · ∇v dx (44)

= k2
∫

Ωρ\D
wv dx −

∫

∂D

∂w

∂ν
v ds +

∫

Γρ

∂w

∂x2
v ds −

∫

Γ−ρ

∂w

∂x2
v ds .

The above jump relation shows that

−
∫

∂D

∂w

∂ν
v ds = 2

∫

∂D

∂w

∂ν

w

q
ds − 2

∫

∂D

∂w

∂ν

T (qv|∂D)

q
ds

= 2

∫

D

∇w · ∇w

q
dx + 2

∫

D

∆w
w

q
dx − 2

∫

∂D

∂w

∂ν

T (qv)

q
ds

= 2

∫

D

|∇w|2
q

dx + 2

∫

D

(
∇q−1 · ∇w − k2

w

q

)
w dx − 2

∫

∂D

∂w

∂ν

T (qv)

q
ds .

Combining the last computation with (44) shows that

〈
∇DL(qv|∂D), ∇v|Ωρ\D

〉
L2(Ωρ\D)

= 2

∫

D

|∇w|2
q

dx + k2
∫

Ωρ\D
wv dx

+ 2

∫

D

(
∇q · ∇w − k2

w

q

)
w dx − 2

∫

∂D

∂w

∂ν

T (qv)

q
ds +

(∫

Γρ

−
∫

Γ−ρ

)
∂w

∂x2
v ds . (45)

Using Lemma 4.3, the terms in the second and third line of the last equation can be rewritten as
〈K1v, v〉H1

per(ΩR) where K1 is a compact operator on H1
per(ΩR). The mapping v 7→

∫
D
|∇w|2/q dx

is obviously positive if q > 0. In consequence, (42) and (43) show that (39) holds.
(b) Recall that R(v) = v − 2E(v) in ΩR \D and set

λ2 := ‖E‖H1
α(D)→H1

α(ΩR\D).

Exactly as in the first part of the proof we split

〈v − Lper(q∇v), R(v)〉 = 〈v − Lper(q∇v), R(v)〉H1
α(ΩR\D) − 〈v − Lk(q∇v), v〉H1

α(D)
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and estimate that

Re 〈v − Lper(q∇v), R(v)〉 ≥C‖v‖2H1
α(D) + 〈K−v, v〉H1

α(D) + ‖v‖2
H1

α(ΩR\D)

− 2Re 〈v, E(v)〉H1
α(ΩR\D) − Re 〈Lper(q∇v), R(v)〉H1

α(ΩR\Ωρ)

− Re 〈Lper(q∇v), R(v)〉H1
α(Ωρ\D)

≥ (C − β−1λ2)‖v‖2H1
α(D) + (1− β)‖v‖2

H1
α(ΩR\D)

+ 〈K−v, v〉H1
α(D)

− Re 〈Lper(q∇v), R(v)〉H1
α(ΩR\Ωρ)

− Re 〈Lk(q∇v), R(v)〉H1
α(Ωρ\D)

where β ∈ (0, 1) and K− is a compact operator on H1
α(D). The constant C is the same as the one

appearing in Theorem 4.8(b), that is,

C − β−1λ2 =
(1 − ε) infD |q|

1 + ‖E‖2
H1

α(D)→H1
α(ΩR\D)

− 1− β−1‖E‖H1
α(D)→H1

α(ΩR\D), ε > 0, β ∈ (0, 1).

Obviously, if condition (40) holds, then one can choose ε > 0 small enough and β ∈ (0, 1) close
enough to one such that C − β−1λ2 > 0.

In part (a) we have already seen that Lper(q∇v) is compact from H1
per(ΩR) into H

1
α(ΩR \Ωρ).

To conclude the proof we need again to investigate

− 〈∇Lk(q∇v), ∇R(v)〉L2(Ωρ\D) = 〈k2∇Vk(qv) +∇Lk(v∇q), ∇R(v)〉L2(Ωρ\D)

+ 〈∇DL(qv|∂D), ∇R(v)〉L2(Ωρ\D). (46)

Again, we already know from part (a) that v 7→ k2∇Vk(qv)+∇Lk(v∇q) is compact from H1
per(ΩR)

into L2(Ωρ \ D). The third term in (46) is again treated using an integration by parts showing
that this term is positive up to compact perturbations. If we set w = DL(qv), then

〈∇DL(qv|∂D),∇R(v)〉L2(Ωρ\D) =

∫

Ωρ\D
∇w · ∇R(v) dx

= k2
∫

Ωρ\D
wR(v) dx −

∫

∂D

∂w

∂ν
R(v) ds +

∫

Γρ

∂w

∂x2
R(v) ds −

∫

Γ−ρ

∂w

∂x2
R(v) ds .

