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Report 10–05

Berichte aus der Technomathematik

Report 10–05 May 2010





Two-mechanism models with plastic mechanisms –

modelling in continuum-mechanical framework

M. Wolff, M. Böhm, L. Taleb
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Abstract

This note deals with two-mechanism models (= 2M models). 2M models (or, generally, multi-
mechanism models) are a useful tool for modelling of complex material behavior. They have been
studied and applied for the last twenty years. This note is focused on the modelling of 2M models in
continuum-mechanical framework mainly in the case of plastic behaviour. In particular, some classes
of 2M models are described, thermodynamic consistency of some 2M models is proved, coupled
evolution equations for the backstresses are derived. Moreover, an extension concerning coupling
between isotropic and kinematic hardening is proposed. Finally, some mathematical problems arising
from 2M models are formulated.

1 Introduction

1) Two-mechanism (or, generally, multi-mechanism) models have been studied and applied for the last
twenty years. Their characteristic trait is the additive decomposition of the inelastic (i.e., plastic or
visco-plastic, e.g.) strain into two (or multi) parts (sometimes called “mechanisms”) in the case of small
deformations. In comparison with rheological models (cf. Palmov (1998), e.g.), there is an interaction
between these mechanisms (see Figure 1). This interaction allows to describe important observable
effects, but, it requires additional efforts in modelling and simulation. Each inelastic strain part may
exhibit plastic, or general inelastic behavior. The (thermo-)elastic strain is not regarded as an own
mechanism. Each mechanism has its own internal variables with corresponding evolution equations.
Moreover, each mechanism may have an own yield criterion, or, there may be common yield criteria for
several mechanisms. Thus, in the case of two mechanisms, there are possible models of the type 2M1C
and 2M2C. That means two mechanisms with one or two yield criteria (see Figure 2). A mechanism
without yield criterion like creep can be formally treated as a mechanism with its own criterion with zero
yield stress.

If the inelastic strain is seen as one mechanism (as it was historically first), one refers to about
a “unified model” (or Chaboche model) (cf. the survey by Chaboche (2008) and the references cited
therein). (That means plastic and viscous components are considered together in the same variable.)
As explained in Contesti and Cailletaud (1989) and Cailletaud and Säı (1995), there are experimentally
observable effects (inverse strain-rate sensibility, e.g.) which can be qualitatively correctly described by
the two-mechanism approach.

Figure 1: Scheme of a two-mechanism model. The two inelastic mechanisms 1 and 2 have their own
evolution equations. But, they are not independent from each other. The thermoelastic strain εte is
usually not regarded as a mechanism.

2) Up to now, there are only relatively few publications dealing directly with multi-mechanism models.
We refer to Contesti and Cailletaud (1989), Säı (1993), Cailletaud and Säı (1993), Cailletaud and Säı
(1995), Blaj and Cailletaud (2000), Besson et al. (2001), Säı et al. (2004), Aeby-Gautier and Cailletaud
(2004), Taleb et al. (2006), Velay et al. (2006), Säı and Cailletaud (2007), Wolff and Taleb (2008),
Chaboche (2008), Hassan et al. (2008), Taleb and Hauet (2009), Taleb and Cailletaud (2010), Wolff et al.
(2010a). Finally, there is a recent survey by Säı (2010).1

In contrary to this manageable number, there is a large variety of papers dealing with complex material
behavior of metals, soils, composites, biological tissues etc. in which the inelastic strain is decomposed
into several parts. But, as a rule, multi-mechanism models are not directly addressed. We give some
examples below.

To our knowledge, a first systematic formulation and investigation of two mechanism models was
given by Contesti and Cailletaud (1989). Besides, the papers by Cailletaud and Säı (1995), by Säı and
Cailletaud (2007), by Taleb and Cailletaud (2010) and, by Säı (2010) give overviews and possibilities of

1The paper by Säı (2010) has been directly published before ending our study.
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applications. Moreover, we refer to the thesis of Säı (1993) and to the book by Besson et al. (2001). The
survey article by Chaboche (2008) contains comments concerning multi-mechanism models, too.

Wolff and Taleb (2008) proved thermodynamic consistency of two-mechanism models dealt with in
Taleb et al. (2006). The question about thermodynamic consistency is not trivial, if one leaves the class
of “generalized standard models” (cf. Besson et al. (2001), e.g.). This is the case for important model
modifications (cf. Taleb et al. (2006), Säı and Cailletaud (2007)). Additionally, there is the typical mutual
influence of mechanisms (in particular via the backstresses). Thus, generally, a separate investigation
of thermodynamic consistency with respect to each mechanism is not successful. This is a substantial
difference to rheologic models (cf. Palmov (1998), e.g.).

Generally, the material parameters depend on temperature. Most of the papers about multi-mechanism
models cited above only consider the isothermal case, as ratcheting experiments, up to now, are only per-
formed under constant temperature. In the current paper we will also address the non-isothermal case.
This leads to more complex equations at some places.

Figure 2: 2M2C model with two plastic mechanisms with kinematic hardening.

3) An important application of two-mechanism models is cyclic plasticity including ratcheting. There
are many papers dealing with ratcheting both in modelling as well as in simulation and comparison
with experimental data. For general modelling and simulation we exemplarily refer to Portier et al.
(2000), Bari and Hassan (2002), Taleb et al. (2006), Kang (2008), Jiang and Zhang (2008), Hassan et al.
(2008), Abdel-Karim (2009), Taleb and Hauet (2009), Krishna et al. (2009), Abdel-Karim (2010) and the
references therein.

In the majority of the literature ratcheting is dealt within the framework of one-mechanism models.
Investigations of ratcheting with the aid of two-mechanism models can be found in Cailletaud and Säı
(1995), Blaj and Cailletaud (2000), Säı et al. (2004) [using a 2M2C model], Taleb et al. (2006), Velay et al.
(2006), Säı and Cailletaud (2007), Hassan et al. (2008), Taleb and Hauet (2009), Taleb and Cailletaud
(2010).

Finally, experiments and simulations must decide, in which situation which model delivers the better
approximation of the reality. In Hassan et al. (2008), a direct comparison between a modified Chaboche
model and a 2M model has been performed.
4) Another important application of two-mechanism models lies in modelling of complex material behavior
of steel under phase transformations. The two-mechanism approach directly used in Videau et al. (1994)
and Wolff et al. (2008) allows a good description of interactions between classical and transformation-
induced plasticity. On the other hand, in Leblond et al. (1986a), Leblond et al. (1986b), Leblond et al.
(1989), Leblond (1989), Fischer et al. (1998), Fischer et al. (2000), Devaux et al. (2000), Taleb and Sidoroff
(2003), the transformation-induced plasticity itself is the focus, and the two-mechanism approach arises
in natural way without a special reference.

More recent experiments and simulations (cf. Taleb and Petit (2006), e.g.) show that, in some cases,
the transformation-induced plasticity after a pre-deformation of austenite cannot be qualitatively cor-
rectly described with the aid of the model developed in Leblond et al. (1986a), Leblond et al. (1986b),
Leblond et al. (1989), Leblond (1989), Devaux et al. (2000), Taleb and Sidoroff (2003). However, the con-
sistent access via the two-mechanism model allows a qualitatively correct description of this phenomenon
(cf. Wolff et al. (2008), Wolff et al. (2009)). Based on this approach, in Suhr (2010) and Wolff et al.
(2010b), a semi-implicit algorithm for numerical simulations has been developed, and some simulations
are presented.

Contrary to Videau et al. (1994), Wolff et al. (2008), Mahnken et al. (2009) and others, in Aeby-Gautier
and Cailletaud (2004) the material behavior of steel is described by a multi-mechanism model at the macro
level as well as at the meso level (sometimes called micro level), whereas the proof of thermodynamic
consistency still remains open. Furthermore, it should be noted that some authors combine classical and
transformation-induced plasticity in one model (“unified transformation-thermoplasticity”, cf. Inoue and
Tanaka (2006)).
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5) The complex material behavior of important materials (such as visco-plastic materials, shape-memory
alloys, soils, granular materials, composites, biological tissues) leads to multi-mechanism models, when
taking the additive decomposition of the strain tensor into account. However, in most cases, the concrete
application is is not set in the framework of multi-mechanism models in the sense of Cailletaud and Säı
(1995). We give some examples.

When modelling shape-memory alloys, sometimes, the inelastic part of the strain tensor is decomposed
into two parts (into two summands in the case of small deformations). We refer to Helm and Haupt (2003),
Helm (2007), Reese and Christ (2008), Kang et al. (2009), Kan and Kang (2010) e.g.

