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Abstract

In this paper, we investigate the semismooth Newton and quasi-Newton methods for the
minimization problem in the weighted `1−regularization of nonlinear inverse problems. We
propose the conditions for obtaining the convergence of two methods. The semismooth Newton
method is proven to locally converge with superlinear rate and the semismooth quasi-Newton
method is proven to locally converge at least with linear rate. Two methods are presented as
active set methods as well.

For using the semismooth quasi-Newton method in practice, we propose two specific cases.
The first one returns to a gradient-type method with Barzilai-Borwein rule for step-sizes.
The second one based on Broyden’s method is proven to converge and its convergence rate is
superlinear in finite dimensional spaces. Finally, the efficiency of the methods are illustrated
in a parameter identification problem in elliptic equations.

Keywords : Sparsity Regularization, Nonlinear Inverse Problems, Semismooth Newton Method,
Semismooth Quasi-Newton Method.

1 Introduction

In this work, we consider the minimization problem

min
u∈H

F (u) +
∑
k∈Λ

ωk|〈u, ϕk〉|, (1)

where H is a Hilbert space, F : H → R is a smooth functional but not necessary convex, {ϕk}k∈Λ

is an orthonormal basis of H and {ωk} is a positive sequence such that ωk > ωmin > 0 for all
k ∈ Λ . For simplicity, we here assume that {ϕk}k∈Λ is an orthonormal basis of H, but by standard
arguments, the results in this paper are still valid when {ϕk}k∈Λ is an basis or frame of H, see,
e.g. [29].

Such a problem arises from sparsity regularization for the operator equation

K(u) = f, (2)

where K : H1 → H2 is an ill-posed, nonlinear operator between Hilbert spaces H1 and H2, and
only noisy data fδ with

‖f − fδ‖H2 6 δ (3)
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are available.
The sparsity regularization method applying to equations (2) - (3) leads to considering the

minimization problem (see, e.g. [11, 15])

min
u∈H1

1
2
‖K(u)− fδ‖2H2

+ α
∑
k∈Λ

ωk|〈u, ϕk〉|, (4)

or in the general form
min
u∈H1

F
(
K(u), fδ

)
+ α

∑
k∈Λ

ωk|〈u, ϕk〉|, (5)

where {ωk} is a positive sequence such that ωk > ωmin > 0 for all k ∈ Λ and {ϕk} is an orthonormal
basis (or frame) of the Hilbert space H1; F

(
K(u), fδ

)
is a discrepancy functional measuring the

difference between K(u) and fδ. It is obvious that problems (4) and (5) are specific cases of problem
(1).

Sparsity regularization has been analyzed for linear and nonlinear settings over the last years
[11, 24, 15]. Numerical algorithms for computing minimizers of (4) have been proposed in [11, 6, 35]
for linear inverse problems and in [4, 29] for nonlinear inverse problems. Most of them are known
to have a linear convergence rate in theory and to be quite slow in practice, especially for nonlinear
inverse problems.

Recently, a gradient descent method and its two accelerated algorithms have proposed for
problems of type (1) in [25]. Note that the gradient descent method is similar to the algorithms
in [11, 6, 35, 4], but it has been speeded up by selecting stepsizes. However, the method is still
slow. Moreover, its two accelerated algorithms are only proven to converge for convex minimization
problems.

The motivation for the present paper originates in the results of R. Griesse and D. A. Lorenz
[16]. There, they have applied the semismooth Newton method for problem (4) with a linear
operator K. They have proved that the convergence rate of the method is superlinear. Therefore,
it is a fast method and by our best knowledge, it is the best convergence rate in all algorithms
proposed for problem (4) until now.

In this paper, we first extend the semismooth Newton method in [16] for problem (1) with a
general functional F ( can be non-convex), i.e. problem (1) includes regularization of nonlinear,
ill-posed problem (2). Under certain conditions of F , the method is proved to locally converge with
superlinear rate. Although the method converges very fast, its disadvantage is to have to compute
the second derivative of F in each iterate. This is a hard work for nonlinear inverse problems.
Therefore, the applicability of the method is restricted.

To overcome this shortcoming, we investigate the so-called semismooth quasi-Newton method.
Under different conditions, the method is proved to converge with linear rate. Two specific cases
of the method, which can be applied in practice, are proposed as well. The first one returns to
a gradient-type method with Barzilai-Borwein rule for step-sizes, but it is a little different from
gradient-type methods in [25, 11, 6, 35, 4]. The second one based on Broyden’s method is proven
to locally converge with linear rate. Furthermore, it locally converge with superlinear rate in finite
dimensional spaces.

The remainder of the paper is organized as follows. In Section 2, we consider the optimality
condition equation of problem (1) and prove the semismooth property of the operator in the equa-
tion. Section 3 is devoted to present the semismooth Newton method and examine its convergence.
The semismooth quasi-Newton method is analyzed in Section 4. In Section 5, we propose two spe-
cific cases of the semismooth quasi-Newton method. After that the methods are represented as
active set methods in Section 6. Finally, we illustrate the efficiency of the methods in a numerical
example in Section 7.
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2 Auxiliary results

In this section, we are going to show that the optimality necessary condition of problem (1)
results in an operator equation in which the operator is not Gâteaux differentiable, but Newton
differentiability. To this end, we first introduce the so-called soft shrinkage operator.

Definition 2.1 Let w = {ωk}k∈Λ with ωk > ωmin > 0 and {ϕk} is an orthonormal basis of H.
The soft shrinkage operator Sw : H → H is defined by

Sw(u) :=
∑
k∈Λ

Sωk(uk)ϕk, (6)

where uk := 〈u, ϕk〉 and Sωk(uk) := sgn(uk) max{0, |uk| − ωk}.

Note that because u ∈ H, {uk} converges to zero. Therefore, the range of Sw is H0 = {v ∈ H :
vk = 0 for almost every k}. Using this operator, the optimality condition of problem (1) is given
explicitly in the lollowing lemma.