By construction, γ(R(v)) = γ(v− 2E(v)) = −γ(v). Hence, a computation analogous to (45) shows
that

−
∫

∂D

∂w

∂ν
R(v) ds =

∫

∂D

∂w

∂ν
v ds = 2

∫

D

|∇w|2
|q| dx

− 2

∫

D

(
∇q−1 · ∇w − k2

w

q

)
w dx − 2

∫

∂D

∂w

∂ν

T (qv)

q
ds (47)

where we exploited the assumption that q is negative.

6 Discretization of the Periodic Integral Equation

In this section we consider the discretization of the periodized integral equation (36) in spaces
of trigonometric polynomials. Convergence theory for this discretization is a consequence of the
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G̊arding inequalities shown in Theorem 5.3. The spectral scheme we use is similar to the collo-
cation scheme from [33]. However, for our purpose we use a Galerkin variant similar to the one
from [18]. The usual convergence theory for the collocation methods does not apply here due to
the discontinuous material parameter.

For N ∈ N we define Z2
N = {j ∈ Z2 : −N/2 < j1,2 ≤ N/2} and

TN = span{ϕj : j ∈ Z2
N},

where ϕj ∈ L2(ΩR) are the α-quasi-periodic basis functions from (35). Since {ϕj}j∈N is an orthog-
onal basis of H1

per(ΩR), the union ∪N∈NTN is dense in H1
per(ΩR). We also consider the orthogonal

projection PN from H1
per(ΩR) onto TN ,

PN (v) =
∑

j∈Z2
N

v̂(j)ϕj ,

where v̂(j) denotes as above the jth Fourier coefficient. The next proposition recalls the standard
convergence result for Galerkin discretizations of equations that satisfy a G̊arding inequality, see,
e.g. [30, Theorem 4.2.9], combined with the regularity result from Theorem 5.2(c).

Proposition 6.1. Assume that q satisfies the assumptions of Theorem 5.3 (a) or (b) and that (21)
is uniquely solvable. Denote the unique solution in H1

per(ΩR) to (36) by u. Then there is N0 ∈ N

such that the finite-dimensional problem to find uN ∈ TN such that

(a) 〈uN − Lper(q∇uN ), wN 〉H1
per(ΩR) = 〈f, wN 〉H1

per(ΩR) for all wN ∈ TN , or (48)

(b) 〈uN − Lper(q∇uN ), R(wN )〉H1
per(ΩR) = 〈f,R(wN )〉H1

per(ΩR) for all wN ∈ TN , (49)

possesses a unique solution for all N ≥ N0 and f ∈ H1
per(ΩR). Additionally, in both cases

‖uN − u‖H1
per(ΩR) ≤ C inf

wN∈TN

‖wN − u‖H1
per(ΩR) ≤ CN−s‖u‖H1+s

per (ΩR), 0 ≤ s < 1/2,

with a constant C independent of N ≥ N0.

Remark 6.2. The convergence rate increases to s+ 1− t if one measures the error in the weaker
Sobolev norms of Ht

per(ΩR), 1/2 < t < 1. This can be shown using adjoint estimates (see, e.g. [30,
Section 4.2] for the general technique). The (linear) rate saturates at t = 1/2, since the integral
operator is not bounded on Ht

per(ΩR) for t < 1/2. Hence, the L2-error generally converges to zero
at a linear rate.

If the contrast q is negative, the discretization (49) involves the isomorphism R. Interestingly,
this is not necessary for convergence of the scheme, at least not for the right hand sides f =
Lper(q∇ui) that are of physical interest.