The material behavior of salt in deposits is very complex, and its modelling uses an additive decom-
position of inelastic strain into three parts (cf. Munson et al. (1993), e.g.). In Chan et al. (1994), Koteras
and Munson (1996), an additional summand is used which is induced by damage.

Further references to modelling via several mechanisms can be found in some papers in geomechanics,
for instance, for cohesionless soil in Shi and Xie (2002), for clay in Modaressi and L. (1997), for sand in
Akiyoshi et al. (1994), Fang (2003) and for granular material in Anandarajah (2008). Similarly, complex
material behavior of biologic tissue is modelled using a multi-mechanism approach (cf. Wulandana and
Robertson (2005), Doehring et al. (2004), e.g.).
6) This work is organised as follows:

• In Sections 2, 3, and 4, some classes of 2M models are described in the thermodynamical framework.

• In Sections 3, 4 some results on thermodynamic consistency are presented.

• In Section 5, we present useful relations generalizing the classical Armstrong-Frederick equations
for backstresses.

• In Section 6, an extension concerning coupling between kinematic and isotropic hardening is given.

• In Section 7, some resulting mathematical problems are formulated in short.

Basically, the material in Sections 2, 3, 4, and 5 can be found in Wolff et al. (2010a). Generally, the
material in Section 5 is known. However, here, it is comprehensively presented. The topic in Subsection
5.4.2 is based on investigations in Taleb et al. (2006). Section 7 gives an outlook for further mathematical
investigations, including simulations.

In this note, we focus on 2M models with plastic mechanisms. But, generally, 2M models with
viscoplastic, creep or more complex mechanisms can be dealt with in an analogous manner (cf. Remark
3.2).

2 Some basic facts on two-mechanism models

In this section we provide important basic relations for 2M models. At first, there will be common items
for models with one and with two yield criteria. After this, we deal separately with 2M models with one
and with two criteria.

2.1 General assertions

We restrict ourselves to small deformations. Thus, the equation of momentum, the energy equation and
the Clausius-Duhem inequality are given by

(2.1) % ü− divσ = f

(2.2) % ė+ div q = σ : ε̇+ r

(2.3) −% ψ̇ − % η θ̇ + σ : ε̇− 1
θ
q ·∇θ ≥ 0.

The relations (2.1) - (2.3) have to be fulfilled in the space-time domain Ω×]0, T [. The notation is standard:
% - density in the reference configuration, that means for t = 0, u - displacement vector, ε - linearized
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Green strain tensor, θ - absolute temperature, σ - Cauchy stress tensor, f - volume density of external
forces, e - mass density of the internal energy, q - heat-flux density vector, r - volume density of heat
supply, ψ - mass density of free (or Helmholtz) energy, η - mass density of entropy. The time derivative
is denoted by a dot. α : β is the scalar product of the tensors α and β, q · p is the scalar product of the
vectors p and q. We note the well-known relations

(2.4) ε = ε(u) :=
1
2

(∇u+ ∇uT ), ψ = e− θ η.

In the general case of inelastic material behavior, the full strain ε is split up via

(2.5) ε = εte + εin

(εte - thermoelastic strain, εin - inelastic strain). Usually, the inelastic strain is assumed to be traceless,
i.e.

(2.6) tr(εin) = 0.

The accumulated inelastic strain is defined by

(2.7) sin(t) :=
∫ t

0

(
2
3
ε̇in(τ) : ε̇in(τ))

1
2 dτ.

We drop the dependence on the space variable x.
We propose for the free energy ψ the split

(2.8) ψ = ψte + ψin.

The thermoelastic part is given by

(2.9) ψte :=
1
%
{µ ε∗te : ε∗te +

K

2
(tr(εte))2 − 3K α(θ − θ0) tr(εte) + C(θ − θ0)}.

µ > 0 - shear modulus, K > 0 - compression modulus, α - linear heat-dilatation coefficient, θ0 - initial
temperature, i.e. for t = 0, C - calorimetric function (cf. Helm and Haupt (2003), e.g.), ε∗te - deviator of
εte, defined (in 3d case) by

ε∗te = εte −
1
3

tr(εte)I (I - unity tensor).(2.10)

We assume that the inelastic part ψin of ψ has the general form

(2.11) ψin = ψin(ξ, θ).

ξ = (ξ1, . . . , ξm) (ξj - scalars or tensors) represent the internal variables. Further on, these variables
will be chosen in accordance with concrete models under consideration. Internal variables are used for
description of phenomena like

• inelastic deformations, including

– dislocation-based plasticity and viscoplasticity with kinematic and isotropic hardening as well
as with softening

– transformation-induced plasticity in steels

– specific inelastic deformations in shape-memory materials

• phase transformations

• damage

• changes in microstructure, in polymers, e.g. (cf. Lion and Höfer (2007))
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In the case of damage, the thermoelastic part ψte of the free energy may depend on internal variables
too (cf. Besson et al. (2001)). Internal variables have to fulfil evolution equations which are usually
ordinary differential equations (ODE) with respect to the time t. As a rule, one poses zero initial
conditions, i.e.

ξj(0) = 0 for j = 1, . . . ,m.(2.12)

Taking (2.8), (2.9) and the general relation in thermodynamics

(2.13) σ = %
∂ψ

∂εte

into account, one obtains the usual material law in thermo-elasto-plasticity:

(2.14) σ = 2µ ε∗te +Ktr(εte)I − 3K α(θ − θ0)I.

For materials with phase transformations, this relation (as well as (2.9)) will be extended (cf. Wolff et al.
(2008))

Using standard arguments of thermodynamics (cf. Lemaitre and Chaboche (1990), Maugin (1992),
Besson et al. (2001), Haupt (2002), e.g.), from (2.3) one obtains the dissipation inequality (as a reduced
Clausius-Duhem inequality):

(2.15) σ : ε̇in − %
m∑
j=1

∂ψin
∂ξj

ξ̇j −
1
θ
q ·∇θ ≥ 0

As common, a model is regarded as thermodynamically consistent, if the dissipation inequality (2.15)
holds for all possible processes. Sufficient for this is, that (2.15) is fulfilled for arbitrarily chosen sets of
its variables. As usual, we assume the Fourier law of heat conduction

(2.16) q = −κ∇θ,

κ > 0 - heat conductivity (scalar or positive definite tensor). Therefore, the heat-conduction inequality

(2.17) −1
θ
q ·∇θ ≥ 0

is always fulfilled. Hence, the model under consideration is thermodynamically consistent, if the remain-
ing inequality

(2.18) σ : ε̇in − %
m∑
j=1

∂ψin
∂ξj

: ξ̇j ≥ 0

is fulfilled.
By (2.2) and standard arguments (cf. Besson et al. (2001), Haupt (2002), e.g.) one obtains the

heat-conduction equation:

(2.19) % cd θ̇ − div(κ∇θ) = σ : ε̇in − %
m∑
j=1

∂ψin
∂ξj

: ξ̇j + % θ

m∑
j=1

∂2ψin
∂θ ∂ξj

ξ̇j + θ
∂σ

∂θ
: ε̇te + r

(cd = θ ∂
2ψ
∂θ2 > 0 - specific heat).

In the theory of 2M models the following decomposition is crucial:

(2.20) εin = A1 ε1 +A2 ε2,

A1, A2 are positive real numbers. As usual, the inelastic strains are trace-less:

(2.21) tr(εin) = tr(ε1) = tr(ε2) = 0.

Remark 2.1. (i) The parameters A1 and A2 open opportunities for further extensions and special
applications. We refer to Säı and Cailletaud (2007). A1 and A2 can depend on further quantities as, for
instance, they can constitute phase fraction in complex materials (steel, shape memory alloys, e.g.). In
this sense, here is a bridge from the macro to the meso (or micro) level of modelling.
(ii) In case of n mechanisms, instead of (2.20), one has the split

(2.22) εin =
n∑
j=1

Aj εj

with Aj > 0.
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For both εj we introduce separate accumulations

(2.23) sj(t) :=
∫ t

0

(
2
3
ε̇j(τ) : ε̇j(τ))

1
2 dτ j = 1, 2.

Note, that sin (as defined in (2.7)) is not the sum of s1 and s2. As the roots in (2.7) and (2.23) are
norms, one gets useful inequalities

(2.24) |A1 ṡ1 −A2 ṡ2| ≤ ṡin ≤ A1 ṡ1 +A2 ṡ2.

