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Abstract The problem of finding an interpolating image be-
tween two given images in an image sequence is considered.
The problem is formulated as an optimal control problem
governed by a transport equation, i.e. we aim at finding a
flow field which transports the first image as close as pos-
sible to the second image. This approach bears similarities
with the Horn & Schunck method for optical flow calcu-
lation but in fact the model is quite different. The images
are modelled in the space of functions of bounded variation
and an analysis of solutions of transport equations in this
space included. Moreover, the existence of optimal controls
is proven and necessary conditions are derived. Finally, two
algorithms are given and numerical results are compared
with existing methods. The new method is competitive with
state-of-the-art methods and even outperforms several exist-
ing methods.
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1 Introduction

Image sequence interpolation is the generation of intermedi-
ate images between two given images containing some rea-
sonable motion fields. It is mainly based on motion estima-
tion and has broad applications in the area of video com-
pression. In video compression, the knowledge of motions
helps to remove the non-moving parts of images and com-
press video sequences with high compression rates. For ex-
ample in the MPEG format, motion estimation is the most
computationally expensive portion of the video encoder and
normally solved by mesh-based matching techniques, e.g.
blocking matching, gradient matching [42]. While decom-
pressing a video, intermediate images are generated by warp-
ing the image sequence with motion vectors.

Another possibility of image interpolation is based on
optical flow estimation. Since Horn and Schunck proposed
the gradient-based method for optical flow estimation in their
celebrated work [28], this field has been widely developed
till now. For example, instead of the linear constraint in the
Horn & Schunck method one applies non-linear isotropic
constraints [6,15], anisotropic diffusion constraints [34,22]
and total variation (TV) constraints [43] for preserving the
flow edges, which is very useful for motion segmentation.
To deal with large displacements in image sequences there
is the warping technique [14] to estimate the flow field in
a robust way. However, in [26] is shown that the Horn &
Schunck method is only suited for optical flow estimation,
but not for matching image intensities, especially in case of
large displacements, see also the argumentation in [39].

In the last few years optimal control of PDEs is getting
into consideration in image processing, particularly in im-
age restoration [33], image registration [31] and so on [11,
12]. Borzı́, Ito and Kunisch considered the optical flow prob-
lem in the optimal control framework [10]. In this approach
one searches the flow field such that the interpolated image
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matches best, and hence, it seems more suitable to image se-
quence interpolation. In this paper we modify the model pro-
posed in [10] for interpolating intermediate images between
two given images and analyze the well-posedness of the cor-
responding minimization problem. Moreover, we propose
an efficient numerical method for solving the optimality sys-
tem and we also propose a modification of the segregation
loop of the optimality conditions system, which give better
interpolation results and is robust with respect to the choice
of regularization parameter. To evaluate our proposed inter-
polation methods we will utilize the image database gener-
ated by Middlebury College 1 and compare our results using
the evaluation method of Middlebury with the results in [39].

2 Modeling

We are interested in finding a flow field, which is suitable for
image matching, especially, instead of minimizing the opti-
cal flow constraint equation directly, we utilize the transport
equation to fit a given image u0 to another given image uT
in the sense of some predefined norm in a cost functional.

Let us model the optimal control problem governed by
the transport equation. Consider the Cauchy problem for the
transport equation in [0,T ]×Ω , Ω ⊂Rd (generally d = 2):

∂tu(t,x)+b(t,x) ·∇xu(t,x) = 0 in ]0,T ]×Ω ,

u(0,x) = u0(x) in Ω ,

un(t,x) = 0 in ]0,T ]×∂Ω .

(1)

Here b : [0,T ]×Ω −→ Rd is an optical flow field, u0 is a
given initial condition and u is an unknown function depend-
ing on t and x. The normal derivative un of u is not essential
in our context, since we will assume later b vanishes on ∂Ω

for a.e. t ∈]0,T ]. We define the nonlinear solution operator
of (1)

G : X×Y −→ Z,

(u0,b) 7→ u,

where X ,Y,Z are normed spaces to be specified. Then, we
define a linear “observation operator” ET : u 7→ u(T ), which
observes the value of u at time T . By the chain (u0,b) 7→
u 7→ u(T ) we have the “control-to-state mapping”

S : X×Y −→ U,

S : (u0,b) 7→ u(T ).

The space U is a subspace of Z, which does not involve time
t. The continuity of S will be investigated in the concrete
contexts. Our intention is to find the flow field b such that
the corresponding image S(u0,b) matches the image uT at
time T as well as possible. This motivates to minimize the

1 http://vision.middlebury.edu/flow/data/

functional 1
2 ‖S(u0,b)−uT‖2

U . However, this problem is ill-
posed and hence, we use an additional regularization term in
the cost functional. Moreover, we add the constraint, that the
flow field b is divergence-free. This regularized optimal con-
trol problem can be formulated as minimizing, for a given
λ > 0, the following cost functional

inf
b∈Y

{
J(b) =

1
2
‖S(u0,b)−uT‖2

U +
λ

2
‖b‖2

Y

}
, (2)

subject to divb = 0. (3)

In the framework of optimal control [32,41] we call b the
control and u the state. According to the conservation law
[27] and the divergence theorem [36], the divergence-free
constraint of b will make the flow volume conserving, smooth
and vary not too much inside the flow field of a moving
object. At least the last two properties are desirable for the
computation of the optical flow. Moreover, the divergence-
free constraint is a somehow technical assumption as it im-
plies that the equation for the dual variable of u will also be
a transport equation (see Section 4 for details) and hence,
simplifies the analysis. Such constraint is not new for opti-
cal flow estimation and was similarly introduced as a regu-
larization constraint e.g. in [40,29,10]. However, note that
a divergence-free constraint excludes sources and sinks in
the flow field and the feature of volume preservation may be
undesirable.

We emphasize, that our model is considerably different
from the Horn & Schunck approach which is based on the
optical flow constraint. There one has a given image u and
a given derivative ∂tu (both at time t0) and one finds a flow
field b = (v,w) by minimizing∫

Ω

(∂tu−b ·∇u)2dt +
∫

Ω

|∇v|2 + |∇w|2dx.

The main conceptual difference between this approach and
ours is that Horn & Schunck just consider one time t0 and
match the flow field only to that time. Hence, it is unclear in
what sense the produced field b could be useful to match a
given image with another one. Our approach uses two given
images and tries to find a flow field b which transports the
first image as close as possible to the second image. The “op-
tical flow constraint equation” now enters as a constraint to
the optimization problem and not in the objective functional
itself.