Lemma 2.1 Let u is a minimizer of problem (1). Assume that F is Fréchet differentiable at u.
Then, the minimizer u satisfies

u = Sβw
(
u− βF ′(u)

)
for any fixed β > 0.

Additionally, if F is convex then this is also the sufficient condition.

Proof. Denote Φ(u) =
∑
k∈Λ ωk|〈u, ϕk〉|. The necessary condition of optimality is

−F ′(u) ∈ ∂Φ(u).

Multiplying with β > 0, adding u to both sides and inverting (I + β∂Φ) gives

u = (I + β∂Φ)−1
(
u− βF ′(u)

)
(note that (I + β∂Φ)−1 exists and is single-valued, see [16]). A straightforward calculation shows
that

(I + β∂Φ)−1 = Sβω.

From Lemma 2.1, the optimal condition equation of problem (1) is

D(u) := u− Sβw(u− βF ′(u)) = 0, (7)

for any fixed β > 0. Now, instead of solving problem (1), we find solutions of equation (7). Note
that the function D(·) is not Gâteaux differentiable, but it is Newton (slantly) differentiable as
shown below. Therefore, the semismooth Newton and quasi-Newton methods might be applied.
For details of the slant differentiability and the semismooth Newton and quasi-Newton methods,
we refer to [9, 18, 33] and references therein. Here, for the convenience, we give the definition of
the Newton differentiability.

Definition 2.2 Let X and Y be Banach spaces and U ⊂ X be an open subset. A mapping
ψ : U → Y is called to be Newton (or slantly) differentiable at u ∈ U if there exists a family of
mappings χ : U → L(X,Y ) such that

lim
h→0

‖ψ(u+ h)− ψ(u)− χ(u+ h)h‖Y
‖h‖X

= 0. (8)

The function χ is called a generalized derivative (or a slanting function) of ψ at u.
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Remark 2.1 Note that if ψ is Newton differentiable at u, then it might have many generalized
derivatives and the Fréchet differentiability of ψ implies its Newton differentiability.

Using this definition, we prove that the function D defined by (7) is Newton differentiable. To
this end, for each u ∈ H, the operator G(u) : H → H is defined by

(
G(u)v

)
k

=

{
vk for |uk| > ωk

0 for |uk| 6 ωk
, (9)

where uk = 〈u, ϕk〉 and vk = 〈v, ϕk〉.
It is easy to show that G(u)(·) is a continuous linear operator with ‖G(u)‖ 6 1. The following

lemma will show that G is a generalized derivative of Sw at u.

Lemma 2.2 Let Sw be defined by (6). Then, Sw is Newton differentiable and G(u) given by (9)
is a generalized derivative of Sw at u.

Proof. See the proof in [16, Proposition 3.3].

Remark 2.2 In matrix notation, we can express the derivative G(u) as

G(u) =
(
IA 0
0 0

)
,

where A = {k ∈ Λ : |uk| > ωk}.

To calculate a generalized derivative of D in (7), we first prove the chain rule for the generalized
derivative and introduce active and inactive sets.

Lemma 2.3 Let J : U ⊂ H → H be Fréchet differentiable with Lipschitz continuous derivative in
a neighborhood of u ∈ U (U is an open set) and ψ : H → H be Newton differentiable at J(u) with
a slanting function χ. Furthermore, let ‖χ(u)‖ be uniformly bounded. Then, T (u) = ψ(J(u)) is
Newton differentiable at u with a slanting function H(u) = χ(J(u))J ′(u).

Proof. Since J is Fréchet differentiable at u, it holds

J(u+ h) = J(u) + J ′(u)h+ r(h)

and since J ′ is Lipschitz continuous (with a Lipschitz constant L), it holds that the remainder r
fulfills the inequality ‖r(h)‖ ≤ L/2‖h‖2. We denote k(h) = J ′(u)h+ r(h) and estimate

‖T (u+ h)− T (u)−H(u+ h)h‖
= ‖ψ(J(u+ h))− ψ(J(u))− χ(J(u+ h))J ′(u+ h)h‖
= ‖ψ(J(u) + k(h))− ψ(J(u))− χ(J(u) + k(h))J ′(u+ h)h‖
≤ ‖ψ(J(u) + k(h))− ψ(J(u))− χ(J(u) + k(h))k(h)‖

+ ‖χ(J(u) + k(h))(J ′(u+ h)h− k(h))‖.

The last term is further estimated as

‖χ(J(u) + k(h))(J ′(u+ h)h− k(h))‖
= ‖χ(J(u) + k(h))(J ′(u+ h)h− J ′(u)h− r(h))‖
≤ ‖χ(J(u) + k(h))‖ (‖J ′(u+ h)− J ′(u)‖ ‖h‖+ ‖r(h)‖)
≤ ‖χ(J(u) + k(h))‖ (L+ L/2)‖h‖2.
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Putting the above estimates together, we obtain

‖T (u+ h)− T (u)−H(u+ h)h‖
‖h‖

≤ ‖ψ(J(u) + k(h))− ψ(J(u))− χ(J(u) + k(h))k(h)‖
‖k(h)‖

‖k(h)‖
‖h‖

+ ‖χ(J(u) + k(h))‖ (L+ L/2)‖h‖.

Now the claim follows since ‖k(h)‖/‖h‖ as well as ‖χ(J(u) + k(h))‖ is bounded for ‖h‖ → 0.

Definition 2.3 For u ∈ H, the active set A(u) and the inactive set I(u) are defined by

A(u) = {k ∈ Λ : |u− βF ′(u)|k > βωk},
I(u) = {k ∈ Λ : |u− βF ′(u)|k 6 βωk}.

With this notation, we are now in a position to formulate a generalized derivative of D. Note
that for any u ∈ H, the active set A(u) is always finite, since u−βF ′(u) ∈ H and thus |(u−βF ′(u))k|
converges to zero as k tends to infinity.