We introduce the local stresses σ1, σ2 via

σj := Aj σ j = 1, 2(2.25)

From now on, we deal separately with 2M1C and 2M2C models. In order to focus, we preferably deal
with plastic mechanisms obeying yield criteria. Other types of (inelastic) mechanisms can be dealt with
analogously. As mentioned in the Introduction, a mechanism without yield stress can be formally treated
as a mechanism with zero yield stress.

2.2 Two-mechanism models with one yield criterion

We specialize the ansatz for the inelastic part of the free energy in (2.11), focussing on plastic mechanisms,
and assuming the internal variables to be given ξ = (α1,α2, q). This leads to

(2.26) ψin = ψin(θ,α1,α2, q).

The tensorial symmetric internal variables α1 and α2 are related to kinematic hardening, the scalar
internal variable q is related to isotropic hardening. All of them are of strain type. α1 and α2 are
associated with the mechanisms ε1 and ε2, respectively. We define the backstressesX1 andX2 associated
with the mechanisms ε1 and ε2, respectively, as well as the isotropic hardening R by

Xj = %
∂ψin
∂αj

(j = 1, 2),(2.27)

R = %
∂ψin
∂q

.(2.28)

(2.25), (2.27), (2.28) and (2.18) imply the following remaining inequality

(2.29) (σ1 −X1) : ε̇1 + (σ2 −X2) : ε̇2 +X1 : (ε̇1 − α̇1) +X2 : (ε̇2 − α̇2)−R q̇ ≥ 0,

and, via (2.19)

% cd θ̇ − div(κ∇θ) =(σ1 −X1) : ε̇1 + (σ2 −X2) : ε̇2 +X1 : (ε̇1 − α̇1) +X2 : (ε̇2 − α̇2) +(2.30)

−R q̇ + θ
∂X1

∂θ
: α̇1 + θ

∂X2

∂θ
: α̇2 + θ

∂R

∂θ
q̇ + θ

∂σ

∂θ
: ε̇te + r.

Based on the von Mises stress, we define the quantities

Jj := (
3
2

(σ∗j −X
∗
j ) : (σ∗j −X

∗
j ))

1
2 (j = 1, 2)(2.31)

J := (JN1 + JN2 )
1
N .(2.32)

The material parameter N has to fulfil

(2.33) N ≥ 1.

The yield function is given by

(2.34) f := J − (R+R0),

(2.35) R0 := N
√

2σ0.
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The initial yield stress σ0 = σ0(θ) can be determined by a standard tension experiment. Since we are
dealing with plastic behavior, we suppose for all 2M1C models the subsequent constraint

(2.36) f(σ1,σ2,X1,X2, R,R0) ≤ 0.

Clearly, the condition f(σ1,σ2,X1,X2, R,R0) < 0 describes the elastic domain, and plastic deformation
can only occur, if f(σ1,σ2,X1,X2, R,R0) = 0.

Based on (2.31), (2.32), (2.34), we define

nj := − ∂f

∂Xj
=

3
2
σ∗j −X

∗
j

Jj

(
Jj
J

)N−1

(j = 1, 2).(2.37)

Remark 2.2. The importance of the parameter N in (2.33) for application consists in the fact, that, if
it growths, the two quantities J1 and J2 become more and more independent of each other. We refer to
Wolff and Taleb (2008), Taleb and Cailletaud (2010) for details.

2.3 Two-mechanism models with two yield criteria

Contrary to (2.26), now the inelastic free energy is given by

(2.38) ψin = ψin(θ,α1,α2, q1, q2)

with α1 and α2 as above. q1 and q2 are related to the isotropic hardening of the first and second
mechanism, respectively. The backstresses X1 and X2 are defined as in (2.27), the isotropic hardenings
R1 and R2 are defined by

Rj = %
∂ψin
∂qj

(j = 1, 2)(2.39)

By (2.25), (2.27), (2.28) and (2.18) we infer

(2.40) (σ1 −X1) : ε̇1 + (σ2 −X2) : ε̇2 +X1 : (ε̇1 − α̇1) +X2 : (ε̇2 − α̇2)−R1 q̇1 −R2 q̇2 ≥ 0.

Similarly as above, we obtain the specialized heat-conduction equation

% cd θ̇ − div(κ∇θ) = (σ1 −X1) : ε̇1 + (σ2 −X2) : ε̇2 +X1 : (ε̇1 − α̇1) +X2 : (ε̇2 − α̇2) +(2.41)

−R1 q̇1 −R2 q̇2 + θ
∂X1

∂θ
: α̇1 + θ

∂X2

∂θ
: α̇2 + θ

∂R1

∂θ
q̇1 + θ

∂R2

∂θ
q̇2 + θ

∂σ

∂θ
: ε̇te + r.

Now, the two yield functions are

fj := Jj − (Rj +R0j) j = 1, 2, (Jj defined by (2.31)).(2.42)

R0j is the initial yield stress of the jth mechanism. For all 2M2C models (in case of plastic mechanisms),
the subsequent constraints are supposed

fj(σj ,Xj , Rj , R0j) ≤ 0 j = 1, 2.(2.43)

And, as a consequence, a plastic deformation due to the jth mechanism can only occur, if the jth yield
criterion is fulfilled, i.e. if

(2.44) fj(σj ,Xj , Rj , R0j) = 0.

Now, there are two elastic domains defined by fj(σj ,Xj , Rj , R0j) < 0.
Finally, based on (2.31) and (2.42), for 2M2C models we define

(2.45) nj := − ∂fj
∂Xj

=
3
2
σ∗j −X

∗
j

Jj
.
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2.4 General remarks concerning the modelling

In this paragraph, we expose the further approach we follow.
(i) In order to obtain complete 2M models, one has to

• propose a concrete expression for the inelastic part of the free energy ψin (cf. (2.26) and (2.38)),

• to formulate evolutions laws

– for the inelastic strains ε1 and ε2 as well as

– for the internal variables α1, α2 and q (or q1 and q2).

Doing so, one has to take care that

• the inelastic free energy ψin is convex (with respect to the variables describing hardening) for frozen
temperature (cf. remark 3.1),

• the remaining inequality is fulfilled for all admissible arguments. Thus, the model under consider-
ation is thermodynamically consistent.

(ii) Moreover, the chosen model should approximate the reality as well as possible. This is an requirement
of very great practical relevance, but it does not concern the theory itself.
(iii) We do not use dissipation potentials for modelling. This way opens more possibilities, as the
evolution equations may be chosen independently of each other. We refer to Cailletaud and Säı (1995),
Besson et al. (2001), Säı and Cailletaud (2007), Säı (2010) for using dissipation potentials in modelling
of 2M models.
(iv) All arising material parameters (or more precisely material functions) may depend on temperature.
Moreover, those parameters which do not occur in the free energy may additionally depend on stress and
further quantities. This last dependency gives more possibilities for modelling, and, it does not influence
the thermodynamic consistency.
(v) In case of more than two mechanisms, there are more possibilities of yield criteria. For instance, in
a 3M model, there may be three separate criteria, or one common for all mechanisms, or one mechanism
with a separate criterion, while the remaining two mechanisms have a common criterion.

3 Description and thermodynamic consistency of some 2M1C
models

Now, we discuss two types of 2M1C models. Again, we collect the common things at the beginning.

3.1 Common features of 2M1C models

The inelastic free energy in (2.26) is further specialized as

(3.1) ψin(α1,α2, q, θ) :=
1
3%
{c11(θ)α1 : α1 + 2 c12(θ)α1 : α2 + c22(θ)α2 : α2}+

1
2%
Q(θ) q2,

Remark 3.1. (i) For each temperature, the inelastic free energy ψin in (3.1) is a convex function with
respect to α1, α2 and q, if there hold (for all admissible θ) the conditions

c11(θ) ≥ 0, c12(θ)2 ≤ c11(θ) c22(θ),(3.2)
Q(θ) ≥ 0.(3.3)

We note that the quadratic form related to cij is also positive semi-definite (cf. Wolff and Taleb (2008),
e.g.). From the physical point of view, it is more precise to require that this part of the free energy is
convex.
(ii) In order to focus, in this Section, we do not consider a possible coupling between kinematic and
isotropic hardening in (3.1). This type of coupling will be considered in Section 6.