Finally, we illustrate the conceptual difference to the ap-
proach in [10]. There the authors also consider the constraint
equation (1) but a cost functional of the form

1
2
‖S(u0,b)−uT‖2

L2(Ω)

+
∫ T

0

∫
Ω

α

2
Φ(|∂tb|2)+

β

2
Ψ(|∇v|2 + |∇w|2)+ γ

2
|divb|2

for positive parameters α,β ,γ and functions Φ , Ψ (see [10]
for details). The main differences to our approach are that

http://vision.middlebury.edu/flow/data/
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we impose a divergence-free constraint on b rather than a
penalty and that we do not regularize the time derivative of
b. More details on the specific form of our cost functional
will follow in Section 3.3 after further motivation and anal-
ysis.

In the next chapter we choose adequate spaces for u and
b. Especially, we are interested in images u0 and uT which
are of bounded total variation and hence, use the space BV of
functions of bounded variation. This spaces is widely used
to model images with edges [7] since it has been introduced
in [37] Hence, we introduce the solution theory of trans-
port equations equipped with a smooth flow field and a BV
image as initial value. Especially we need to work out con-
ditions under which the BV -regularity is propagated by the
flow field. Then, we will analyze the existence of a mini-
mizer of problem (2) restricted to (1) and (3).

3 Analysis of Well-posedness

To analyze the solution operator G we use the method of
characteristics. We start with the analysis of the correspond-
ing ODEs, then derive existence results for initial values u0
which are of bounded variation and finally derive a result on
the weak sequential closeness of G. Together this shows the
existence of an optimal control in the respective setting.

3.1 Basic Theory of ODE

It is well-known that the solution theory of transport equa-
tions has a tight relationship with the ordinary differential
equation

γ̇(t) = b(t,γ(t)) t ∈ I,

γ(a) = x0 in Ω .

(4)

Regarding the solution theory of (4), the existence and unique-
ness of a solution can be derived by the theorem of Picard-
Lindelöf [25] if b is Lipschitz continuous in space and uni-
formly continuous in time. We can also relax the assumption
on t of b to be integrable by the following Carathéodory the-
orem [4], which is a general version of the Picard-Lindelöf
theorem:

Theorem 1 (Carathéodory) Define I = [a,c] and Ω is a
bounded subset in Rd . Suppose b : I×Ω → Rd so that

1. t→ b(t,x) is measurable in I for every x ∈Ω ;
2. there exists C ≥ 0 with |b(t,x)− b(t,x′)| ≤C|x− x′| for

a.e. t ∈ I and every x,x′ ∈ Ω̄ ;
3. b(t,x) = 0 for a.e. t ∈ I and every x ∈ ∂Ω ;
4. the function m(t) = |b(t,x0)| is integrable in I for x0 ∈

Ω .

Then, there exists a unique solution γ∗ : I→Ω with

γ
∗(t) = x0 +

t∫
a

b(s,γ∗(s))ds t ∈ I

to the Cauchy problem (4).

As a consequence of the proof, the flow γ∗(t) is absolutely
continuous in [a,c]. Generally, if we consider the solution
in [0,T ] with T > c, we can restart γ∗ at (c,γ∗(c)) until the
unique continuous solution arrives at time T . The backward
flow is the special case when the time t is smaller than the
initial time a.

Next, we want to choose an appropriate function space
Y for b, which is suitable for the control problem. Accord-
ing to [3] the space of Lipschitz functions is equivalent to
W 1,∞(Ω)d , if Ω is a bounded, convex, open set. According
to [17] lower regularity of the flow field (i.e. b ∈W 1,p with
p < ∞) does not preserve BV -regularity. However, the norm
in W 1,∞ is not well suited as a penalty term since it is diffi-
cult to determine the necessary optimality conditions in this
situation. Thus, we assume additionally that the domain Ω

enjoys the strong local Lipschitz condition [1] and use the
fact that H3

0 (Ω)d is continuously embedded into W 1,∞(Ω)d

under this assumption, when dim(Ω) = 2. Considering the
divergence-free constraint on b we set

H3,div
0 (Ω)2 :=

{
f ∈ H3

0 (Ω)2
∣∣∣ div f = 0

}
.

Adjusting the assumption on the time of b in Theorem 1 and
previous conditions on Ω we will assume that

– Ω ⊂ R2 is a bounded, convex, open set with the strong
local Lipschitz condition

– b ∈ L2([0,T ];H3,div
0 (Ω)2)

throughout the paper. A proper choice for the space U will
be discussed in Section 3.3.

In order to formulate the solution of transport equation
in a convenient way, we give the concept of classical flow
[18].

Definition 1 The classical flow of vector field b is a map

Φ(t,x) : [0,T ]×Ω −→Ω

which satisfies
∂Φ

∂ t
(t,x) = b(t,Φ(t,x)) in ]0,T ]×Ω ,

Φ(0,x) = x in Ω .

(5)

A helpful property of Φ will be given in the following corol-
lary.

Corollary 1 For every t ∈ [0,T ] the mapping Φ(t, ·) : Ω →
Ω is Lipschitz continuous and a diffeomorphism.
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Proof The injectivity can be derived from the uniqueness
of the backward flow: If the flow Φ starts from two points
x1 6= x2 and arrives at some t at the same point Φ(t,x1) =

Φ(t,x2) = x̄, the backward flow starting from (t, x̄) will be
not unique. Regarding the surjectivity: for every point y∈Ω

one can find a backward flow starting from (t,y)

γ(t ′) = y+
t ′∫

t

b(s,γ(s))ds = x ∈Ω ,

according to Theorem 1. In case t ′ = 0 yields Φ(t,x) = y.
The Lipschitz regularity of Φ is easily shown by the

Gronwall’s lemma. For details we refer to [18].
Since the Lipschitz continuity gives only the local C1-

regularity, the C1-regularity of Φ(t, ·) in Ω one can follow
the results in [18], which states that if b has C1-regularity
in space, then the flow Φ(t, ·) is also C1 in space. In fact,
H3

0 (Ω)2 is continuously embedded into C1(Ω̄)2, and hence
we derive the statement. ut

3.2 Solution Theory of Transport Equations

In this subsection we will consider the transport equation
with the initial value u0 in BV since this space contains func-
tions with discontinuities along hypersurfaces, i.e. edges of
images [3]. However, the propagation of BV regularity is a
delicate matter. We first formulate the solution of transport
equations with a smooth initial value:

Corollary 2 Let u0 ∈ C1(Ω) and Φ be a classical flow of
vector field b. Then the transport equation (1) has a unique
solution

u(t,x) = u0 ◦Φ
−1(t, ·)(x). (6)

Proof Let us test (1) along the characteristics denoted by
(t,Φ(t,x))

0 =
∂u
∂ t

(t,Φ(t,x))+b(t,Φ(t,x)) ·∇u(t,Φ(t,x))

=
∂u
∂ t

(t,Φ(t,x))+
∂Φ

∂ t
(t,x) ·∇u(t,Φ(t,x))

=
∂

∂ t
(u(t, ·)◦Φ(t,x)).