Theorem 2.1 Let F be twice Fréchet differentiable in U (U is a open set) and F ′′ is Lipschitz
continuous in a neighborhood of u ∈ U . Then, function D defined by (7) is Newton differentiable
at u and a generalized derivative of D at u is given by

D′(u) = I −G(u− βF ′(u))(I − βF ′′(u)).

Furthermore, denote the active and inactive sets at u by A and I as in Definition 2.3 and represent
the operator F ′′(u) as

F ′′(u) =
(
MAA MAI
MIA MII

)
.

Then, the generalized derivative of D at u is rewritten by

D′(u) =
(

0 0
0 II

)
+
(
IA 0
0 0

)
(βF ′′(u)) =

(
βMAA βMAI

0 II

)
. (10)

Proof. The theorem follows from Lemma 2.3 with J(u) = u− βF ′(u).

3 Semismooth Newton Method (SSN)

In this section, we present the semismooth Newton method for equation (7) and propose the
sufficient conditions for obtaining the local convergence of the method. Note that the method
has been considered by many authors, for example, [9, 18, 33]. Recently, it has been applied to
problem (1) for F (u) = 1

2‖Ku− f
δ‖2 with a linear operator K [16]. Here, the method is analyzed

for problem (1) in a general setting.
As discussed in the previous section, instead of solving problem (1) we solve equation (7). The

semismooth Newton method for the equation is the following iteration

un+1 = un −D′(un)−1D(un). (11)

In each iteration, we denote the active set and the inactive set by

An = {k ∈ Λ : |un − βF ′(un)|k > βωk}, In = {k ∈ Λ : |un − βF ′(un)|k 6 βωk}.
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Then by Theorem 2.1, we have

un+1 = un −
(

1
βM

−1
AnAn −M−1

AnAnMAnIn

0 IIn

)(
un − Sβw(un − βF ′(un))

)
= un −

(
1
βM

−1
AnAn −M−1

AnAnMAnIn

0 IIn

)(
β[F ′(un)± w]

∣∣
An

unIn

)
=
(
unAn −M

−1
AnAn

(
[F ′(un)± w]

∣∣
An −MAnInu

n
In
)

0

)
. (12)

Here, we have implicitly assumed that M−1
AnAn exists. The sign of w depends on the sign of

un − βF ′(un). Hence, instead of calculating the Newton update, we can set un+1
In = 0, then solve

the equation MAnAnδuAn = [F ′(un)± w]
∣∣
An −MAnInu

n
In and compute un+1

An = unAn − δuAn .
In the remainder of the section, we consider the local convergence of the semismooth Newton

method. To this end, we need some assumptions on F and the existence of solution of equation
(7). We collect them in Assumption 3.1.

Assumption 3.1 We assume that

1) Equation (7) has a solution u∗ ∈ U, where U is an open set.

2) F is twice Fréchet differentiable. Both F ′ and F ′′ are Lipschitz continuous in U.

3) For each finite index set A ⊂ Λ and I = Λ\A, we represent F ′′(u) by

F ′′(u) =
(
MAA MAI
MIA MII

)
.

Then, there exists ρ > 0 such that M−1
AA exists and uniformly bounded on Bρ(u∗) ⊂ U.

Remark 3.1 The reasons for requiring Assumption 3.1 are as follows.

1. Since we are going to solve equation (7), Condition 1) is clear to be fulfilled.

2. The Lipschitz continuity of F ′′ is required so that we can apply Theorem 2.1.

3. The Lipschitz continuity of F ′ and Condition 3) are needed for the existence and uniformly
boundedness of D′(un)−1 in iterations (11) or (12), see Theorem 3.1 below.

The following examples show that Assumption 3.1 is satisfied in some situations.

Example 3.1 We consider the Tikhonov functionals in linear inverse problems, i.e, F (u) =
‖Ku − fδ‖2 with linear operators K. It is easy to check condition 1) and 2) of Assumption 3.1.
Furthermore, if K satisfies the finite basis injectivity property (FBI) [5], the functional F satisfies
the condition 3) of Assumption 3.1, see [16, Remark 3.15].

Example 3.2 Let F be twice Fréchet differentiable; F ′, F ′′ Lipschitz in a neighborhood of a solu-
tion u∗ and F ′′ be the operator such that

τ1‖h‖2 6 〈F ′′(u)h, h〉 6 τ2‖h‖2, 0 < τ1, τ2 <∞

for all u in a neighborhood of u∗. Then, F satisfies the properties 2) and 3).
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With Assumption 3.1, we shall show that the semismooth Newton method locally converges
and its convergence rate is supperlinear. To this end, following the outline of [16], we need some
auxiliary results in the following lemmas.

Lemma 3.1 If F ′ is Lipschitz continuous with the Lipschitz constant L in a neighborhood of u∗

then there exist k0 ∈ Λ and ρ > 0 such that the condition ‖u− u∗‖ < ρ implies the inclusion

A(u) ⊂ [1, k0].

Moreover, k0 and ρ depend on β, u∗, L and ωmin.

Proof. The triangle inequality implies

|uk − βF ′(u)k| 6 |u∗k − βF ′(u∗)k|+ |uk − u∗k − β(F ′(u)k − F ′(u∗)k)|. (13)

The first term converges to zero as k tends to infinity because u∗ and F ′(u∗) are in H. In particular,
there exists k0, depending only on u∗ and β, such that

|u∗k − βF ′(u∗)k| < βωmin/2 for all k > k0. (14)

The second term can be estimated as follows

|uk − u∗k − β(F ′(u)k − F ′(u∗)k)| 6 |uk − u∗k|+ β|F ′(u)k − F ′(u∗)k)|
6 (1 + βL)‖u− u∗‖,

where L is the Lipschitz constant of F ′. Thus there exists ρ > 0 depending only the named
quantities such that

|uk − u∗k − β(F ′(u)k − F ′(u∗)k)| 6 βωmin/2 for all k ∈ Λ. (15)

The proof of the lemma follows from (13)-(15).