Proposition 6.3. Assume that q satisfies the assumptions of Theorem 5.3 (a) or (b) and that (21)
is uniquely solvable. For an arbitrary right-hand side of the form f = Lper(q∇ui), where ui is a
smooth quasi-periodic incident field, we denote the unique solution in H1

per(ΩR) to (36) by u. Then

there is N0 ∈ N independent of ui such that the finite-dimensional problem to find uN ∈ TN solving

〈uN − Lper(q∇uN ), wN 〉H1
per(ΩR) = 〈f, wN 〉H1

per(ΩR) for all wN ∈ TN (50)

possesses a unique solution uN ∈ TN , and ‖uN − u‖H1
per(ΩR) ≤ CN−s‖f‖H1+s

per (ΩR), 0 ≤ s < 1/2.
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Proof. In this proof, ‖ · ‖ denotes either the norm or the operator norm on H1
per(ΩR) and 〈·, ·〉 is

the corresponding inner product.
It is obvious that the G̊arding inequality (41) implies a G̊arding inequality for the corresponding

transposed sesquilinear form. Further, the unique solvability of the Lippmann-Schwinger integral
equation (21) implies by Theorem 5.2(b) I − Lper(q∇ ·) is an isomorphism on H1

per(ΩR); by con-
struction, R is an isomorphism, too. Standard Galerkin convergence theory [30] implies that there
is N0 ∈ N such that for N ≥ N0 and any wN ∈ TN there is a unique solution zN ∈ TN to

〈uN − Lper(q∇uN ), R(zN)〉 = 〈uN − Lper(q∇uN ), wN 〉 for all uN ∈ TN . (51)

The mapping SN : wN 7→ zN is hence a well-defined linear operator on TN . The operator norms
‖SN‖ are uniformly bounded in N , because the norm of the solution operator to (51) is uniformly
bounded in N .

The mapping SN is injective: If zN = SN (wN ) = 0, then 〈uN − Lper(q∇uN ), R(zN )〉 = 0 for
all uN ∈ TN . Obviously, one solution to this equation is the trivial solution; uniqueness of solution
to (51) implies that wN = 0. Since wN 7→ SN (wN ) is injective on the finite-dimensional space TN ,
this mapping is onto. We denote its inverse by S−1

N .
Replacing wN by S−1

N zN in (51) shows that

〈uN − Lper(q∇uN ), R(zN)〉 = 〈uN − Lper(q∇uN ), S−1
N zN 〉 for all uN , zN ∈ TN .

In consequence,

〈uN − Lper(q∇uN ), R(zN )〉 = 〈(S−1
N )∗PN [uN − Lper(q∇uN )], zN〉 for all uN , zN ∈ TN .

Firstly choosing zN = (S−1
N )∗PN [uN − Lper(q∇uN )], and secondly applying the Cauchy-Schwarz

inequality yields the bound

‖(S−1
N )∗PN [uN − Lper(q∇uN )]‖ ≤ ‖R‖ ‖I − Lper(q∇ ·)‖ ‖uN‖. (52)

Hence, the operator norms of uN 7→ (S−1
N )∗PN [uN − Lper(q∇uN )] are uniformly bounded in N ≥

N0.
Since S−1

N exists on TN , solving (49) is equivalent to solving

〈vN − Lper(q∇vN ), R(SNwN )〉 = 〈f,R(SNwN )〉 for all wN ∈ TN ,

that is, by the definition of SN via (51),

〈vN − Lper(q∇vN ), wN 〉 = 〈S∗
NPNR

∗f, wN 〉 for all wN ∈ TN . (53)

R∗ and S∗
N are isomorphisms on H1

per(ΩR) and on TN , respectively, that is, the operator S∗
NPNR

∗

is onto from H1
per(ΩR) into TN . Hence, for N ≥ N0 and all f ∈ H1

per(Ω), there is uN ∈ TN such
that

〈uN − Lper(q∇uN ), wN 〉 = 〈f, wN 〉 for all wN ∈ TN . (54)

Recall that the solution vN to (53) (or, equivalently, to (49)) is uniformly bounded by ‖vN‖ ≤ C‖f‖.
The solution uN to (54) satisfies (53) with f replaced by R∗(S∗

N )−1PNf . (Recall that R2 = I,
that is R∗ = (R∗)−1.) In particular, (53) implies that

‖uN‖ ≤ C‖R∗(S∗
N )−1PNf‖. (55)

To estimate the error uN − u for the special right-hand side f = Lper(q∇ui), we estimate
dN := uN − vN (since we already have an error estimate for ‖vN −u‖ due to Theorem 6.1). Let us
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first note that for f = Lper(q∇ui) there exists g ∈ H1
per(ΩR) such that g−Lper(q∇g) = Lper(q∇ui).