This implies that every solution is constant along the char-
acteristics. Adjusting the initial value we derive (6) is a so-
lution to (1) and the uniqueness follows immediately from
the uniqueness of flow Φ . ut

Equipped with a non-differentiable initial value the classic
solution (6) will not work. Next, we give the definition of
the solution of transport equations in the weak sense.

Definition 2 (Weak solution) If b and u0 are summable
functions and b is divergence-free in space, then we say
that a function u : [0,T ]×Ω → R is a weak solution of
(1) if the following identity holds for every function ϕ ∈
C∞

c ([0,T [×Ω) :

T∫
0

∫
Ω

u(∂tϕ +b ·∇ϕ)dxdt =−
∫
Ω

u0(x)ϕ(0,x)dx. (7)

In Theorem 4 it will be shown that (6) is actually the unique
weak solution of (1) with u0 ∈ BV (Ω). Before we are able
to deal with the proof, we recall briefly the weak∗ topology
of BV [3,5,7,6],

un
∗−−−−⇀

BV (Ω)
u :⇔ un −−−→

L1(Ω)
u and Dun

∗−−−−⇀
M (Ω)

Du,

where M (Ω) denotes the space of Radon measure. This
topology possesses convenient compactness properties in the
following theorem [3].

Theorem 2 Let (un)⊂BV (Ω). Then (un) converges weakly*
to u in BV (Ω) if and only if (un) is bounded in BV (Ω) and
converges to u in L1(Ω).

To prove that (6) is a weak solution of (1) it is common to
use the technique of mollifiers [23]. In short, we smooth the
initial value with a mollifier ηε with variance ε , let ε con-
verge to zero and investigate the convergence of the solution
with a smooth initial value to a nonsmooth initial value. This
will be done in the next theorem.

Theorem 3 Assume u0 ∈ BV (Ω),ϕ and ϕ−1 are diffeomor-
phisms and Lipschitz continuous in Ω . Then, the sequence
((u0 ∗ηε)◦ϕ) converges to u0 ◦ϕ in the weak* topology of
BV (Ω).

Proof Let us verify first the L1-convergence of (u0 ∗ηε)◦ϕ

and set ϕ(x) = y∫
Ω

|(u0 ∗ηε)◦ϕ(x)−u0 ◦ϕ(x)|dx

=
∫
Ω

|u0 ∗ηε(y)−u0(y)||det(∇ϕ
−1(y))|dy

≤ ‖u0 ∗ηε −u0‖L1(Ω)

∥∥det(∇ϕ
−1)
∥∥

L∞(Ω)
.

Let L be the Lipschitz constant of ϕ−1 i.e. L=
∥∥∇ϕ−1

∥∥
L∞(Ω)4 ,

then
∥∥det(∇ϕ−1)

∥∥
L∞(Ω)

is bounded from above by 2L2. To-
gether with the approximation property of mollifiers this
gives the L1-convergence. Regarding the weak∗ convergence
of Radon measures ∇(u0 ∗ ηε) we observe that for every
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ψ ∈C∞
c (Ω)2 it holds∫

Ω

∇((u0 ∗ηε)◦ϕ)ψdx

= −
∫
Ω

(u0 ∗ηε)◦ϕdivψdx

= −
∫
Ω

(u0 ∗ηε)(y)div(ψ ◦ϕ
−1(y))|det∇ϕ

−1(y)|dy

= −
∫
Ω

∫
Ω

ηε(y− s)u0(s)dsdiv(ψ ◦ϕ
−1(y))|det∇ϕ

−1(y)|dy

= −
∫
Ω

∫
Ω

ηε(y− s)div(ψ ◦ϕ
−1(y))|det∇ϕ

−1(y)|dyu0(s)ds

= −
∫
Ω

ηε ∗
(
div(ψ ◦ϕ

−1)|det∇ϕ
−1|
)
(s)u0(s)ds. (8)

Since ϕ−1 is C1 and Lipschitz continuous in Ω , the con-
volved term belongs to L2(Ω). Recall that in the two dimen-
sional case BV (Ω) is continuously embedded into L2(Ω),
then utilizing the approximate property of mollifiers implies
that the equation (8) converges to

−
∫
Ω

div(ψ ◦ϕ
−1(s))|det∇ϕ

−1(s)|u0(s)ds

ϕ(ξ )=s
= −

∫
Ω

divψ(ξ )u0(ϕ(ξ ))dξ

(∗)
=

∫
Ω

ψD(u0 ◦ϕ)

In (∗) we applied the Gauss-Green formula for the BV func-
tions [23]. ut

Remark 1 Under the same assumptions of Theorem 3 one
can derive from Theorem 2 that ((u0 ∗ηε)◦ϕ) is uniformly
bounded in BV (Ω) and converges to u0 ◦ϕ in L1(Ω), actu-
ally also in Lp(Ω) with p≤ 2 due to the approximate prop-
erty of mollifiers and the fact BV (Ω) has a continuous em-
bedding into L2(Ω) in the two dimensional case.

Lemma 1 Assume that u0 ∈ BV (Ω), ϕ(t, ·) and ϕ−1(t, ·)
are diffeomorphisms in Ω for every t ∈ [0,T ] and ϕ(·,x) is
absolutely continuous in [0,T ] for every x ∈Ω . Define

uε(t,x) = (u0 ∗ηε)◦ϕ(t,x).

Then, uε ∈C([0,T ];BV (Ω)).

We skip the proof of Lemma 1, since it is a trivial result
utilizing the substitution technique introduced in the proof
of Theorem 3. Now, we are able to prove the existence and
uniqueness of the weak solution of the transport equation
(1).

Theorem 4 If u0 ∈ BV (Ω), then there exits a unique weak
solution

û(t,x) = u0 ◦Φ
−1(t, ·)(x) (9)

of (1) belonging to L∞([0,T ];BV (Ω)).

Proof Consider the transport equation with initial value u0
convolved with mollifier ηε

∂tu(t,x)+b(t,x) ·∇xu(t,x) = 0 in ]0,T ]×Ω

u(0,x) = u0 ∗ηε(x) in Ω .

Corollary 2 implies that there exists a unique solution uε of
the form

uε(t,x) = (u0 ∗ηε)◦Φ
−1(t, ·)(x).