Assuming additionally

c11 > 0 c22 > 0 Q > 0,(3.4)
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we exclude simpler cases.
Due to (2.27), (2.28) and (3.1), the following equations for X1, X2 and R hold

X1 =
2
3
c11α1 +

2
3
c12α2, X2 =

2
3
c12α1 +

2
3
c22α2,(3.5)

R = Qq.(3.6)

We assume evolution laws for the mechanisms ε1 and ε2:

(3.7) ε̇j = λnj

(nj - defined by (2.37)). The common plastic multiplier for both mechanisms λ ≥ 0 has to fulfil

λ = 0, if f(σ1,σ2,X1,X2, R,R0) < 0,(3.8)
λ ≥ 0, if f(σ1,σ2,X1,X2, R,R0) = 0 (flow condition).(3.9)

Moreover, we assume an evolution law for q:

(3.10) q̇ = r λ− b

Q
Rλ,

with r and b fulfilling

r > 0, b > 0,(3.11)

(b = 0 corresponds to the simpler case of linear isotropic hardening.) From (2.23), (2.31), (2.32), (2.37)
and (3.7) one gets

(3.12) ṡj = λ (JN1 + JN2 )
1
N −1JN−1

j ,

and, after this,

(3.13) λ = ((ṡ1)
N

N−1 + (ṡ2)
N

N−1 )
N−1

N .

We denote by Λ the primitive of λ, i.e.

(3.14) Λ(t) =
∫ t

0

λ(τ)dτ.

There remain the approach for the evolution equation for α1 and α2.We will discuss two variants
leading to 2M models which are named here by 2M1C-a and 2M1C-b.

Remark 3.2. Viscoplastic mechanisms can be dealt with analogously without difficulties. Let be f as
in (2.34) and n as in (2.37). Here, we consider 1C models. 2C models with viscoplastic mechanisms can
be dealt with in the same manner. Formally, the evolution law for ε1 and ε2 looks like (3.7). Contrary
to the plastic case, there is no constraint as in (2.36). The elastic domain is defined by

(3.15) f(σ1,σ2,X1,X2, R,R0) ≤ 0.

In general, the stress is not a-priori bounded. Hence, the viscoplastic multiplier is not determined by the
flow condition, but it must be defined separately, for instance by

(3.16) λ :=
2

3 η
<

1
D
f(σ1,σ2,X1,X2, R,R0) >n .

The McCauley brackets< • > are defined by< x >:= x for x ≥ 0 and< x >:= 0 otherwise. The exponent
n > 0 and the viscosity η > 0 generally depend on temperature (and maybe on other quantities). The
drag stress (cf. Chaboche, 2008) is a positive scalar generally following its own evolution. Finally, there
hold the relations (3.12) and (3.13) hold for λ and s1, s2.

Other inelastic mechanisms like creep can be dealt with in the same manner, if the rate of the
corresponding inelastic strain is explicitly given.
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3.2 The model 2M1C-a

We assume (3.1) - (3.4) and (3.7) - (3.11). In Addition, the evolution of α̇j is given by

α̇j = aj ε̇j −
3dj
2cjj

{(1− ηj)Xj + ηj(Xj : mj) mj}λ (j = 1, 2).(3.17)

The material parameters aj , dj , ηj have to fulfil

aj > 0, dj > 0, 0 ≤ ηj ≤ 1 (j = 1, 2).(3.18)

(dj = 0 corresponds to a simpler case.) The tensors mj are defined as

mj := nj ‖nj‖−1 =
σ∗j −X

∗
j∥∥σ∗j −X∗
j

∥∥ (j = 1, 2).(3.19)

The isothermal case of this model 2M1C-a (with a1 = a2 = 1 and η1 = η2 = 0) was proposed by
Cailletaud and Säı (1995). In Taleb et al. (2006), ratcheting experiments were simulated based on this
model. The idea of the projection of Xj onto mj is due to Burlet and Cailletaud (1987).

Using the evolution equations (3.7), (3.10) and (3.17) as well as (2.34), (2.37), one can re-write the
dissipation inequality (2.29) in the form

(3.20) (R0 + (1− r)R+
b

Q
R2)λ+ (1− a1)X1 : ε̇1 + (1− a2)X2 : ε̇2 +

3d1

2c11
(1− η1)λX1 : X1 +

+
3d1

2c11
η1λ (X1 : m1)2 +

3d2

2c22
(1− η2)λX2 : X2 +

3d2

2c22
η2λ (X2 : m2)2 ≥ 0.

Clearly, the model 2M1C-a (characterised by (3.1), (3.7), (3.10), (3.17)) is thermodynamically consistent,
if the dissipation inequality (3.20) holds. In Wolff and Taleb (2008), the special case r = 1 has been
considered. The following theorem covers the more general case.

Theorem 3.3. Assume (3.2) - (3.4), (3.11), (3.18).
(i) In the case of

(3.21) a1 = a2 = 1,

the model 2M1C-a is thermodynamically consistent, if

(3.22) r ≤ 1 + 2

√
bR0

Q

holds.
(ii) In the general case

a1 6= 1, a2 6= 1(3.23)

the model 2M1C-a is thermodynamically consistent, if

η1 < 1, η2 < 1,(3.24)
c11

d1(1− η1)
|1− a1|2 +

c22

d2(1− η2)
|1− a2|2 ≤ 4R0,(3.25)

r ≤ 1 +

√
b

Q

(
4R0 −

c11

d1(1− η1)
|1− a1|2 −

c22

d2(1− η2)
|1− a2|2

)
(3.26)

Before proving Theorem 3.3, we provide some preliminary results.

Lemma 3.4. (i) Let be r, b, Q, R0 > 0. Then there holds the equivalence(
∀R ≥ 0 : R0 + (1− r)R+

b

Q
R2 ≥ 0

)
⇔ r ≤ 1 + 2

√
R0b

Q
(3.27)

(ii) (Young’s inequality with a small factor)

(3.28) ∀ a, b ∈ R ∀ δ > 0 : |ab| ≤ δ

2
a2 +

1
2 δ

b2
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Proof. (of Theorem 3.3) The strategy is to estimate the left-hand side of (3.20) from below by simpler
expressions, and to show, that, at the end, the last expression is non-negative.

At first, we note that terms containing (Xj : mj)2 are non-negative. Hence, they can be omitted in
(3.20). Therefore, it is sufficient to prove the validity of

(3.29) (R0 + (1− r)R+
b

Q
R2)λ+ (1− a1)X1 : ε̇1 + (1− a2)X2 : ε̇2 +

+
3d1

2c11
(1− η1)λX1 : X1 +

3d2

2c22
(1− η2)λX2 : X2 ≥ 0.

Clearly, in the simple case a1 = a2 = 1, (3.29) is valid, if

R0 + (1− r)R+
b

Q
R2 ≥ 0 ∀R ≥ 0.(3.30)

Due to (3.27), this is the case, because of the assumption (3.22).
In the general case, the terms containing Xj : ε̇j are not definite. But, there is a hope to compensate

their behavior by the definiteness of the remaining terms. Using (2.32), (2.37), (3.7) as well as Young’s
inequality (3.28) and Cauchy-Schwarz inequality, one gets the following estimates:

|(1− a1)X1 : ε̇1| = |(1− a1)X1 : (λn1)| =

=
3
2
|1− a1|

{
√
λ
JN−2

1

JN−1
‖σ∗1 −X

∗
1‖

}
:
{√

λ‖X1‖
}
≤

≤ |1− a1|λ
δ1
2

(
J1

J

)2(N−1)

+
3|1− a1|

4δ1
λ‖X1‖2 ≤

≤ |1− a1|λ
δ1
2

+
3|1− a1|

4δ1
λ‖X1‖2,

(3.31)

where δ1 > 0 will be appropriately chosen in 3.29. Analogously, one obtains

|(1− a2)X2 : ε̇2| = |(1− a2)X2 : (λn2)| ≤ |1− a2|λ
δ2
2

+
3|1− a2|

4δ2
λ‖X2‖2(3.32)

for some δ2 > 0 (cf. 3.31). From (3.29), (3.31), (3.32), one gets

(3.33) (R0 + (1− r)R+
b

Q
R2)λ+ (1− a1)X1 : ε̇1 + (1− a2)X2 : ε̇2 +

+
3d1

2c11
(1− η1)λX1 : X1 +

3d2

2c22
(1− η2)λX2 : X2 +

≥ (R0 − |1− a1|λ
δ1
2
− |1− a2|λ

δ2
2

+ (1− r)R+
b

Q
R2)λ+

+
3d1

2c11
(1− η1)λ‖X1‖2 +

3d2

2c22
(1− η2)λ‖X‖2 − 3|1− a1|

4δ1
λ‖X1‖2 −

3|1− a2|
4δ2

λ‖X2‖2.