Lemma 3.2 If F ′′(u) =
(
MAA MAI
MIA MII

)
and MAA is injective, then D′(u) : H → H is bounded

invertible and
‖D′(u)−1‖ 6 ‖M−1

AA‖
( 1
β

+ ‖MAI‖
)

+ 1,

where A and I are the active and inactive sets at u.

Proof. Let r ∈ H we consider the equation D′(u)δu = r, i.e. the equation(
βMAA βMAI

0 II

)(
δuA
δuI

)
=
(
rA
rI

)
.

This equation is equivalent to δuI = rI and

βMAAδuA = rA − βMAIrI. (16)

On the other hand, the active set A is finite and thus MAA is an injective operator on a finite
dimensional space. Therefore, it is also surjective. We conclude that (16) has a unique solution
and thus D′(u)−1 exists.
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On the other hand, we have the estimation

‖D′(u)−1r‖ =
∥∥∥( 1

βM
−1
AA M−1

AAMAI
0 II

)(
rA
rI

)∥∥∥
6

1
β
‖M−1

AA‖‖rA‖+ ‖M−1
AA‖‖MAI‖‖rI‖+ ‖rI‖

6
( 1
β
‖M−1

AA‖+ ‖M−1
AA‖‖MAI‖+ 1

)
‖r‖.

We are now in a position to consider the local convergence of the semismooth Newton method.

Theorem 3.1 Assume that Assumption 3.1 holds. Then, there exists a radius r > 0 such that the
inequality ‖u0−u∗‖ < r implies that all sequence {un} defined by (11) satisfies ‖un−u∗‖ < r, and
un → u∗ superlinearly.

Proof. Let ρ > 0 be a number such that Assumption 3.1 and Lemma 3.1 are satisfied in Bρ(u∗).
By Lemma 3.1, the active set satisfies A(u) ⊂ [0, k0]. We shall show that D′−1(u) depends only on
k0. Indeed, we define

c(k0) = max
∅6=A⊂[0,k0]

sup
u∈Bρ(u∗)

‖M−1
AA‖ > 0.

Note that, by Assumption 3.1, for every A ⊂ [0, k0],A 6= ∅, supu∈Bρ(u∗) ‖M−1
AA‖ is finite, hence

c(k0) is the maximum of finitely many positive numbers. On the other hand, by Assumption 3.1
(the Lipschitz continuity implies the uniformly boundedness) ‖MAI‖ 6 ‖F ′′(u)‖ 6 τ for all choices
of A and I with τ is a positive constant.

From Lemma 3.2, it follows that

‖D−1(u)‖ 6 c(k0)(
1
β

+ τ) + 1.

Therefore, the inverse of the generalized derivative D−1(u) is uniformly bounded in Bρ(u∗). The
result is then a standard conclusion of generalized Newton methods, see [9, Remark 2.7] or [18,
Theorem 1.1].

Remark 3.2 Theorem 3.1 shows that the semismooth Newton method for solving (7) locally con-
verges with superlinear rate. Thus, it is a fast algorithm. However, its disadvantage is to have to
compute the second derivative of F, which is often difficult in practical problems. This restricts
the applicability of the method. Note that for smooth operator equations, the quasi-Newton method
is good candidates instead of the Newton method [28, 31, 19, 26]. The next section will general-
ize the quasi-Newton method for the nonsmooth equation (7), which will be called the semismooth
quasi-Newton method.

4 Semismooth quasi-Newton Method (SSQN)

In the semismooth Newton method, the computation of the second derivative F ′′(u) is a hard
work. Therefore, one often computes its approximations. We denote C(u) by an approximation of
F ′′(u). Then, D′(u) is approximated by

D1(u) := I −G(u− βF ′(u))[I − βC(u)].
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In this section, we consider the following semismooth quasi-Newton method

un+1 = un −D1(un)−1D(un). (17)

It is clear that if C(un) = F ′′(un), then the semismooth quasi-Newton method becomes the
semismooth Newton method (11). Similar to the semismooth Newton method, if in each iteration
we split the operator C(un) as

C(un) =
(
MAnAn MAnIn

MInAn MInIn

)
,

then the semismooth quasi-Newton method can be rewritten by

un+1 =
(
unAn −M

−1
AnAn

(
[F ′(un)± w]

∣∣
An −MAnInu

n
In
)

0

)
. (18)

In the remainder of this section, we will consider the local linear convergence of the semismooth
quasi-Newton method (17) or (18). The following theorems will prove that the semismooth quasi-
Newton method converges with linear rate under some conditions on both operator F and C.
These results and their proofs follows the ideas of Sun and Han in [32]. There, the authors have
investigated the Newton and quasi-Newton methods for a class of nonsmooth equations in finite
dimensional spaces.

Theorem 4.1 Let F be twice Fréchet differentiable with Lipschitzian F ′ and u∗ ∈ U a solution
of (7) (U is an open set). Let C(u) be an approximation of F ′′(u) in which C(u)−1 exists, and
both C(u) and C(u)−1 are uniformly bounded in a small enough neighborhood of u∗. Furthermore,
suppose that there exist positive constants ε,∆ such that if u0 ∈ U, ‖u0 − u∗‖ 6 ε and

‖C(un)− F ′′(un)‖ 6 ∆,

then the sequence of points generated by (17) is well defined and converges linearly to u∗ in a
neighborhood of u∗.

Proof. By the hypothesis, we assume that ‖C(u)‖ 6 τ, ‖C−1(u)‖ 6 γ for u ∈ Bρ(u∗) ⊂ U. Define
θ = γ( 1

β + τ) + 1. Proving as in Lemmas 3.2 and Theorem 3.1 for D1, we get D−1
1 (u) 6 θ for

u ∈ Bρ(u∗). Choose ∆ > 0 such that

(β + 1)θ∆ < 1. (19)

Since D is Newton differentiable at u∗, we can choose a positive ε small enough such that for any
u ∈ Bε(u∗) ⊂ Bρ(u∗), we have

‖D(u)−D(u∗)−D′(u)(u− u∗)‖ 6 ∆‖u− u∗‖.