Let us define

û(t,x) = u0 ◦Φ
−1(t, ·)(x),

where û(t, ·) ∈ BV (Ω) according to Theorem 3 for every
t ∈ [0,T ]. Remark 1 gives that uε(t, ·) converges to û(t, ·) in
L2(Ω) and uε(t, ·) is uniformly bounded in BV (Ω). And ac-
cording to Lemma 1 this yields that uε is uniformly bounded
in L∞([0,T ];BV (Ω)), which is continuous embedded into
L2([0,T ];L2(Ω)). Hence, there exists a subsequence (uεk)

of (uε) such that

uεk ⇀ û in L2([0,T ];L2(Ω)) (10)

and û ∈ L∞([0,T ];BV (Ω)). Due to the weak convergence
of uεk in L2([0,T ];L2(Ω)), one can derive for every ϕ ∈
C∞

c ([0,T [×Ω) it holds that

T∫
0

∫
Ω

uεk [∂tϕ +b ·∇ϕ]dxdt −→
T∫
0

∫
Ω

û[∂tϕ +b ·∇ϕ]dxdt

‖ ‖

−
∫
Ω

u0 ∗ηεk ϕ(0,x)dx −→ −
∫
Ω

u0ϕ(0,x)dx.

The upper convergence is valid since b ∈ L2([0,T ];L2(Ω)2)

and thanks to (10). The lower convergence can be deduced
from the property of approximate identity. The left equality
is valid for a smooth initial value and smooth vector field.
Hence, all of them imply the right equality.

Regarding the uniqueness of weak solution it is shown in
[2] that the continuity equation, which is equal to the trans-
port equation in case divb = 0, has a unique solution in the
Cauchy-Lipschitz framework, i.e. b ∈ L1([0,T ];W 1,∞(Rd)).
Definitely, it is also valid under our assumption of b.

Because of the uniqueness of the weak solution the con-
vergence of subsequence (uεk) in the previous proof can be
proceeded to the whole sequence (uε). ut
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3.3 Existence of a Minimizer

The goal of this subsection is to complete the cost functional
(2) with some reasonable norm and investigate the existence
of a minimizer of problem (2). First of all, we give the norm
of the penalty term of (2) w.r.t. b. According to [1] an equiv-
alent norm of H3

0 is

‖b‖H3
0 (Ω)2 =

(
∑
|α|=3
‖∂ α b‖2

L2(Ω)2

)1/2

. (11)

We can easily find out that the seminorm (
∫

Ω
|∇∆b|2dx)1/2

is actually another equivalent norm of H3
0 (Ω)2, since it is

equivalent to (11). For the regularity of b in time we can
give the equivalent norm of L2([0,T ];H3

0 (Ω)2)

‖b‖2
L2([0,T ];H3

0 (Ω)2) =

T∫
0

‖∇∆b(t, ·)‖2
L2(Ω)4 dt. (12)

As discussed above, we assume that u0 and uT are BV -functions.
Hence, BV seems to be a proper choice for the space U .
However, since BV is continuously embedded in L2(Ω) for
d = 2 we use U = L2(Ω) (we discuss this choice in more
detail in Section 5). Hence, our cost functional is

J(b) =
1
2
‖S(u0,b)−uT‖2

L2(Ω)+
λ

2

T∫
0

‖∇∆b(t, ·)‖2
L2(Ω)4 dt.

(13)

Lemma 2 If (ϕn) and (ϕ−1
n ) are sequences of diffeomor-

phisms in Ω and the Jacobian determinant det∇ϕn is uni-
formly bounded in L∞(Ω) by the upper bound C, then ((u0 ∗
ηε)◦ϕ−1

n ) is uniformly bounded in BV (Ω) w.r.t. n.

Proof It is easy to check that (u0 ∗ηε) is uniformly bounded
in BV (Ω) according to Theorem 2 and 3. Suppose that the
upper bound is C̃. Let us verify first the L1-norm by setting
y = ϕ−1

n (x)∫
Ω

|(u0 ∗ηε)◦ϕ
−1
n |dx

=
∫
Ω

|u0 ∗ηε ||det∇ϕn(y)|dy

≤ C
∫
Ω

|u0 ∗ηε |dy

≤ CC̃‖u0‖L1(Ω) .

Regarding the variation norm by ‖u0‖var(Ω) :=
∫

Ω
|Du0|dx

we have∫
Ω

|∇(u0 ∗ηε)◦ϕ
−1
n |dx

=
∫
Ω

|∇(u0 ∗ηε)(y)||det∇ϕn(y)|dy

≤ C
∫
Ω

|∇(u0 ∗ηε)(y)|dy

≤ CC̃‖u0‖var(Ω) .

ut

Lemma 3 If (bn) is uniformly bounded in L2([0,T ];H3(Ω)2)

and u0 ∈ BV (Ω). Define un,ε = (u0 ∗ηε) ◦Φ−1
n and ut

n,ε =

un,ε(t). Then, there exists a subsequence (unk,ε) such that
unk,ε converges to some limit uε in L2([0,T ];Lp(Ω)) with
p < 2 and weakly to uε with p = 2. ut

nk,ε
converges to uε(t)

in Lp(Ω) with p < 2 and weakly to uε(t) with p = 2.

Proof Recall that for every bn there is a corresponding Φn
s.t. Φn(t, ·)∈W 1,∞(Ω)2 and ‖∇Φn(t, ·)‖L∞(Ω)4 =Lip(Φn(t, ·)).
The Lipschitz continuity implies via Gronwall’s lemma

Lip(Φn(t, ·))≤ exp

 t∫
0

Lip(bn(s, ·))ds

 . (14)

The boundedness of (bn) in L2([0,T ];H3(Ω)2) gives the up-
per bound of (14). Hence, the Jacobian determinant det∇Φn(t, ·)
is also uniformly bounded in L∞(Ω). According to Lemma 2
this implies that ut

n,ε is uniformly bounded in BV (Ω) w.r.t.
n. Then, there exists a subsequence (ut

nk,ε
) of (ut

n,ε) such
that ut

nk,ε
converges to ut

ε in Lp(Ω) (weakly for p = 2) with
p≤ 2. Considering the integral over time one has

lim
nk→∞

T∫
0

∥∥ut
nk,ε
−ut

ε

∥∥2
Lp(Ω)

dt =
T∫

0

lim
nk→∞

∥∥ut
nk,ε
−ut

ε

∥∥2
Lp(Ω)

dt→ 0

with p < 2. The exchange of the limit is valid since the inte-
grand is bounded and with the same argument one can derive
the weak convergence of unk,ε in L2([0,T ];L2(Ω)). ut

Now we consider the minimization problem

inf
b∈L2([0,T ];H3,div

0 (Ω)2)

J(b) (15)

with J according to (13). Proving the existence of minimiz-
ers is usually achieved by the direct method [7] and the most
difficult part lies in the weak sequential closeness of the so-
lution operator G with respect to b.