As R, X1 and X2 are independent of each other, it is reasonable to require assumption (3.24). Now,
we chose δ1 and δ2 such, that the last four terms cancel each other. This can be done by setting

δ1 :=
|1− a1|c11

2(1− η1)d1
, δ2 :=

|1− a2|c22

2(1− η2)d2
.(3.34)

This implies from (3.33): (3.33) can be read as

(R0 −
|1− a1|2c11

4(1− η1)d1
− |1− a2|2c22|

4(1− η2)d2
+ (1− r)R+

b

Q
R2)λ ≥ 0.(3.35)

Clearly, it is necessary, that

R∗ := R0 −
|1− a1|2c11

4(1− η1)d1
− |1− a2|2c22

4(1− η2)d2
≥ 0.(3.36)
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This is assumption (3.25)! It remains to ensure that

R∗ + (1− r)R+
b

Q
R2 ≥ 0 for all R ≥ 0.(3.37)

Obviously, (3.26) is sufficient for (3.37).

Therefore, in the “trivial case” a1 = a2 = 1, r ≤ 1, the model 2M1C-a is thermodynamically consis-
tent. Generally, Theorem 3.3 ensures thermodynamic consistency, if ηj < 1, and, if the aj do not differ
“too much” from 1, and, if r is not “too much greater” than 1.

Remark 3.5. Theorem 3.3 is also valid in the viscoplastic case (cf. Remark 3.2). The viscoplastic
multiplier is only positive, if J > R0 + R, while the plastic multiplier is only positive, if J = R0 + R.
Hence, the validity of (3.20) is also sufficient for thermodynamic consistency in the viscoplastic case.

3.3 The model 2M1C-b

Again, we assume (3.1) - (3.4) and (3.7) - (3.11). Contrary to the 2M1C-a model in Subsection 3.2,
instead of (3.17), the evolution equations for α1 and α2 are given by

α̇j = aj ε̇j − {(1− ηj)αj + ηj(αj : mj) mj} dj λ (j = 1, 2).(3.38)

That means, in the right-hand side of (3.38), the backstresses Xj are substituted by the internal
variables αj . This approach was proposed in Taleb et al. (2006) in order to get a better description of
ratcheting behavior. Analogously, we let the parameters aj , dj and ηj fulfil the conditions (3.18). The
mj are defined by (3.19).

Remark 3.6. Contrary to the corresponding evolution equations for the 2MnC-a models (as well as the
1M models), in (3.38) and (4.22), the factor 3/2 does not appear. This way, we keep the notation in
Taleb et al. (2006), Wolff and Taleb (2008) and Hassan et al. (2008).

Using the evolution equations (3.7), (3.10) and (3.38) as well as (2.34), (2.37) and (3.5), one can
re-write the dissipation inequality (2.29) in the form

(3.39) (R0 + (1− r)R+
b

Q
R2)λ+

2
3
d1λ(c11α1 + c12α2) : {(1− η1)α1 + η1(α1 : m1)m1} +

+
2
3

(1− a1)(c11α1 + c12α2) : (λn1) +
2
3

(1− a2)(c12α1 + c22α2) : (λn2) +

+
2
3
d2λ(c12α1 + c22α2) : {(1− η2)α2 + η2(α2 : m2)m2} ≥ 0.

The case a1 = a2 = 1, r = 1 and η1 = η2 is dealt with in Wolff and Taleb (2008). In the general case,
there arise more complicated conditions to ensure thermodynamic consistency.

Theorem 3.7. Let be given the assumptions (3.2) - (3.4), (3.11), (3.18). The model 2M1C-b is thermo-
dynamically consistent, if

r ≤ 1(3.40)
η1 < 1, η2 < 1,(3.41)

c211(1− a1)2 + c212(1− a2)2 < R0d1c11(1− η1),(3.42)

c212(1− a1)2 + c222(1− a2)2 < R0d2c22(1− η2),(3.43)

(3.44) c212(d1 + d2)2 ≤ 4 (d1c11(1− η1)− 1
R0

(c211(1− a1)2 + c212(1− a2)2)) ·

· (d2c22(1− η2)− 1
R0

(c212(1− a1)2 + c222(1− a2)2)).

The proof of Theorem 3.7 is similar to the proof of Theorem 3.3, but more complex. Additionally,
one needs a result about quadratic forms.
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Lemma 3.8. Let ϕ be a quadratic form on Rn2
defined by

(3.45) ϕ(α1, α2) := c11 α1 : α1 + 2c12 α1 : α2 + c22 α2 : α2 =

= c11

m∑
i,j=1

α1ij : α1ij + 2c12

m∑
i,j=1

α1ij : α2ij + c22

m∑
i,j=1

α2ij : α2ij ∀ α1, α2 ∈ Rn
2
,

where c11, c12, c22 ∈ R. Then the following two assertions are equivalent
(i) ∀ α1, α2 ∈ Rn2

: ϕ(α1, α2) ≥ 0
(ii) c11 ≥ 0, c212 ≤ c11c22

The proof of Lemma 3.8 is elementary, we refer to the Appendix of Wolff and Taleb (2008), e.g.

Remark 3.9. In the simpler case a1 = a2 = 1 and r = 1 (cf. Wolff and Taleb (2008)), the above 2M1C-b
model is thermodynamically consistent, if (3.41) holds and if

(3.46) (d1 − d2)2 ≤ 4 d1 d2
c11c22(1− η1)(1− η2)− c212

c212

.

That means, contrary to the 2M1C-a model, the condition (3.46) restricts η1 and η2 even in the simpler
case a1 = a2 = 1.

Remark 3.10. In the case r > 1, more complex conditions are sufficient for thermodynamic consistency
which involve b and Q.

4 Description and thermodynamic consistency of some 2M2C
models

In an analogous way, we investigate two types of 2M2C models. Again, we collect the common features
in one subsection.

4.1 Common features of 2M2C models

We assume for the inelastic part ψin of the free energy (cf. (2.38) and (3.1)):

(4.1) ψin(α1, α2, q1, q2, θ) :=
1
3%
{c11(θ)α1 : α1 + 2 c12(θ)α1 : α2 + c22(θ)α2 : α2}+

+
1
2%
{
Q11(θ) q2

1 + 2Q12(θ) q1q2 +Q22(θ) q2
2

}
.

Now, there are two scalar internal variables q1 and q2 of strain type. They correspond to isotropic
hardening in each mechanism. The coefficient Q12 stands for a possible interaction of these two kinds
of isotropic hardening (cf. Cailletaud and Säı (1995)). Possible interactions of isotropic and kinematic
hardening within ψin will be considered in Section 6.

Remark 4.1. The inelastic free energy ψin in (3.1) is convex (for frozen temperature), if for all admissible
θ

c11(θ) ≥ 0, c212(θ) ≤ c11(θ) c22(θ),(4.2)

Q11(θ) ≥ 0, Q2
12(θ) ≤ Q11(θ)Q22(θ),(4.3)

Again, in order to avoid simple cases, we restrict ourselves to

c11 > 0, c22 > 0, Q11 > 0, Q22 > 0.(4.4)

In accordance with (2.27), (2.28) and (4.1), the backstresses X1 and X2 as well as R1 and R2 fulfill

X1 =
2
3
c11α1 +

2
3
c12α2, X2 =

2
3
c12α1 +

2
3
c22α2,(4.5)

R1 = Q11 q1 +Q12 q2, R2 = Q12 q1 +Q22 q2.(4.6)
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We assume the subsequent evolution equations for the inelastic strains:

(4.7) ε̇j = λj nj (nj defined by (2.45) j = 1, 2),

The plastic multipliers for both mechanisms λj ≥ 0 have to fulfil

λj = 0, if fj(σj ,Xj , Rj , R0j) < 0,(4.8)
λj ≥ 0, if fj(σj ,Xj , Rj , R0j) = 0 (flow conditions).(4.9)

Moreover, we assume evolution laws for qj :

(4.10) q̇j = rj λj −
bj
Qjj

Rj λj (j = 1, 2).