Due to Theorem 5.2(c), g belongs to H1+s
per (ΩR) for all s < 1/2. Then

〈dN − Lper(q∇dN ), wN 〉 = 〈f, wN 〉H1
per(ΩR) − 〈f,RSNwN 〉

= 〈g − Lper(q∇g), wN −RSNwN 〉
(∗)
= 〈(I − Lper(q∇ ·))(g − PNg), (I −RSN )wN 〉
= 〈(I −RSN )∗(I − Lper(q∇ ·))(g − PNg), wN 〉 for all wN ∈ TN ,

where we used the Galerkin orthogonality from (51) (with uN = PNg) in (∗). Hence, dN solves
problem (54) with right-hand side f = (I − RSN )∗(I − Lper(q∇ ·))(g − PNg) and (55) yields the
estimate

‖dN‖ = ‖vN − uN‖ ≤ C‖R∗(S∗
N )−1PN (I −RSN )∗(I − Lper(q∇ ·))(g − PNg)‖

≤ ‖R∗‖‖(S∗
N)−1PN (I − Lper(q∇ ·))(g − PNg)‖+ ‖(I − Lper(q∇ ·))(g − PNg)‖.

Recall from (52) that the operator norms ‖(S∗
N)−1PN (I − Lper(q∇ ·))‖ are uniformly bounded by

‖R‖ ‖I − Lper(q∇ ·)‖. Hence

‖dN‖ ≤ C‖g − PNg‖ ≤ CN−s‖g‖H1+s
per (ΩR) ≤ CN−s‖f‖H1+s

per (ΩR).

7 Fully Discrete Formulas and Numerical Experiments

In this section we present the fully discrete versions of the Galerkin discretization of the Lippmann-
Schwinger integral equation and show some numerical examples.

Applying PN to the infinite-dimensional problem (36) we obtain the discrete problem to find
uN ∈ TN such that

uN − Lper(PN (q∇uN )) = Lper(PNf), (56)

where we already exploited that PN commutes with the convolution-like operator Lper.
Fast methods to evaluate the discretized operator in (56) exploit that the application of Lper to

a trigonometric polynomial in TN can be computed explicitly using a (α-quasi-periodic) discrete
Fourier transform FN . This transform maps point values of a trigonometric polynomial to the
Fourier coefficients of the polynomial. If we denote by a • b the componentwise multiplication of
two matrices, and if h := (2π/N, 4πR/N)⊤, then

v̂N (j) =

√
4πR

N2

∑

l∈Z2
N

vN (l • h) exp
(
− 2πi (j1 + α, j2)

⊤ · l/N
)
, j ∈ Z2

N .

This defines the transform FN mapping (vN (j • h))j∈Z2
N

to (v̂N (j))j∈Z2
N
. The inverse F−1

N is
explicitly given by

vN (j • h) = 1√
4πR

∑

l∈Z2
N

v̂N (l) exp
(
2πi (l1 + α, l2)

⊤ · j/N
)
, j ∈ Z2

N .

Both FN and its inverse are linear operators on C2
N = {(cn)n∈Z2

N
: cn ∈ C}. The restriction

operator RN,M from C2
N to C2

M , N > M , is defined by

RN,M (a) = b, b(j) = a(j) for j ∈ Z2
M .
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The extension operator EM,N from C2
M to C2

N , M < N , is

EM,N (a) = b, b(j) = a(j) for j ∈ Z2
M and b(j) = 0 else.

Lemma 7.1. The Fourier coefficients of q∂ℓuN , ℓ = 1, 2, are given by

(q̂∂ℓuN (j))j∈Z2
N
= R3N,NF3N

[
F−1

3N

(
E2N,3N(q̂2N (j))j∈Z2

N

)
• F−1

3N

(
EN,3N(wℓ(j)ûN (j))j∈Z2

N

)]

where w1(j) = i(j1 + α) and w2(j) = ij2π/R for j ∈ Z2.