Theorem 5 (Weak sequential closeness) Suppose the se-
quence (bn) ∈ L2([0,T ];H3,div

0 (Ω)2) is uniformly bounded
and converges weakly to b in L2([0,T ];H3(Ω)2). Let un be
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the corresponding weak solutions of (1) with flow field bn
and initial value u0 (i.e. un =G(u0,b)). Suppose that un con-
verges to û in L2([0,T ];L1(Ω)) and û ∈ L2([0,T ];L2(Ω)),
then û = G(u0,b).

Proof Since (bn) converges weakly to b in L2([0,T ];H3(Ω)2),
it is also valid that

bn ⇀ b in L2([0,T ];L2(Ω)2). (16)

Let us consider the difference uu− û applying a test function
ϕ ∈C∞

c ([0,T [×Ω):∣∣∣∣∣∣
T∫

0

∫
Ω

un(∂tϕ +bn∇ϕ)− û(∂tϕ +b∇ϕ)dxdt

∣∣∣∣∣∣
=

∣∣∣∣∣
T∫

0

∫
Ω

∂tϕ(un− û)dxdt

︸ ︷︷ ︸
(i)

+

T∫
0

∫
Ω

∇ϕ · (unbn− ûb)dxdt

︸ ︷︷ ︸
(ii)

∣∣∣∣∣.

Part (i) converges to zero, since un→ û in L2([0,T ];L1(Ω)).
Regarding part (ii) we can derive

T∫
0

∫
Ω

∇ϕ(unbn− ûb)dxdt

=

 T∫
0

∫
Ω

∇ϕbn(un− û)dxdt +
T∫

0

∫
Ω

∇ϕ û(bn−b)dxdt


≤ ‖∇ϕ‖L∞([0,T ]×Ω)2 ‖bn‖L2([0,T ];L∞(Ω)2) ‖un− û‖L2([0,T ];L1(Ω))

+

T∫
0

∫
Ω

∇ϕ û(bn−b)dxdt

Since (bn) is uniformly bounded in L2([0,T ];H3(Ω)2), it is
also uniformly bounded in L2([0,T ];L∞(Ω)2). The conver-
gence of un in L2([0,T ];L1(Ω)) and (16) imply that the right
hand side of the last inequality converge to zero.

Since (un) are weak solutions of (1), the limit û is also a
weak solution of (1), i.e. û = G(u0,b). ut

Theorem 6 (Existence of a minimizer) Suppose u0 ∈BV (Ω),
then the minimization problem (15) has a solution.

Proof Let (bn)⊂ L2([0,T ];H3,div
0 (Ω)2) be a minimizing se-

quence of the cost functional. The coercivity of (13) is a
natural property subject to the norm (12). From the coerciv-
ity one has (bn) is uniformly bounded in L2([0,T ];H3(Ω)2),
then there is a subsequence (bnk) of (bn) converging weakly
to b in L2([0,T ];H3(Ω)2). For each bn there exits a unique
flow Φ−1

n , which is a diffeomorphism in Ω and absolutely
continuous in [0,T ]. Define

un,ε = (u0 ∗ηε)◦Φ
−1
n .

According to Lemma 3 there exists a subsequence (unk,ε),
which converges to uε ∈L2([0,T ];L2(Ω)) in L2([0,T ];L1(Ω))

and converges for every t ∈ [0,T ] weakly to uε(t) in L2(Ω).
Theorem 5 implies that uε =(u0∗ηε)◦Φ−1. Hence, it yields
that ∫

Ω

ut
nk,ε

ϕdx −→
∫
Ω

ut
ε ϕdx

↓ ↓

∫
Ω

ut
nk

ϕdx −→
∫
Ω

utϕdx

for every ϕ ∈ L2(Ω). The left and right convergences in the
diagram are valid due to the property of approximate identi-
ties according and then ut = u0 ◦Φ−1(t, ·). Hence, ut

nk
con-

verges weakly to ut in L2(Ω) for every t ∈ [0,T ].
The l.s.c. of the first term in (13) can be easily derived

from uT
nk
− uT ⇀ uT − uT in L2(Ω). And the l.s.c. of the

second term in (13) is valid due to the norm-continuity of
b. ut

4 First-order Optimality Conditions System

We use the Lagrangian technique to compute the first-order
optimality conditions of control problem (13) governed by
(1) and (3). Let us define first the Lagrange functional with
Lagrange multipliers (p,q)

L(u,b, p,q) = J(u,b)+
T∫

0

∫
Ω

(ut +b ·∇u)pdxdt

+

T∫
0

∫
Ω

divbqdxdt.

(17)

The functional derivatives of (17) w.r.t. u, b, p and q yield
the first-order system of necessary conditions

ut +b ·∇u = 0, u(0) = u0

pt +b ·∇p = 0, p(T ) =−(u(T )−uT )

divb = 0,

λ∆ 3b+∇q = p∇u, b = 0,∇nb = 0,
∆b = 0 on ∂Ω .

(18)

5 Algorithms

In this section we will present an efficient numerical algo-
rithm to discretize the optimality conditions system. Regard-
ing the forward and backward transport equations in (18)
one can take advantage of the explicit formula (6) and es-
timate the backward flow by the fourth-order Runge-Kutta
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method or one solves the transport equations by an explicit
high-order total-variation diminishing scheme (TVD scheme)
[27,30,10].

The last equation of (18) is a triharmonic equation which
stems from the use of space H3

0 as penalty term in (13).
There are little articles about its numerical schemes, e.g.
[19]. However, the algorithms are either not efficient or dif-
ficult to apply directly. Hence, we modify this equation as
follows: The motivation the H3

0 -term was that b has to be
Lipschitz continuous to obtain a unique flow Φ . However, if
we apply some smooth initial flow b0 in the discrete form of
(18) and replacing ∆ 3 with ∆ in (18) still leads to smooth
enough b. Indeed, b will be in H1 and according to [20]
an initial value u0 ∈ L2(Ω) is transported into an L2(Ω)-
function by a flow field b ∈ H1. Finally, if b is not only H1

but Lipschitz continuous, we still transport BV images to
BV images. Hence, in our context we can also work with the
cost functional

J̃(b) =
1
2
‖S(u0,b)−uT‖2

L2(Ω)+
λ

2

T∫
0

‖∇b(t, ·)‖2
L2(Ω)4 dt.

(19)

and the corresponding optimality system

ut +b ·∇u = 0, u(0) = u0

pt +b ·∇p = 0, p(T ) =−(u(T )−uT )

divb = 0,

λ∆b+∇q = p∇u, b = 0 on ∂Ω .

(20)

We remark that the assumption u0,uT ∈ BV is not present
in this model anymore. However, one could easily use U =

BV and the BV -norm for the difference u(T )− uT in (13)
since this would only affect the right hand side of the adjoint
equation. However, in this case we would have to ensure
that the flow field b is Lipschitz-continuous. In numerical
experiments we found, that the use of the BV -norm for the
difference u(T )− uT did not alter the results too much and
hence, we use the optimality system (20).