Noting that ‖D1(un)−D′(un)‖ 6 β‖C(un)− F ′′(un)‖ 6 β∆ for un ∈ Bε(u∗), we have

‖un+1 − u∗‖ = ‖un −D−1
1 (un)D(un)− u∗‖

6 ‖D−1
1 (un)‖‖D(un)−D(u∗)−D1(un)(un − u∗)‖

6 ‖D−1
1 (un)‖

[
‖D(un)−D(u∗)−D′(un)(un − u∗)‖

+ ‖D1(un)−D′(un)‖‖un − u∗‖
]

6 θ
[
∆‖un − u∗‖+ β∆‖un − u∗‖

]
6 θ(β + 1)∆‖un − u∗‖.

This shows that the sequence of points generated by (17) is well defined and converges linearly to
u∗ in a neighborhood of u∗.
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Remark 4.1 1. We do not require the condition 3) of Assumption 3.1. It implies that F ′′ does
not need to be invertable.

2. The hypothesis of the theorem does not require ‖C(un)−F ′′(un)‖ to converge to zero, it only
need

‖C(un)− F ′′(un)‖ 6 ∆,

for some ∆ small enough. Therefore, it is possible that C(un) is invertable, but F ′′(un)
maybe not. The invertibiity and uniformly boundedness of C(un) can ensure by approximation
methods, e.g. the following case.

3. If we take C(un) = 1
β I, then the semismooth quasi-Newton method becomes a gradient-type

method, see [6, 5, 4]. Note that in general if C(un) = snI, then two methods are not the
same.

The following theorem gives the other conditions for the convergence of the semismooth quasi-
Newton method.

Theorem 4.2 Assume that Assumption 3.1 is satisfied and there exist positive constants ε,∆ such
that if u0 ∈ U, ‖u0 − u∗‖ 6 ε and

‖C(un)− F ′′(un)‖ 6 ∆.

Then, the sequence of points generated by (17) is well defined and converges linearly to u∗ in a
neighborhood of u∗.

Proof. From the proof of Theorem 3.1, there exists ρ > 0 such that ‖D′−1(u)‖ 6 θ for u ∈ Bρ(u∗).
Choose ∆ > 0 such that

6θβ∆ < 1.

By the hypothesis and the Newton differentiability of D, there exist ε > 0 such that

‖D(u)−D(u∗)−D′(u)(u− u∗)‖ 6
3
2
β∆‖u− u∗‖, u ∈ Bε(u∗) ⊂ Bρ(u∗).

Since ‖D1(un) −D′(un)‖ 6 β‖C(un) − F ′′(un)‖ 6 β∆, by virtue of Theorem 2.3.2 of Ortega
and Rheinboldt [27] D1(un) is invertible and

‖D−1
1 (un)‖ 6

‖D′−1(un)‖
1− ‖D−1(un)[D′(un)−D1(un)]‖

6
6θ
5
.

Then for un ∈ Bε(u∗), we have

‖un+1 − u∗‖ = ‖un −D−1
1 (un)D(un)− u∗‖

6 ‖D−1
1 (un)‖‖D(un)−D(u∗)−D1(un)(un − u∗)‖

6 ‖D−1
1 (un)‖

[
‖D(un)−D(u∗)−D′(un)(un − u∗)‖

+ ‖D1(un)−D′(un)‖‖un − u∗‖
]

6
6θ
5
[3
2
β∆‖un − u∗‖+ β∆‖un − u∗‖

]
6 3θβ∆‖un − u∗‖

6
1
2
‖un − u∗‖.

This shows that the sequence of points generated by (17) is well defined and converges linearly to
u∗ in a neighborhood of u∗.
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Remark 4.2 Although the results in Theorem 4.1 and Theorem 4.2 are the same, they are slightly
different in the condition on F . Theorem 4.2 requires F to satisfy Assumption 3.1. However,
Theorem 4.1 does not require the condition 3) of Assumption 3.1.

5 Two specific cases of SSQN

In the previous section, we have present the semismooth quasi-Newton method. The convergence
and linear rate of the method are obtained under difference conditions. It is clear that in order to
implement this method, we need a specific strategy for computing C(un), which is an approximation
of F ′′. Note that computing an approximation of F ′′ has attracted many authors, specially when
they aim at solving the smooth minimization problems using the quasi-Newton method. For those
problems, there have been some methods proposed, e.g. [28, 31, 19, 26]. In this section, we
present two specific cases of SSQN respecting to the methods for approximating F ′′. Firstly, we
approximate F ′′ by C = snI and suggest a formula for computing sn. In this case, the semismooth
quasi-Newton method (SSQN) looks like a gradient descent method, but it is not the same (see
Remark 4.1). The second one for approximating F ′′ is Broyden’s method. This method is very
well-known in smooth minimization problems. For more detail about Broyden’s method, we refer
to [28, 31] and references therein.

5.1 SSQN with C(un) = snI

In Theorem 4.1, we assume that F ′′ is approximated by C(un), where

C = snI with sn ∈ [s, s], 0 < s 6 s <∞.

Here, I is the identity operator. With this method, the convergence of the semismooth quasi-
Newton method depends on the choices of sn. In the next step, we are going to give an approxi-
mation of sn.

In each iteration, sn should be chosen such that

‖C(un)− F ′′(un)‖ = inf
s
‖sI − F ′′(un)‖.