Proof. For uN ∈ TN , j ∈ Z2, and ℓ = 1, 2, we compute that

q̂∂ℓuN (j) =

∫

ΩR

q∂ℓuNϕj dx =
∑

m∈Z2
N

∂̂ℓuN (m)

∫

ΩR

qϕjϕm dx

= (4πR)−1
∑

m∈Z2
N

∂̂ℓuN (m)

∫

ΩR

q(x)e−i[(j1−m1)x1+(j2−m2)x2π/R] dx

= (4πR)−1/2
∑

m∈Z2
N

∂̂ℓuN (m)q̂(j −m).

(57)

If j ∈ Z2
N , then the coefficient q̂∂ℓuN (j) merely depends on q̂(m) for m ∈ Z2

2N . Hence, q̂∂ℓuN (j) =
̂q2N∂ℓuN(j) for j ∈ Z2

N . Obviously, q2N∂ℓuN belongs to T3N . Hence, the Fourier coefficients of
q2N∂ℓuN are given by F3N applied to the grid values of this function at j • h, j ∈ Z2

3N . The grid

values of ∂̂ℓuN are given by F−1
3N (EN,3N(∂̂ℓuN (j)j∈Z2

N
), and the grid values of q2N can be computed

analogously. Finally, taking a partial derivative with respect to x1 or x2 of u yields a multiplication
of the jth Fourier coefficient û(j) by i(j1 + α) and ij2π/R, respectively.

In Lemma 3.2 we computed the Fourier coefficients of the kernel KR. The kernel Ksm

used to define the periodized potential Lper is the product of KR with the smooth func-

tion χ (see (34)). Hence, the Fourier coefficients of Ksm is a convolution of the K̂R(j) with

χ̂(j2) = (4πR)−1/2
∫ R

−R
exp(−ij2πx2/R)χ(x2) dx2 ,

K̂sm(j) =
1

(4πR)1/2

∑

m∈Z2
N

K̂R(j1,m2)χ̂(j2 −m2), j ∈ Z2.

The latter formula can be seen by a computation similar to (57). Note that χ is a smooth function,
which means that the Fourier coefficients χ̂ in the last formula are rapidly decreasing, that is, the
truncation the last series converges rapidly to the exact value. The convolution structure of Lper

finally shows that

̂(Lperf)(j) = (4πR)1/2 K̂sm(j)
[
i(j1 + α)f̂1(j) +

ij2π

R
f̂2(j)

]
for f = (f1, f2)

⊤ ∈ L2(ΩR)
2. (58)

The finite-dimensional operator uN 7→ Lper(PN (q∇uN )) can now be evaluated by combining
the formula of Lemma (7.1) with (58). The linear system (56) can then be solved using iterative
methods (as GMRES, for instance). Whenever one uses iterative techniques, one would of course
like to precondition the linear system. The usual multi-grid preconditioning technique for integral
equations of the second kind (see, e.g., [12] or [29]) does not apply here, since the integral operator is
not compact. For the numerical experiments presented below, we simply used an unpreconditioned
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Figure 4: Relative error of the approximated solution and the reference solution measured in Hs
per-

norm for scattering from a strip. Circles, kites, triangles correspond to s = 1, s = 0.5 and s = 0,
respectively. The continuous line and the dotted lines indicate the convergence order 0.5 and 1,
respectively. (a) The contrast q equals 2: relative error versus N = 2n, n = 6, ..., 10. (b) The
contrast q equals −2.5 + 5i: relative error versus N = 2n, n = 6, ..., 10.

GMRES algorithm. All the computations in the two following experiments were done on a machine
with an Intel Core 2 Quad 2.66 GHz processor and 8 GB memory using MATLAB.