With a divergence-free initial value b0 we propose a seg-
regation loop in the spirit of [10] to interpolate the interme-
diate image at time t:
Segregation loop I.
Suppose n = 1, · · · ,Nloop and Nloop is the iteration number.
Given u0,uT , bn−1(t), λ n−1. The iteration process for solv-
ing (20) at iteration n proceeds as follows:

1. Compute un−1(t),∇un−1(t) and un−1(T ) by the forward
transport equation using u0 and bn−1.

2. Compute pn−1(t) by the backward transport equation us-
ing −(un−1(T )−uT ) and bn−1.

3. Compute bn(t) by the Stokes equation with right-hand
side pn−1(t)∇un−1(t) and a λ n.

After Nloop iterations the intermediate image uNloop(t) ap-
proximates u at time t. Moreover, we use a monotonically
decreasing sequence (λ n), which converges to a final λ ∗.
However, thanks to the theory of Stokes equations [24], we
know that

‖b(t)‖H1(Ω) ≤
C
λ
‖p(t)∇u(t)‖H−1(Ω) , a.e. t ∈ [0,T ]. (21)

In practice we find out that if we choose (λ n) such that the
norm of the right-hand side of (21) is monotonically increas-
ing, the value of b(t) will be also increasing. However, the
final λ ∗ cannot be chosen too small such that the minimizing
process of (13) is ill-posed.

Moreover, since the system (20) is a necessary condi-
tion of minimizing functional (19), one expects that the term
‖u(T )−uT‖L2(Ω) is not very small. But since this is one of
our final goals, we propose a modification of segregation
loop I, which poses no requirement for choosing a specific
sequence (λ n) and gives better approximation of intermedi-
ate images. We modify segregation loop I as follows:
Segregation loop II.
Suppose n = 1, · · · ,Nloop and Nloop is the iteration number.
Given u0,uT , bn−1(t), λ . The iteration process at iteration n
proceeds as follows:

1. Compute un−1(t),∇un−1(t) and un−1(T )by the forward
transport equation using u0 and bn−1.

2. Compute pn−1(t) by the backward transport equation us-
ing −(un−1(T )−uT ) and bn−1.

3. Compute the solution of the Stokes equations with right-
hand side pn−1(t)∇un−1(t) and λ . Then, denote it by
δbn−1(t) .

4. bn(t) = bn−1(t)+δbn−1(t).

In segregation loop II we utilize the system (20) to estimate
the update of the flow field and update the flow field in step
4. This point of view is different from the original problem
(20), but interestingly this modification actually solves the
necessary condition of another minimizing problem. If the
segregation loop II converges, then the update δbn−1(t) con-
verges to zero. Since the initial value b0 is divergence-free
and in each iteration the update flow δbn−1 is divergence-
free, the limit of bn is also divergence-free.

We denote u∗, p∗,b∗,q∗ the limits of particular sequences
and in this case δb∗ = 0. Setting the limits into (20) we de-
rive

u∗t +b∗ ·∇u∗ = 0 u∗(0) = u0

p∗t +b∗ ·∇p∗ = 0 p∗(T ) =−(u∗(T )−uT )

divb∗ = 0 b∗ = 0 on ∂Ω

∇q∗ = p∗∇u∗

(22)
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Actually, (22) is the optimality system of another constrained
minimization problem, namely

1
2
‖u∗(T )−uT‖2

L2(Ω) (23)

subject tou∗t +b∗∇u∗ = 0 u∗(0) = u0

divb∗ = 0 b∗ = 0 on ∂Ω .
(24)

Compared to (13) or (19) the functional (23) is not regu-
larized. But if we stop the segregation loop II on time, i.e.
the interpolation error does not vary too much, then it is not
surprising that segregation loop II gives good approxima-
tion results of intermediate images. From the point of view
of regularization theory, one may see the segregation loop II
as a kind of a Landweber method for minimizing ‖u(T )−
uT‖2

L2(Ω)
which is inspired by a Tikhonov-functional.

In the most cases the forward interpolation from u0 to
uT and the backward interpolation from uT to u0 are com-
plementary, since the flow is only able to transport objects
from somewhere to somewhere, but not able to create some
new objects. If, in the forward case, some new objects ap-
pear, then in the backward case the new objects disappear,
implying that backward interpolation is more suitable in this
case. In practice, we take the average of forward and back-
ward interpolations.

5.1 Hierarchical Method

In order to get a start value b0 for the optimality system, the
hierarchical processing is a good approach [9]:

1. Downsample the images into level l.
2. Solve system (20) in level l out and get bl .
3. Upsample the optical flow into level l−1 and get bl−1.

The estimated optical flow bl−1 is a start value of the hierar-
chical method in level l−1. In coarsest level we assume the
start value to be zero. The down- and up-sampling methods
are decisively, i.e. it is important to preserve the local struc-
tures and small objects as good as possible while down- and
up-sampling the images or the optical flow.

In practice, we apply bicubic interpolation [35] for the
sampling, since it has fewer interpolation artifacts than bi-
linear interpolation or nearest-neighbor interpolation. Com-
pared to the Gaussian pyramid [16] the downsampled im-
ages by bicubic interpolation do not look as blurred.

5.2 Numerical Schemes for Transport Equations

To discretize the transport equations we employed two ap-
proaches: The first one follows [10] and is a second-order

TVD scheme and the second one is the methods of charac-
teristics. Both are also applicable for the backward transport
equation, since we can reformulate it as a forward problem
by setting t ′ := T − t:

pt ′ −b ·∇p = 0, p(0) =−(u(0)−uT ).

For the sake of completeness, we present the TVD scheme
from [10]: Suppose the image size is N×M, h and ∆ t are the
mesh sizes in space and time, respectively with mesh index
i = 1, · · · ,N, j = 1, · · · ,M in space and k = 1, · · · ,K in time.
The stability condition of the scheme, usually called CFL
condition [7], is

σCFL := max(|v|max, |w|max)
∆ t
h
≤ 1.

by setting b := (v,w). In practice we choose ∆ t such that
σCFL = 0.1. The TVD scheme of the forward transport equa-
tion is:

ut |ki j =
uk+1

i j −uk
i j

∆ t
,

−vux|ki j =
v+i j

h

1+
1
2

χ(r+
i− 1

2 , j
)− 1

2

χ(r+
i− 3

2 , j
)

r+
i− 3

2 , j

(uk
i−1, j−uk

i j)

−
v−i j

h

1+
1
2

χ(r−
i+ 1

2 , j
)− 1

2

χ(r−
i+ 3

2 , j
)

r−
i+ 3

2 , j


·(uk

i+1, j−uk
i j),

where v+i j = max(vi j,0),v−i j = min(vi j,0) and the flux differ-
ence ratios are defined as

r+
i− 1

2 , j
=

uk
i+1, j−uk

i j

uk
i j−uk

i−1, j
, r+

i− 3
2 , j

=
uk

i j−uk
i−1, j

uk
i−1, j−uk

i−2, j
,

r−
i+ 1

2 , j
=

uk
i j−uk

i−1, j

uk
i+1, j−uk

i j
, r−

i+ 3
2 , j

=
uk

i+1, j−uk
i j

uk
i+2, j−uk

i+1, j
.