This problem is not easy to exactly solve and thus we will solve it approximately. To this end, we
first note that

‖C(un)− F ′′(un)‖ = inf
s
‖sI − F ′′(un)‖

≈ inf
s

sup
ϑ6=0

|s〈ϑ, ϑ〉 − 〈F ′′(un)ϑ, ϑ〉|
‖ϑ‖

≈ inf
s

sup
ϑ6=0

|s〈ϑ, ϑ〉 − 〈F ′(un + ϑ)− F ′(un), ϑ〉|
‖ϑ‖

> inf
s

|s〈ϑ, ϑ〉 − 〈F ′(un + ϑ)− F ′(un), ϑ〉|
‖ϑ‖

, ϑ 6= 0. (20)

Therefore, we shall choose sn as the minimizer of the problem in the right hand side of (20)
with ϑ = un−1 − un, i.e.

sn =
〈F ′(un−1)− F ′(un), un−1 − un〉

‖un−1 − un‖2
. (21)
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Together with the condition sn ∈ [s, s], we choose sn by

sn = P[s,s]
〈F ′(un−1)− F ′(un), un−1 − un〉

‖un−1 − un‖2
, (22)

with P is the orthogonal projection on [s, s]. For n = 0, we can take any value in the interval [s, s],
e.g. s0 = 1.

Remark 5.1 For finite dimensional spaces H, sn computed by formula (21) is Barzilai-Borwein’s
stepsize [3]. In this case, SSQN looks like a gradient method with Barzilai-Borwein stepsizes, but
it is not the same.

5.2 SSQN with C(un) computed by Broyden’s Method

Broyden’s method have been used for the quasi-Newton method and the smoothing quasi-Newton
method [28, 8, 32, 31]. Here, we are going to apply it for the semismooth quasi-Newton method
in a Hilbert space setting. To this end, we combine the ideas of the authors in [32, 31]. Before
presenting the method in detail, we first introduce the rank one operator u⊗ v defined by

v ⊗ u : H1 → H2, v ⊗ u(x) = 〈u, x〉v,

where v ∈ H2, u ∈ H1 (H1,H2 are Hilbert spaces).
Some properties of this operator are proposed in [31]. For convenience, we give them here.

Lemma 5.1 [31, Lemma 3.2] Let H1,H2 be Hilbert spaces and ui ∈ H1, vi ∈ H2, i = 1, 2, T ∈
L(H1,H2) with the adjoint operator T ∗. Then, the following properties hold:

1. (v1 ⊗ u1)∗ = u1 ⊗ v1 ∈ L(H2,H1),

2. (v1 ⊗ u1)(u2 ⊗ v2) = 〈u1, u2〉(v1 ⊗ v2) ∈ L(H2,H2),

3. T (u1 ⊗ v1) = Tu1 ⊗ v1 ∈ L(H2,H2),

4. (v1 ⊗ u1)T ∗ = v1 ⊗ Tu1 ∈ L(H2,H2),

5. ‖v1 ⊗ u1‖ = ‖v1‖‖u1‖.

We now consider the convergence of the semismooth quasi-Newton method with F ′′ being
approximated by Broyden’s method. Using this method, the semismooth quasi-Newton method is
presented by Algorithm 5.1.

Algorithm 5.1 SSQN for Broyden’s case
Input: Initial guess u0 ∈ U, C0 ∈ L(H).
1: for n = 0, 1, 2, . . . do
2: D1(un)← I −G(un − βF ′(un))[I − βCn]
3: un+1 ← un −D1(un)−1D(un)
4: pn ← un+1 − un; yn ← F ′(un+1)− F ′(un).
5: Cn+1 ← Cn + 1

〈pn,pn〉 (y
n − Cnpn)⊗ pn.

6: end for
Output: u = limun.

12



Lemma 5.2 Let F be twice Fréchet differentiable and F ′′ satisfy

‖F ′′(u)− F ′′(u∗)‖ 6 L′‖u− u∗‖, for all u ∈ U.

Then, we have

‖Cn+1 − F ′′(u∗)‖ 6 ‖Cn − F ′′(u∗)‖+
L′

2
(‖un+1 − u∗‖+ ‖un − u∗‖).

Proof. The definition of the update implies that

Cn+1 − F ′′(u∗) = (Cn − F ′′(u∗))
(
I − pn ⊗ pn

〈pn, pn〉
)

+
(yn − F ′′(u∗)pn)⊗ pn

〈pn, pn〉
.

Since I − pn⊗pn
〈pn,pn〉 is an orthogonal projection,

‖I − pn ⊗ pn

〈pn, pn〉
‖ = 1.

On the other hand, by the hypothesis of the lemma, we have

‖yn − F ′′(u∗)pn‖ 6
L′

2
(‖un+1 − u∗‖+ ‖un − u∗‖)‖pn‖.

Therefore, the lemma is proved.
The linear convergence rate is obtained in the following theorem

Theorem 5.1 Assume that Assumption 3.1 is satisfied and there exist positive constants ε, δ such
that if u0 ∈ U, ‖u0 − u∗‖ 6 ε and

‖C0 − F ′′(u∗)‖ 6 δ.

Then, the sequence of points generated by Algorithm 5.1 is well defined and converges to u∗ linearly
in a neighborhood of u∗ and

‖Cn − F ′′(un)‖ 6 ∆ for all n ∈ N,

where ∆ is a positive number.

Proof. Choose ε and ∆ as in the proof of Theorem 4.2 and restrict ε to be small enough such that
for any u ∈ Bε(u∗), we have

‖F ′′(u)− F ′′(u∗)‖ 6 L′‖u− u∗‖, (23)

3εL′ 6 ∆, (24)

where L′ is the Lipschitz constant of F ′′ in U.
Define δ := ∆/2. The proof of local linear convergence consists of showing by induction that

‖Cn − F ′′(u∗)‖ 6 (2− 2−n)δ, (25)
‖Cn − F ′′(un)‖ 6 ∆. (26)

For n = 0, it is easy to show that (25) and (26) hold. Assume that (25) and (26) are satisfied for
n = 0, 1, . . . , i. From the proof of Theorem 4.2, for n = 0, 1, . . . , i, we have (setting en = un − u∗)

‖en+1‖ 6
1
2
‖en‖. (27)
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For n = i+ 1, by Lemma 5.2 and the induction hypothesis, we have

‖Cn+1 − F ′′(u∗)‖ 6 ‖Cn − F ′′(u∗)‖+
L′

2
(‖en+1‖+ ‖en‖)

(2− 2−n)δ +
3L′

4
‖en‖. (28)

By (27) and ‖e0‖ 6 ε it follows that

‖en‖ 6 2−n‖e0‖ 6 2−nε.