In the first numerical experiment we confirm the theoretical convergence statements from
Propositions 6.1 and 6.3. Recall that we aim to compute the scattered field for an incident field
ui(x1, x2) = exp(ik(cos(θ)x1 − sin(θ)x2)) with incident angle θ, where we choose here k = π/2 and
θ = π/2. We approximate the solution in TN where N = 2n for n = 6, ..., 10. For this example,
D = (−π, π) × (−1, 1) is a strip and we choose ΩR = (−π, π) × (−3, 3). We consider two cases:
(a) the contrast q is equal to 2 in D and (b) the contrast q is equal to −2.5 + 5i in D. For this
setting one can explicitly compute the scattered field. The restarted GMRES iteration (the restart
parameter equals 20) is stopped when the relative residual is less than 10−5. In the Figure 4 we
show the relative error between the numerical and the analytical solution in the norms Hs

per(ΩR)
where s = 0, 0.5, 1. The relative error measured in the norm H1

per(ΩR) fits quite well to the theo-
retical statement in Proposition 6.1. Furthermore, if one measures the relative error in the norm
Hs

per(ΩR) for s = 0 and s = 0.5 the experiment confirms the statement of Remark 6.2. To give an
impression about computation times, the results in Figure 4(a) took about 0.5, 3.6, 7.5, 29.6 and
105.2 seconds for N = 2n, n = 6, . . . , 10.

In the second numerical experiment, we consider a more complicated periodic structure, where
kite-shaped inclusions are periodically aligned. The boundary of the inclusion is parametrized by
(z1(t), z2(t)) = (1.5 cos(t) + cos(2t) − 0.65, sin(t)) where t ∈ [0, 2π]. Assume that the contrast q
equals a constant, say q0, inside the structure. Its Fourier coefficients can be approximated using
Green’s formula as follows,

q̂(j) =
1√
4πR

∫

ΩR

q(x)e−ij1x1−i
j2π

R
x2 dx =

q0√
4πR

∫

D

e−ij1x1−i
j2π

R
x2 dx

=
iRq0

j2π
√
4πR

∫

∂D

ν2(x)e
−ij1x1−i

j2π

R x2 ds

=
iRq0

j2π
√
4πR

∫ 2π

0

e−ij1z1(t)−i
j2π
R sin(t)(1.5 sin(t) + 2 sin(2t)) dt , j2 6= 0.

Using, e.g., the composite Simpson’s rule, the last integral can be approximated with high order
convergence.

Recall that the numbers û±j from (4) were defined to be the Rayleigh coefficients of the scattered
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Figure 5: Scattering from periodic kite-shaped structure. (a) Reflected and transmitted energy
curves versus the angles θ of the incident field ui. (b) The error curves |1 − Etra(θ)− Eref(θ)| for
different discretization parameters N versus the angles θ of the incident field ui.

field. For the incident field, we define similar coefficients by ûij =
∫ π

−π u
i(x1,−ρ) exp(−iαjx1) dx1

for j ∈ Z. Then Green’s formula applied to (2) and the Rayleigh expansion condition show that

∑

j:k2>β2
j

βj(|û+j |2 + |û−j + ûij |2) = β0. (59)

For an incident wave of direction (cos(θ),− sin(θ))⊤, the sums Etra(θ) :=
∑

j:k2>β2
j
βj(|û−j +

ûij|2)/β0 and Eref(θ) :=
∑

j:k2>β2
j
βj |û+j |2/β0 correspond to transmitted and reflected wave ener-

gies. In this experiment, we use θ 7→ |1−Etra(θ)−Eref(θ)| as an error indicator for the numerical
solution. The wave number k equals π; further, ρ = 1 and R = 3. The Rayleigh coefficients of the
fields are measured on the line x2 = ±3/2. For Figure 5(a) the scattered field is approximated in
TN where N = 26. The contrast q equals 5 in D and the tolerance for the GMRES iteration is 10−5.
The computation time for solving for one fixed incident angle θ is about 0.8 seconds. In Figure 5(b)
we check the energy conservation error for different N . The contrast q for this experiment equals
2 in D and the tolerance for the GMRES iteration is 10−10. As Figure 5(b) shows, the error of the
computed Rayleigh coefficients corresponding to propagating modes converges super-algebraically.

A Smoothness of the Difference of Periodic Green’s Func-

tions

Lemma A.1. Assume that k2 6= α2
n for all n ∈ Z. Then the difference Gk,α −Gi,α can be written

as
Gk,α(x)−Gi,α(x) = α(|x|2) + C|x|2 ln(|x|)β(|x|2)

where α and β are analytic functions and C is a constant.

Proof. Recall that the Bessel function

Jn(t) =

∞∑

p=0

(−1)p

p!(n+ p)!