In the similar way we can discretize the term −wuy. The
superbee limiter function is given by

χ(r) = max(0,min(2r,1),min(r,2)).

To compute the spatial derivatives of images we use the stan-
dard three-point formula:

pux|i j =
1

2h
(−ui−1, j +ui+1, j)pi j,

puy|i j =
1

2h
(−ui, j−1 +ui, j+1)pi j.

Another way for solving the transport equation is to utilize
the characteristic solution. From (6) we know the key point
is to solve the backward flow starting from (t,x)

∂Φ

∂ s
= b(s,Φ) in [0, t[×Ω ,

Φ(t,x) = x in Ω .

(25)
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To solve (25) numerically efficiently we use Runge-Kutta
4th order method [35]. We discretize [0, t] with time step
∆ t = 0.1 and utilize a constant flow b over [0, t] to save mem-
ory and computational cost. In this scheme we have to inter-
polate the flow b(t,x) with some non-integer x, since only
the flow b(t, ·) with integer coordinates is given. For this we
use bilinear interpolation (a bicubic interpolation leads to al-
most the same results). Then, we warp the image u0 with the
coordinates calculated by (25) using cubic spline predefined
in Matlab to approximate u(t,x).

5.3 Finite Element Methods for Stokes Equations

As previously mentioned, after replacing ∆ 3 with ∆ it is im-
mediately seen that the last two equations in (20) are the
Stokes equations. Stokes flow estimation was investigated
in [38] and Suter applied the mixed finite element method
[40] for solving it. Moreover, the approximation of velocity
field b(t, ·) and pressure q(t, ·) will be achieved by so-called
Taylor and Hood elements [21]. If the chosen finite element
spaces satisfy the inf-sup condition, also called LBB condi-
tion [21,13], then the method is stable.

The variational problem of the Stokes equations reads as
follows:a(b(t),v)+ c(v,q(t)) = ( f (t),v) ∀v ∈V,

c(b(t),w) = 0, ∀w ∈W
(26)

and the bilinear forms are defined by

a(b(t),v) =
∫
Ω

λ∇b(t)∇vdxdy,

c(v,q(t)) =
∫
Ω

(divv)q(t)dxdy,

( f (t),v) = −
∫
Ω

f (t)vdxdy,

where f := p∇u,V := H1
0 (Ω)2 and

W :=

w ∈ L2(Ω)
∣∣∣ ∫

Ω

wdxdy = 0

 .

The discretization of (26) using the mixed finite element
produces a linear system of the form(

A Ct

C 0

)(
bMN

pQ

)
=

(
fMN

0

)
. (27)

The approximation coefficients bMN , pQ and fMN are w.r.t.
the basis of finite element spaces Vh and Wh. The stiffness
matrix A has the following block form:

A =

(
A1 0
0 A1

)
,

where A1 = (
∫

Ω
∇ϕi∇ϕ jdxdy)i j , i, j = 1, · · · ,MN and ϕi are

the basic functions of Vh. The matrix Ct has also a block
form

Ct =

(
Ct

1
Ct

2

)
,

Ct
1 =


∫
Ω

∂ϕi

∂x
ψ jdxdy

∣∣∣ i = 1, · · · ,MN; j = 1, · · · ,Q


Ct

2 =


∫
Ω

∂ϕi

∂y
ψ jdxdy

∣∣∣ i = 1, · · · ,MN; j = 1, · · · ,Q

 .

Similarly, ψi are the basic functions of Wh. The vector f =
( f1, f2)

t is composed of scalar products ( f1,ϕi) and ( f2,ϕi)

for i = 1, · · · ,MN. We derive the interpolation polynomial
of f1, f2 w.r.t. the basic functions

f h
1 =

MN

∑
i=1

f1(xi)ϕi

f h
2 =

MN

∑
i=1

f2(xi)ϕi,

where xi is the corresponding measurement point of ϕi. Then,

fi = ( f h
1 ,ϕi) =

MN

∑
j=1

f1(x j)
∫
Ω

ϕ jϕidxdy, i = 1, · · · ,MN

fi = ( f h
2 ,ϕi) =

MN

∑
j=1

f2(x j)
∫
Ω

ϕ jϕidxdy, i = MN +1, · · · ,2MN.

To simplify the estimation, we just need to define the basic
functions of a single element, i.e. a triangle or a square, and
derive the corresponding element stiffness matrix and ele-
ment mass matrix, then assemble them into A1, C1, C2 and
fMN .

Since the matrix in (27) is sparse and symmetric, but not
positive definite, the system (27) can be numerically solved
by the routine bicgstab predefined in MATLAB.

6 Numerical Experiments

6.1 Parameter Choice Rule

The essential parameters of the quality of image interpola-
tion are the regularization parameter λ and the downsam-
pling level l. Experimentally, we find out that the optimal
regularization parameter λopt and l are coupled. The down-
sampling level should be so adapted that at the lowest level
L the estimated optical flow is accurate with a λ L

opt . At the
higher level l with l < N the parameter λ l

opt is larger than
λ N

opt . In practice, we choose λ l
opt with l < N by the follow-

ing strategy:
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1. Find a pair (λ L
opt ,L) experimentally at the lowest level L.

2. Choose λ
l−1
opt such that λ

l−1
opt /λ l

opt ∈ [100.2100.5] and the
interpolation errors decrease at level l−1.

The difference between segregation loop I and II lies in that
segregation loop II equips with a constant λ l

opt at each level
and segregation loop I applies a monotonically decreasing
sequence converging to λ l

opt at each level. In case the image
size is around 600× 400 we set the lowest level L = 3 and
λ L

opt ∈ [105105.5].

6.2 Numerical Results

In several examples we tested segregation loop I and seg-
regation loop II. For all examples we used a stopping time
T = 1 and nine intermediate images, which allows us to treat
fairly large displacements. For all examples we give movies
as electronic supplementary material.