Substituting this into (28) and using (24) gives

‖Cn+1 − F ′′(u∗)‖ 6 (2− 2−n)δ +
3L′

4
2−nε

6 (2− 2−n + 2−(n+1))δ = (2− 2−(n+1))δ.

To complete the induction, we verify (26). We have

‖Cn+1 − F ′′(un+1)‖ 6 ‖Cn+1 − F ′′(u∗)‖+ ‖F ′′(un+1)− F ′′(u∗)‖
6 (2− 2−(n+1))δ + 2−(n+1)L′ε

6 (2− 2−(n+1))
∆
2

+
1
3

2−(n+1)∆

< ∆.

So (26) is proved. Therefore, the local linear convergence follows from Theorem 4.2.

Remark 5.2 1. For finite dimensional spaces H, we can prove that Algorithm 5.1 converges
superlinearly. The proof is similar to that of [28, Theorem 8.2.2] or [32, Corollary 4.1]. In general
Hilbert spaces H, Algorithm 5.1 can be proved to converge superlinearly under additional conditions
as in [31].

2. Similar to Broyden’s method, some other methods for approximating F ′′ might be applied,
e.g. the formulas in [12].

6 SSN and SSQN as Active Set Methods

In previous sections, we discussed about the semismooth Newton and quasi-Newton methods. They
can be represented as the iteration

un+1 = un −D−1
1 (un)D(un), (29)

where D1(u) = I−G(u−βF ′(u))[I−βC(u)]. If C(un) = F ′′(un) for all n, then iteration (29) is
the semismooth Newton method, otherwise it is the semismooth quasi-Newton method. Naturally,
two methods can also be interpreted as active set methods that are stated in Algorithm 6.1.

Remark 6.1 1. Algorithm 6.1 is very efficient because we only solve a small linear system in
Step 14 for each iteration. Note that Step 14 requires the invertibility of operators MAnAn in
each iteration. Their sufficient conditions are given in Theorem 3.1, Theorem 4.1, Theorem
4.2 and Theorem 5.1.
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Algorithm 6.1 SSN and SSQN as active set methods
Input: Initial guess u0 ∈ U, choose β, set n := 0 and done:=false.
1: while n < nmax and not done do
2: Calculate the active set and inactive set
3: An+ ← {k ∈ Λ : [un − βF ′(un)]k > βωk},
4: An− ← {k ∈ Λ : [un − βF ′(un)]k < −βωk},
5: An ← An+ ∪ An−; In ← Λ\An.
6: Compute the residual
7: rn := D(un)← un − Sβw(un − βF ′(un)).
8: if ‖rn‖ 6 ε then
9: done← true.

10: else
11: Compute C(un) and represent in the form

12: C(un)←
(
MAnAn MAnIn

MInAn MInIn

)
.

13: Set un+1
In ← 0 and solve the equation

14: MAnAnδuAn =

(
[F ′(un) + w]

∣∣
An+

[F ′(un)− w]
∣∣
An−

)
−MAnInu

n
In

15: Compute un+1
An ← unAn − δuAn .

16: Set n← n+ 1
17: end if
18: end while
Output: u = un.

2. In the case MAnAn are bad-conditioned (e.g. non-invertible), instead of Step 14, we solve the
following linear system

(
Mt

AnAnMAnAn + νnI
)
δuAn =Mt

AnAn
(([F ′(un) + w]

∣∣
An+

[F ′(un)− w]
∣∣
An−

)
−MAnInu

n
In
)
, (30)

where νn are enough small positive numbers and Mt
AnAn is the transpose matrix of MAnAn .

This technique is used in Tikhonov regularization for linear inverse problems, see e.g. [13].

7 Numerical example

We now apply the algorithms to the following parameter identification problem of elliptic equations:
estimate the coefficient σ from a measurement of the solution φ in the elliptic boundary problem

− div(σ∇φ) = y in Ω ⊂ R2, (31)
φ = 0 on ∂Ω,

where y ∈ L2(Ω).
As data we assume, that φδ is given, where φδ is the solution of the elliptic equation with

parameter a∗ but perturbed right hand side yδ with ‖y − yδ‖L2 ≤ δ. Hence, the available data
satisfies ‖φ∗ − φδ‖H1(Ω) ≤ Cδ, where C is a positive constant. Our task is to determine an
approximation of a∗ from φδ.
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A number of papers, such as [17, 36, 21, 14, 22, 30, 23, 10, 34, 1, 7], have examined this problem
or variations of it, see also [13] and [2].

We denote
A = {σ ∈ L∞(Ω) : 0 < λ 6 σ 6 λ−1, supp(σ − σ0) ⊂⊂ Ω}.

and define FD : A ⊂ L∞(Ω) → H1
0(Ω), σ 7→ φ, the solution of (31). The parameter identification

problem regularized by sparsity constraints leads to the following minimization problem

min
σ∈L2(Ω)

Θ(σ) =
∫

Ω

σ|∇FD(σ)−∇φδ|2dx+ α
∑
k∈Λ

ωk|〈σ − σ0, ϕk〉|, (32)

where {ϕk} is the basis consisting the finite linear elements.
It is known that F (σ) =

∫
Ω
σ|∇FD(σ)−∇φδ|2dx is convex, twice Fréchet continuous differen-

tiable; F ′ is Lipschitz continuous; F ′ and F ′′ are given by (see, e.g. [17, 36, 20])

F ′(σ)ϑ = −
∫

Ω

ϑ(|∇FD(σ)|2 − |∇φδ|2)dx, F ′′(σ)(ϑ, ϑ) =
∫

Ω

σ∇|F ′D(σ)ϑ|2dx.