The material parameters bj , rj are assumed to fulfil

rj > 0, bj > 0, (j = 1, 2).(4.11)

(Again, we neglect the simpler case bj = 0.) (2.23), (2.31), (2.45) and (4.7) yield

λj = ṡj (j = 1, 2).(4.12)

4.2 The model 2M2C-a

Now, we deal with some specifics of the 2M2C-a model. Analogously to Subsection 3.2, we assume the
evolution equations for α1 and α2:

α̇j = aj ε̇j −
3dj
2cjj

{(1− ηj)Xj + ηj(Xj : mj)mj}λj (j = 1, 2).(4.13)

The mj are defined by (3.19), and the material parameters aj , dj , ηj must fulfil (cf. (3.18))

aj > 0, dj > 0, 0 ≤ ηj ≤ 1 (j = 1, 2).(4.14)

(dj = 0 corresponds to a simpler case, again.)
Repeating arguments as above, the dissipation inequality is

(4.15) (R01 + (1− r1)R1 +
b1
Q11

R2
1)λ1 + (R02 + (1− r2)R2 +

b2
Q22

R2
2)λ2 + (1− a1)X1 : ε̇1 +

+ (1− a2)X2 : ε̇2 +
3d1

2c11

{
(1− η1)X1 : X1 + η1(X1 : m1)2

}
λ1 +

+
3d2

2c22

{
(1− η2)X2 : X2 + η2(X2 : m2)2

}
λ2 ≥ 0.

Thermodynamic consistency can be ensured similarly as in the case of the 2M1C-a model. Since there
are two multipliers (λj = ṡj , j = 1,2), there is some “decoupling” (cf. Theorem 3.3).

Theorem 4.2. Assume (4.2) - (4.4), (4.11) and (4.14).
(i) In the case

(4.16) a1 = a2 = 1,

the model 2M2C-a is thermodynamic consistent, if

rj ≤ 1 + 2

√
bjR0j

Qjj
(j = 1, 2)(4.17)

(ii) In the general case

aj 6= 1 for one or both j,(4.18)

the model 2M1C-a is thermodynamic consistent, if

ηj < 1 for the same j as in (4.18),(4.19)
cjj

dj(1− ηj)
|1− aj |2 ≤ 4R0j for the same j as in (4.18),(4.20)

rj ≤ 1 +

√
bj
Qjj

(
4R0j −

cjj
dj(1− ηj)

|1− aj |2
)

for the same j as in (4.18).(4.21)
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As for the 2M1C-a model, there is a “trivial case” for the 2M2C-a model: aj = 1, rj ≤ 1 (cf. Theorem
3.3). Generally, Theorem 4.2 ensures thermodynamic consistency, if ηj < 1, and, if aj do not differ “too
much” from 1, and, if rj is not “too much greater” than 1. Contrary to Theorem 3.3 for the 2M1C-a
model, in Theorem 4.2, the conditions for j = 1 and j = 2 are separated (cf. (4.18)-(4.21)).

4.3 The model 2M2C-b

Now, we investigate the formal two-criteria analogue to the 2M1C-b model, letting (4.7) and (4.10) be the
same. Additionally, in (4.13), one could substitute Xj by αj , analogously as in the case of 1C models.
Unfortunately, then it becomes very difficult to prove thermodynamic consistency. Hence, instead of
(4.13), we assume the following evolution equations for α1 and α2

α̇1 = a1 ε̇1 − {(1− η1)α1 + η1(α1 : m1)m1 + d12α2} d1 λ1,(4.22)
α̇2 = a2 ε̇2 − {(1− η2)α2 + η2(α2 : m2)m2 + d21α1} d2 λ2.(4.23)

aj , dj and ηj are supposed to satisfy (4.14); see (3.19) for mj . For the new material parameters d12 and
d21 we assume

d12 6= 0, d21 6= 0.(4.24)

Using arguments as above, we obtain from (2.40) the dissipation inequality in the specific form of our
2M1C-b model:

(4.25) (R01 + (1− r1)R1 +
b1
Q11

R2
1)λ1 + (R02 + (1− r2)R2 +

b2
Q22

R2
2)λ2 +

+
2
3

(1− a1)(c11α1 + c12α2) : (λ1n1) +
2
3

(1− a2)(c12α1 + c22α2) : (λ2n2) +

+
2
3
d1λ1(c11α1 + c12α2) : {(1− η1)α1 + η1(α1 : m1)m1 + d12α2}+

+
2
3
d2λ2(c12α1 + c22α2) : {(1− η2)α2 + η2(α2 : m2)m2 + d21α1} ≥ 0.

Remark 4.3. (i) Generally, for 2C models one has λ1 6= λ2. Therefore, if d12 = d21 = 0, some (for
the mathematical argument needed) quadratic terms cease to exist in (4.25). Hence, in comparison with
(3.39) (and with the exception c12 = 0), it is more difficult to fulfil the inequality (4.25).
(ii) The coupling in the evolution equations (4.22), (4.23) is a new item in the modelling of 2M models
and indicates possible further generalizations.

Theorem 4.4. Assume (4.2) - (4.4), (4.11) and (4.24). The model 2M2C-b is thermodynamically
consistent, if

r1 ≤ 1, r2 < 1,(4.26)
η1 < 1, η2 < 1,(4.27)

c211(1− a1)2 < 2R01 d1 c11(1− η1), c212(1− a1)2 < 2R01 d1 c12 d12,(4.28)

c222(1− a2)2 < 2R02 d2 c22(1− η2), c212(1− a2)2 < 2R02 d2 c12 d21,(4.29)

(4.30) d2
1(|c12|+ c11|d12|)2 ≤

≤ 4
(
d1c11(1− η1)− 1

2R01
c211(1− a1)2

)(
d1c12d12 −

1
2R01

c212(1− a1)2

)
,

(4.31) d2
2(|c12|+ c22|d21|)2 ≤

≤ 4
(
d2c22(1− η2)− 1

2R02
c222(1− a2)2

)(
d1c12d21 −

1
2R02

c212(1− a2)2

)
.

Similarly as for the 2M1C-b model, even in the simple case a1 = a2 = 1, r1 ≤ 1, r2 ≤ 1, Theorem
4.4 only ensures thermodynamic consistency in the case η1 < 1, η2 < 1. Besides, (4.30), (4.31) describe
smallness conditions with respect to the parameters c12, d12, d21 which express the coupling of the two
mechanisms.
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5 Important relations for the backstresses

It is possible to obtain relations for the isotropic hardenings as well as for the backstresses generalizing the
classical Armstrong-Frederick relation. These relations are useful for further mathematical investigations
and for numerical simulations. In some cases, the variables q or q1 and q2 as well as α1 and α2 can
be excluded, and differential equations can be obtained, even in the case of temperature-dependent
parameters. This is very helpful for simulations, when one has to update inelastic quantities in each
time step. At first, we consider the isotropic hardening. After this, relations for kinematic hardening are
derived.

5.1 Relations concerning isotropic hardening

Because, there is an essential difference between 1C and 2C models, we deal separately with them.

5.1.1 Isotropic hardening in the case of 2M1C models

(3.6) and (3.10) imply an integral equation for R

(5.1) R(t) = Q(t)
{∫ t

0

r(τ)λ(τ) dτ −
∫ t

0

b(τ)
Q(τ)

R(τ)λ(τ) dτ
}
,

as well as an ordinary differential equation (ODE) (differentiate the relation (3.6) and express q via the
same relation)

(5.2) Ṙ(t) = Q(t) r(t)λ(t)−

{
b(t)λ(t)− Q̇(t)

Q(t)

}
R.

For the sake of notational simplicity, we write Q(t) instead of Q(θ(t)) etc. Besides this, the space variable
x is suppressed. The unique solution of (5.2) (for the initial value R(0) = 0) is given by

(5.3) R(t) = Q(t)
∫ t

0

r(s)λ(s) exp
(
−
∫ t

0

b(τ)λ(τ) dτ
)

ds.

Moreover, R is non-negative for t ≥ 0 (cf. (3.4), (3.11), (3.13)). From (5.3) one obtains the estimate

0 < R(t) ≤ Q(t) max{r}(min{b})−1(1− exp(−min{b}Λ(t))) for t > 0,(5.4)

Λ is the primitive of λ (see (3.14)). Maximum and minimum refer to all admissible temperatures (and
possibly other quantities). Clearly, if plastic deformation occurs, R(t) is positive. For constant Q, r and
b we have

(5.5) R(Λ) =
Qr

b
(1− exp(−bΛ)).

That means, R is a function of Λ alone. The curve R = R(Λ) has the initial slope Qr, and its saturation
value is (Qr)/b. Besides this, R is an increasing function of Λ, as one can expect in the case of isotropic
hardening.

5.1.2 Isotropic hardening in the case of 2M2C models

Any attempt to eliminate qj in order to obtain relations for Rj leads to a substantial difference with
respect to the case of 1C models: A system of integral equations comes up. Using (2.41) and (4.11), one
obtains the following system of integral equations for R1 and R2.