6.2.1 Interpolation with known ground truth

To illustrate the effect of our intermediate interpolated im-
ages, we apply the interpolation error (IE) introduced by
[8]. The IE measures the root-mean-square (RMS) differ-
ence between the ground-truth image ũ and the interpolated
image u

IE =

(
1

MN

N

∑
i=1

M

∑
j=1

(u(xi,y j)− ũ(xi,y j))
2

) 1
2

,

where M×N is the image size. We test our methods on the
datasets generated by Middlebury with public ground-truth
interpolation:

– Dimetrodon with size 584×388
– Venus with size 420×380

Every dataset is composed of three images and the mid-
image is the ground-truth interpolation at time 0.5 if we as-
sume the evolution process of three images lasts time T =

1. To evaluate the interpolation we can compare our inter-
polation results with the ground-truth by means of the IE
measure. The interpolation results calculated by segregation
loop I and II are shown in Table 1. As mentioned in [8], the
Pyramid LK method and MediaplayerTM are significantly
better for interpolation than for ground-truth motion, since
e.g. MediaplayerTM tends to overly extend the flow into tex-
tureless regions, which are not significantly affected by im-
age interpolation. According to Table 1 segregation loop II
works better than some classic methods and more accurate
than segregation loop I. The places where the interpolation
errors take place can be seen in Fig. 1− 2. As a result our
methods, especially segregation loop II, work effectively in
image interpolation.

Dimetrodon Venus
Segregation loop I 2.25 6.67
Segregation loop II 1.95 3.63

Stich et al. 1.78 2.88
Pyramid LK 2.49 3.67
Bruhn et al. 2.59 3.73

Black and Anandan 2.56 3.93
MediaplayerTM 2.68 4.54

Zitnick et al. 3.06 5.33

Table 1 Interpolation errors calculated by our methods using the Mid-
dlebury datasets by comparison to the ground truth interpolation with
results taken from [39].

Dealing with the convergence history of the proposed
methods we can expect that segregation loop I minimizes the
cost functional (19) and segregation loop II minimizes the
data error ‖u(T )−uT‖L2(Ω) according to the explanation in
Section 5. In Figure 3 we observe this phenomenon for the
test image sequence Dimetrodon from Figure 1. Segregation
loop I reduces the value of the cost functional considerably
in the first iterates (subfigure (a)) while the data error is only
reduced mildly (subfigure (b)). Segregation loop II reduces
the value of the data error faster and this is responsible for
the quality of image interpolation.

6.2.2 Dealing with noise

In additional to accuracy we demonstrate in Figures 4 and
5 how segregation loop II deals with noisy images. In Fig-
ure 4 the same images as in Figure 1 are polluted with salt
and pepper noise with density 0.5 and in Figure 5 the same
images tested in Figure 2 are polluted with Gaussian noise
with mean 0 and variance 0.01. Compared to the interpola-
tion results without noise we can conclude that this method
works stably with respect to perturbation by different kind
of noise.

6.2.3 Non-rigid deformations

In another kind of tests we tried segregation loop II with
nonrigid objects and large displacements. Figure 6 demon-
strates an artificially warped hand. The hand expands in di-
rection to the light-yellow color and shrinks in direction to
the darker yellow color. We can observe the that interpola-
tion u(T ) matches uT well, since the transport equation is
well-posed if the flow is Lipschitz continuous.

6.2.4 Matching non-matching images

In a final, even more more challenging problem, we test our
method with images with varying illumination. We tried to
interpolate between two different head sections with differ-
ent geometry. Here the assumption that the image intensity
is constant along the characteristics generated by the flow



12

breaks down. This results in a wrong matching at several
places, e.g. in Figure 7, the lower jaw of (d) is warped to
a wrong position comparing to (b). However, observing (e)
the contour matching of (a) to (b) work still regularly, de-
spite the huge displacement.

7 Conclusion and Outlook

The approach to image sequence interpolation by optimal
control of a transport equation has proven to be useful and
competitive to existing methods. While we started to model
the images in BV we ended up with an algorithm which does
not exploit this regularity but merely uses the L2-structure.
This was due to the fact that one needs Lipschitz-continuous
flow fields to preserve BV -regularity [17]. Hence, we finally
used H1 flow fields. However, this still imposes some reg-
ularity on the flow field and discontinuous flow fields are
still not allowed. In further work it may be interesting to use
BV vector fields and hence try to transport an image with a
possibly discontinuous flow field. Another open question is,
how to deal with objects with varying illumination. One pos-
sibility could be to use heuristic techniques to estimate mo-
tions which occlude or disclose objects as described in [39].
Another possibility could be that we append a source func-
tion f into the transport equation and the control problem.
By two control variables b and f it is supposed to solve this
kind of problems, but it is still not clear how the flow and the
source influence each other. This could be done in the future
work.
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(a) (b)
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(e) (f)

(g) (h)

Fig. 1 Dimetrodon. (a) u0. (b) uT . (c) u0 plus the colored difference between u0 and uT . (d) The ground-truth interpolation at time T/2 from the
Middlebury datasets. (e) The generated interpolation at time T/2 by segregation loop I. (f) The absolute difference between (d) and (e). (g) The
generated interpolation at time T/2 by segregation loop II. (h) The absolute difference between (d) and (g).



14

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2 Venus. (a) u0. (b) uT . (c) u0 plus the colored difference between u0 and uT . (d) The ground-truth interpolation at time T/2 from the
Middlebury datasets. (e) The generated interpolation at time T/2 by segregation loop I. (f) The absolute difference between (d) and (e). (g) The
generated interpolation at time T/2 by segregation loop II. (h) The absolute difference between (d) and (g).
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Fig. 3 Convergence for Dimetrodon of Fig. 1. (a) Values of the cost functional for segregation loop I. (b) Values of the data error for segregation
loop I. (c) Values of the data error for segregation loop II.

(a) (b)

(c) (d)

Fig. 4 Noisy Dimetrodon. (a) u0 of Fig. 1 with noise. (b) uT of Fig. 1 with noise. (c) The generated interpolation at time T/2 by segregation loop
II. (d) The absolute difference between (c) and (d) of Fig 1.
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(a) (b)

(c) (d)

Fig. 5 Noisy Venus. (a) u0 of Fig. 2 with noise. (b) uT of Fig. 2 with noise. (c) The generated interpolation at time T/2 by segregation loop II. (d)
The absolute difference between (c) and (d) of Fig 2.
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(a) (b)

(c) (d)

(e)

Fig. 6 Non-rigid hand. (a) u0. (b) uT . (c) u0 plus the colored difference between u0 and uT . (d) The generated interpolation at time T by segregation
loop II. (e) The absolute difference between (b) and (d).
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(a) (b)

(c) (d)

(e)

Fig. 7 Illumination varying brain. (a) u0. (b) uT . (c) u0 plus uT . (d) The generated interpolation at time T by segregation loop II, denoted by u(T ).
(e) uT plus u(T ).
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