(
t

2

)n+2p

n = 0, 1, 2, ...
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is an analytic function for all t ∈ R. It is moreover well-known that the Neumann function

Yn(t) =
2

π

{
ln
t

2
+ C

}
Jn(t)−

1

π

n−1∑

p=0

(n− 1− p)!

p!

(
2

t

)n−2p

− 1

π

∞∑

p=0

(−1)p

p!(n+ p)!

(
t

2

)n+2p

{ψ(n+ p) + ψ(p)}

is analytic for t ∈ (0,∞). (Here ψ(0) := 0, ψ(p) :=
∑p

m=1
1
m for p = 1, 2, . . . , and C is Euler’s

constant.) If n = 0 the finite sum in the expression of Yn is set equal to zero. From [15] we
know that the Green’s function Gk,α can be split as Gk,α(x) =

i
4H

1
0 (k|x|) + Ψk(x), where Ψk is an

analytic function. The same decomposition holds for Gi,α, with a different analytic function Ψi.
Hence, it only remains to consider the difference H1

0 (k|x|)−H1
0 (i|x|). To this end, we note that

J0(k|x|) − J0(i|x|) =

∞∑

p=0

(−1)p

(p!)24p

[
(k|x|)2p − (i|x|)2p

]

= |x|2
∞∑

p=0

(−1)p+1

[(p+ 1)!]24p+1

[
(k)2p+2 − (i)2p+2

]
(|x|2)p. (60)

Use the ratio test one can check that the power series in (60) converges to some analytic function
of the variable |x|2 in R. Moreover, due to the expression of Y0 we can see that

Y0(k|x|)− Y0(i|x|) =
2

π
ln(|x|)

[
J0(k|x|)− J0(i|x|)

]
+Ψ1(|x|2), (61)

where Ψ1 is an analytic function. Furthermore, we have

Gk,α(x) −Gi,α(x) =
i

2

[
H1

0 (k|x|)−H1
0 (i|x|)

]

= J0(k|x|) − J0(i|x|) + i
[
Y0(k|x|)− Y0(i|x|)

]
.

Substitution of (60) and (61) into the last equation finishes the proof.

Corollary A.2. Assume that k2 6= α2
n for all n ∈ Z. Then the difference Lk − Li is compact on

H1
α(D).

B Periodic Extension Operators

In this section, we exemplary show how to construct a periodic extension operator

E : H1
α(D) → H1

α(Ω), E(u)|D = u, E(u)|Ω\ΩR
= 0,

that is used in, e.g., Theorems 4.4 and 5.3. We will only construct E for the case that the boundary
of D = {(x1, x2)⊤ : x1 ∈ (−π, π), ζ−(x1) < x2 < ζ+(x1)} is given by two 2π-periodic Lipschitz
continuous functions ζ± : R → (−ρ, ρ) such that ζ− < −2ρ/3, ζ+ > 2ρ/3, and

|ζ±(x1)− ζ±(x
′
1)| ≤M |x1 − x′1|, x1, x

′
1 ∈ R.

The general case can be tackled using local patches as in [20, Appendix A].
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For u ∈ H1
α(D), we define

v(x1, x2) =





u(x1, 2ζ+(x1)− x2) if ζ+(x1) < x2 < 2ζ+(x1)− ζ−(x1),

u(x1, x2) if ζ−(x1) < x2 < ζ+(x1),

u(x1, 2ζ−(x1)− x2) if 2ζ−(x1)− ζ+(x1) < x2 < ζ−(x1).

Note that 2ζ+(x1)−ζ−(x1) > 2ρ and that 2ζ−(x1)−ζ+(x1) < −2ρ. Straightforward computations
show that

‖v‖H1(Ω2ρ) ≤ max(
√
3, 2

√
2M)‖u‖H1

α(D),

and the definition of v also implies that v is a quasi-periodic function in H1
α(Ω2ρ).

To define the periodic extension operator, we use a smooth cut-off function χ : R → R, that
satisfies 0 ≤ χ ≤ 1, χ(x2) = 1 for |x2| ≤ ρ, and χ(R) = 0 for |x2| ≥ R. Then we set

E(v) = w, w(x) =

{
χ(x2)u(x) for x ∈ ΩR,

0 else.
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