For illustrating our algorithms, we assume that Ω is the unit disk and

σ∗(x1, x2) =

{
4, (x, y) ∈ B0.4(0, 0.3)
1, otherwise

, y(x1, x2) = 4σ∗.

where Br(x1, x2) is the disk with the center at (x1, x2) and the radius r.
To obtain φ∗ and φδ, we solve (31) by the finite element method on a mesh with 1272 triangles.

The solution of (31) and parameter σ is represented by piecewise linear finite elements. Note
that for stabilization, before solving (31) we have cut off values of σn that below σ0 = 1 in each
iteration. This technique bases on the prior information of the parameter that its values are not
below σ0. Another technique is Sobolev-gradient [21], but we do not use it here.

For the numerical example we set ωk = 1, ∀k and α := 5 · 10−5 and the algorithms are used
under the following setting

1. Algorithm 6.1 (SSQN.I) with C0 = I and Cn = snI where sn is computed by (22) and
[s, s] := [5.10−2, 5.102].

2. Algorithm 6.1 (SSQN.B) with C0 = I and Cn computed by Broyden’s method, where Step
14 in Algorithm 6.1 is replaced by (30) with νn := 10−3.

We measure the convergence of the computed minimizers to the true parameter σ∗ by consid-
ering the mean square error sequence

MSE(σn) =
∫

Ω

(σn − σ∗)2dx.

We first discuss results without noise, i.e. φδ = φ∗. Figure 1 shows that {‖D(σn)‖L2} and
Θ(σn) in two algorithms do not decrease monotonically. However, they show that the sequences
{σn} in two algorithms converge to the minimizer of the functional Θ and the convergence rate
in SSQN.B is lightly faster than that in SSQN.I. By the decrease of MSE(σn), the the sequences
{σn} also converge to σ∗. Here, the sequence {σn} in SSQN.B converges to σ∗ faster than that in
SSQN.I. This agrees with the theory results, which show that SSQN.I converges with linear rate
and SSQN.B converges with superlinear rate.

Figure 2 illustrates a∗ and an with n = 300 in these algorithms. It shows that the algorithms
have reconstructed the parameter a∗ very accurately.
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Figure 1: The values of ‖D(σn)‖L2(Ω), MSE(σn) and Θ(σn) in the algorithms.

Figure 2: 3D-plots and contour plots of σ∗, σn.

Figure 3: 3D-plot and contour plot of φδ − φ∗ with ‖φδ − φ∗‖H1(Ω) = 9.85%.
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Figure 4: The values of ‖D(σn)‖L2(Ω), MSE(σn) and Θ(σn) in the algorithms.

Figure 5: 3D-plots and contour plots of σ∗, σn.
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Secondly, we work with noisy data. Here, we have created the data φδ with ‖φδ − φ∗‖H1(Ω) =
9.85%. The difference φδ − φ∗ is illustrated in Figure 3.

In Figure 4 the decrease of Θ(σn) and ‖D(σn)‖L2 show that the sequences {σn} generated in
the algorithms converge to the minimizer of Θ. But the appearance of noise makes the minimizing
sequences disconverge to the true parameter σ∗. The sequences MSE(σn) in the algorithms show
that {σn} tend to σ∗ in the first steps, but after that they disconverges. It is evident because the
sequences {σn} converge to the minimizer of Θ, which is different from σ∗. Therefore, in the noisy
data case, σn with n large might be not a good approximation of σ∗ and one stopping criterion
is needed, which ensures that σn with a certain n is a good approximation of σ∗. The sequence
{σn} in SSQN.B tends to σ∗ faster than that in SSQN.I in first iterations and the minimum value
of {MSE(σn)} in SSQN.B is smaller than that in SSQN.I. Therefore, with a suitable stopping
criterion SSQN.B obtains a better approximation of σ∗ than SSQN.I. Moreover, this approximation
can not obtain by SSQN.I.

Figure 5 illustrates σ∗ and σn, where n is taken with respect to the minimum values ofMSE(σn)
in SSQN.I and SSQN.B. Here, MSE(σn) in SSQN.B is smaller than that in SSQN.I.

8 Conclusion and future works

We have considered the minimization problem

min
u∈H

F (u) +
∑
k∈Λ

ωk|〈u, ϕk〉|,

where H is a Hilbert space, F : Dom(F ) ⊂ H → R is Fréchet differentiable and {ϕk}k∈Λ is an
orthonormal basis (or frame) of H.

Instead of solving the above problem, we aim at solving its optimality condition equation given
by

D(u) := u− Sβw(u− βF ′(u)) = 0.

We have proved that D(·) is Newton differential and proposed the conditions for the convergence
of the semismooth Newton and quasi-Newton methods. The convergence rates of two methods have
also analyzed. The methods can represent as the following iteration

un+1 = un −D−1
1 (un)D(un),

where D1(u) = I − G(u − βF ′(u))[I − βC(u)]. If C = F ′′, then the iteration is the semismooth
Newton method, otherwise it is the quasi-Newton method.

The advantage of the methods are not only their fast convergence but also they can represented
as the active set methods. Thus, in each iteration, the methods only need to solve a small linear
system. We have also proposed two specific cases of the semismooth quasi-Newton method for
implementing in practice. The theory as well as the numerical example have showed that SSQN.B
converges faster than the gradient-type method (SSQN.I).

For further work, in order to obtain the global convergence of these algorithms, the above
algorithms might be modified as follows

un+1 = un − tnD−1
1 (un)D(un), (33)

with some choice of tn > 0. Similar as the quasi-Newton method for smooth minimization problems,
this iteration might be proved to globally converge under some conditions on F,C and tn.

Furthermore, other methods for approximating of F in the quasi-Newton method might be
used, e.g. the methods in the DFP-algorithm [19] and BFGS-algorithm [26].
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