(5.6) R1(t) = Q11(t)
∫ t

0

(
r1(τ)λ1(τ)− b1(τ)

Q11(τ)
R1(τ)λ1(τ)

)
dτ +

+Q12(t)
∫ t

0

(
r2(τ)λ2(τ)− b2(τ)

Q22(τ)
R2(τ)λ2(τ)

)
dτ ,
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(5.7) R2(t) = Q12(t)
∫ t

0

(
r1(τ)λ1(τ)− b1(τ)

Q11(τ)
R1(τ)λ1(τ)

)
dτ +

+Q22(t)
∫ t

0

(
r2(τ)λ2(τ)− b2(τ)

Q22(τ)
R2(τ)λ2(τ)

)
dτ .

Again, the dependence on the space variable x is suppressed, and Q11(t) stands for Q11(θ(t)). In the
subsequent cases, one can obtain from (5.6), (5.7) differential equations:

1) For constant Qij , differentiation in (5.6), (5.7) leads to a coupled system of differential equations:

Ṙ1(t) = Q11r1(t)λ1(t) +Q12r2(t)λ2(t)− b1(t)R1(t)λ1(t)−Q12
b2(t)
Q22

R2(t)λ2(t),(5.8)

Ṙ2(t) = Q12r1(t)λ1(t) +Q22r2(t)λ2(t)−Q12
b1(t)
Q11

R1(t)λ1(t)− b2(t)R2(t)λ2(t).(5.9)

Note that the two systems (5.6), (5.7) and (5.8), (5.9) are equivalent, if one assumes the usual initial
condition R1(0) = R2(0) = 0. In comparison to the case of 1C models, a simple solution of (5.8), (5.9)
like (5.3) does not exist. Thus, there is a mathematical challenge to formulate appropriate conditions
such that Rj + R0j > 0. Furthermore, due to the interaction in the isotropic hardening (if Q12 < 0),
there can be a softening in one mechanism caused by the hardening in the other one.

2) In the regular case

∆Q := Q11Q22 −Q2
12 > 0 for all admissable arguments,(5.10)

from (5.6), (5.7) one gets

(5.11)
∫ t

0

(
r1(τ)λ1(τ)− b1(τ)

Q11(τ)
R1(τ)λ1(τ)

)
dτ =

1
∆Q

(Q22R1 −Q12R2),

(5.12)
∫ t

0

(
r2(τ)λ2(τ)− b2(τ)

Q22(τ)
R2(τ)λ2(τ)

)
dτ =

1
∆Q

(Q11R2 −Q12R1).

Hence, by differentiating (5.6), (5.7) with respect to t, and using (5.11), (5.12) we obtain

(5.13) Ṙ1(t) = Q11(t)r1(t)λ1(t) +Q12(t)r2(t)λ2(t)− b1(t)R1(t)λ1(t)−Q12(t)
b2(t)
Q22(t)

R2(t)λ2(t) +

+
1

∆Q
θ̇
dQ11

dθ
(Q22R1 −Q12R2) +

1
∆Q

θ̇
dQ12

dθ
(Q11R2 −Q12R1),

(5.14) Ṙ2(t) = Q12(t)r1(t)λ1(t) +Q22(t)r2(t)λ2(t)−Q12(t)
b1(t)
Q11(t)

R1(t)λ1(t)− b2(t)R2(t)λ2(t) +

+
1

∆Q
θ̇
dQ12

dθ
(Q22R1 −Q12R2) +

1
∆Q

θ̇
dQ22

dθ
(Q11R2 −Q12R1).

3) In the singular case

∆Q := Q11Q22 −Q2
12 = 0 for all admissible arguments,(5.15)

(4.4) implies

(5.16) k :=
Q12

Q11
=
Q22

Q12
6= 0

as well as

(5.17) R2 = kR1.

k is allowed be negative and temperature-dependent. Thus, one obtains an integral equation for R1

(5.18) R1(t) = Q11(t)
{∫ t

0

r1(τ)λ1(τ) dτ + k(t)
∫ t

0

r2(τ)λ2(τ) dτ
}

+

−Q11(t)
∫ t

0

b1(τ)
Q11(τ)

R1(τ)λ1(τ) dτ − k(t)Q11(t)
∫ t

0

b2(τ)
Q22(τ)

k(τ)R1(τ)λ dτ .

Only for constant k one obtains from (5.18) a differential equation for R1.

19



5.2 Generalized Armstrong-Frederick relations for the 2MnC-a model

We distinguish between the models 2MnC-a and 2MnC-b (with n = 1 or n = 2). Concerning the models
2MnC-a, the only difference is that one has one common multiplier λ in the case of 1C models, and two
multipliers λ1 and λ2 otherwise. We formulate the subsequent formulas for the 2M2C-a model. Setting
λ = λ1 = λ2, one obtains the case for the 2M1C-a model. (3.5) and (3.17) imply integral equations for
X1 and X1:

(5.19) X1(t) =
2
3
c11(t)

{∫ t

0

a1(τ)ε̇1(τ) dτ −
∫ t

0

3d1

2c11
{(1− η1)X1 + η1(X1 : m1)m1}λ1 dτ

}
+

+
2
3
c12(t)

{∫ t

0

a2(τ)ε̇2(τ) dτ −
∫ t

0

3d2

2c22
{(1− η2)X2 + η2(X2 : m2)m2}λ1 dτ

}
,

(5.20) X2(t) =
2
3
c12(t)

{∫ t

0

a1(τ)ε̇1(τ) dτ −
∫ t

0

3d1

2c11
{(1− η1)X1 + η1(X1 : m1)m1}λ1 dτ

}
+

+
2
3
c22(t)

{∫ t

0

a2(τ)ε̇2(τ) dτ −
∫ t

0

3d2

2c22
{(1− η2)X2 + η2(X2 : m2)m2}λ1 dτ

}
.

Note: 5.19 and 5.20 do not involve α1 and α2. Analogously as in the case of two isotropic hardenings,
R1 and R2, in Subsection 5.1.2, one can derive differential equations. This follows from (5.19), (5.20)
some under additional conditions:

1) For constant c11, c12, c22 one can differentiate (5.19), (5.20) with respect to time t. This yields

(5.21) Ẋ1 =
2
3
c11a1ε̇1 +

2
3
c12a2ε̇2 − d1{(1− η1)X1 + η1(X1 : m1)m1}λ1 +

− c12d2

c22
{(1− η2)X2 + η2(X2 : m2)m2}λ2,

(5.22) Ẋ2 =
2
3
c12a1ε̇1 +

2
3
c22a2ε̇2 −

c12d1

c11
{(1− η1)X1 + η1(X1 : m1)m1}λ1 +

− d2{(1− η2)X2 + η2(X2 : m2)m2}λ2.

These last two equations generalize the Armstrong-Frederick equation (cf. Armstrong and Frederick
(1966), Lemaitre and Chaboche (1990), Haupt (2002) e.g.) as well as the approach by Burlet and
Cailletaud (1987). Indeed, in the case of only one inelastic strain (i.e. εin = ε1, ε2 = 0, α2 = 0, X1 =
X, X2 = 0, λ = ṡin), (5.21) reduces to

(5.23) Ẋ =
2
3
c a ε̇in − d{(1− η)X + η(X : m)m}ṡin.

Finally, for η = 0, (5.23) turns into the classical Armstrong-Frederick relation; for η = 1, one gets the
proposal by Burlet and Cailletaud (1987).

2) In the regular case

∆c := c11c22 − c212 > 0 for all admissible arguments,(5.24)

the brackets {} in (5.19), (5.20) can be expressed by X1 and X2:

(5.25)
{∫ t

0

a1(τ)ε̇1(τ) dτ −
∫ t

0

3d1

2c11
{(1− η1)X1 + η1(X1 : m1)m1}λ1 dτ

}
=

3
2∆c

(c22X1 − c12X2),

(5.26)
{∫ t

0

a2(τ)ε̇2(τ) dτ −
∫ t

0

3d2

2c22
{(1− η2)X2 + η2(X2 : m2)m2}λ2 dτ

}
=

3
2∆c

(c11X2 − c12X1).

Now, analogously to Subsection 5.1.2, one gets differential equations not containing α1 and α2:

(5.27) Ẋ1 =
2
3
c11a1ε̇1 +

2
3
c12a2ε̇2 − d1{(1− η1)X1 + η1(X1 : m1)m1}λ1 +

− c12

d2
c22{(1− η2)X2 + η2(X2 : m2)m2}λ2 +

+
1

∆c
θ̇
dc11

dθ
(c22X1 − c12X2) +

1
∆c

θ̇
dc12

dθ
(c11X2 − c12X1),
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(5.28) Ẋ2 =
2
3
c12a1ε̇1 +

2
3
c22a2ε̇2 −

c12

d1
c11{(1− η1)X1 + η1(X1 : m1)m1}λ1 +

− d2{(1− η2)X2 + η2(X2 : m2)m2}λ2 +

+
1

∆c
θ̇
dc12

dθ
(c22X1 − c12X2) +

1
∆c

θ̇
dc22

dθ
(c11X2 − c12X1).

3) Finally, the singular case

∆c := c11c22 − c212 = 0 for all admissible arguments(5.29)

can be dealt with analogously as the singular case in Subsection 5.1.2.

5.3 Generalized Armstrong-Frederick relations for the 2MnC-b model

Since the 2M2C-b model is more complex than the 2M1C-b model (cf. (4.22), (4.23)), we write down
only the expressions for the 2M1C-b model. Analogously to Subsection 5.2, from (3.5) and (3.38) we
obtain integral equations for X1 and X2:

(5.30) X1(t) =
2
3
c11(t)

{∫ t

0

a1(τ)ε̇1(τ) dτ −
∫ t

0

d1

c11
{(1− η1)α1 + η1(α1 : m1)m1}λ dτ

}
+

+
2
3
c12(t)

{∫ t

0

a2(τ)ε̇2(τ) dτ −
∫ t

0

d2

c22
{(1− η2)α2 + η2(α2 : m2)m2}λ dτ

}
,

(5.31) X2(t) =
2
3
c12(t)

{∫ t

0

a1(τ)ε̇1(τ) dτ −
∫ t

0

d1

c11
{(1− η1)α1 + η1(α1 : m1)m1}λ dτ

}
+

+
2
3
c22(t)

{∫ t

0

a2(τ)ε̇2(τ) dτ −
∫ t

0

d2

c22
{(1− η2)α2 + η2(α2 : m2)m2}λ dτ

}
.

An elimination of α1 and α2 is only possible under the additional condition (5.24). Then the equations
in (3.5) are uniquely solvable with respect to α1 and α2:

α1 =
3

2∆c
(c22X1 − c12X2), α2 =

3
2∆c

(c11X2 − c12X1).(5.32)

Inserting (5.32) into (5.30), (5.31), one obtains integral equations not containing α1 and α2.
Again, for constant cij one can take the derivatives with respect to t and obtains the following general-
izations of Armstrong-Frederick relations:

(5.33) Ẋ1 =
2
3
c11a1ε̇1 +

2
3
c12a2ε̇2 +

− c11
d1

∆c
{(1− η1)(c22X1 − c12X2) + η1(c22(X1 : m1)− c12(X2 : m1))m1}λ+

− c12
d2

∆c
{(1− η2)(c11X2 − c12X1) + η2(c11(X2 : m2)− c12(X1 : m2))m2}λ,

(5.34) Ẋ2 =
2
3
c12a1ε̇1 +

2
3
c22a2ε̇2 +

− c12
d1

∆c
{(1− η1)(c22X1 − c12X2) + η1(c22(X1 : m1)− c12(X2 : m1))m1}λ+

− c22
d2

∆c
{(1− η2)(c11X2 − c12X1) + η2(c11(X2 : m2)− c12(X1 : m2))m2}λ.

Remark 5.1. (i) In the case of constant cij , the Armstrong-Frederick relations (5.21), (5.22) and (5.33),
(5.34) have a similar structure. But, in the case of 2M1C-b model, in (5.33), (5.34), there are the
additional coupling terms (X2 : m1))m1, (X1 : m2))m2.
(ii) In the case of the 2M2C-b model, one gets similar integral equations as in (5.30), (5.31). In the
regular case (5.24), α1 and α2 can be excluded.
(iii) In the regular case (5.24), one can get elaborated differential equations for X1 and X2, if some of
the cij depend on the temperature.
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5.4 Some mathematical consequences of the Armstrong-Frederick relations

5.4.1 Tracelessness of backstresses and of kinematic variables

Here, the inelastic strains εin as well as ε1 and ε2 are assumed to be traceless (cf. (2.6), (2.21)). Hence,
it is reasonable to ask whether the backstresses X1 and X2 as well as α1 and α2 are traceless, too. One
can prove the following result.

Theorem 5.2. Under the assumption (5.24), there hold

(5.35) tr(X1) = tr(X2) = tr(α1) = tr(α2) = 0

for both 2MnC-a and 2MnC-b models.

Proof. In case of a 2MnC-a model, X1 and X2 fulfil the system of integral equations (5.19), (5.20).
These are linear Volterra integral equations. The general mathematical theory says that there is a unique
solution (X1, X2) for given ε1, ε2, σ1, σ2. (The relation (3.19) for the quantities m1 and m2 is taken
into account.) As ε1, ε2, σ∗1, σ∗2 are traceless, the deviators X∗

1 and X∗
2 also fulfil the same system of

Volterra equations (5.19), (5.20). Due to uniqueness, there must be Xj = X∗
j for j = 1, 2. As (5.24)

holds, α1 and α2 are linear combinations of X1 and X2 (cf. (5.32)). And, so they are traceless too.
In the case of 2MnC-b models, after expressing α1 and α2 in accordance with (5.32), (5.30), (5.31)

becomes a linear Volterra integral equations for X1 and X2 alone. The further reasoning is as above.

Remark 5.3. (i) In case of 2MnC-a models, one has trace-less backstresses, not assuming (5.24).
(ii) The above results make it reasonable, to assume that the symmetric tensorial internal variables α1

and α2 are trace-less (at least, if the inelastic strains are traceless). Then, due to (2.27), the backstresses
X1 and X2 are traceless not only in the regular cases.

5.4.2 Equations for the total strain and its rate

We notice further interesting relations. Assuming the regular case (5.24), one gets from (3.5) and (4.5),
respectively,

A1

a1
α1 =

3
2∆c

A1

a1
(c22 − c12)X1,

A2

a2
α2 =

3
2∆c

A2

a2
(c11 − c12)X2.(5.36)

Using the evolution equations for α1 and α2 for the 2MnC-a models (cf. (3.17) and (4.13), respec-
tively), one obtains an equation for the total inelastic strain:

(5.37) εin =
3

2∆c

{
A1

a1
(c22 − c12)X1 +

A2

a2
(c11 − c12)X2

}
+

+
∫ t

0

3A1d1

2a1c11
{(1− η1)X1 + η1(X1 : m1)m1}λ1 dτ +

+
∫ t

0

3A2d2

2a2c22
{(1− η2)X2 + η2(X2 : m2)m2}λ2 dτ .

For 1C models one has to set λ1 = λ2 = λ. Sometimes, this equation can be useful for estimating
the total strain. For 2MnC-b models, an analogous equation can be derived, substituting α1 and α2 in
(3.38) and (4.22), respectively, via (5.36). Taking (5.24) and (3.4) into account, there hold

(5.38) 0 ≤ |c12| <
√
c11c22 ≤ max{c11, c22}.

And therefore, the differences (c22− c12) and (c11− c12) do not vanish at the same time. Hence, the term
outside of the integral on the right-hand side of (5.37) does not vanish, if there is inelastic motion.

In the case of constant cij , aj , Aj , differentiation of (5.37) gives an equation for the total inelastic
strain rate

(5.39) ε̇in =
3

2∆c

{
A1

a1
(c22 − c12)Ẋ1 +

A2

a2
(c11 − c12)Ẋ2

}
+

+
3A1d1

2a1c11
{(1− η1)X1 + η1(X1 : m1)m1}λ1 +

+
3A2d2

2a2c22
{(1− η2)X2 + η2(X2 : m2)m2}λ2
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Special cases of (5.38) can be found in Taleb et al. (2006).
In the general case of non-constant cij , aj , Aj , one can differentiate (5.37) with respect to t, obtaining

generally a quite complex formula. An easier way is to start with differentiation of (3.5), taking (5.32)
into account. This gives

Ẋ1 =
2
3
c11α̇1 +

2
3
c12α̇2 +

2
3∆c

θ̇
dc11

dθ
(c22X1 − c12X2) +

2
3∆c

θ̇
dc12

dθ
(c11X2 − c12X1),(5.40)

Ẋ2 =
2
3
c12α̇1 +

2
3
c22α̇2 +

2
3∆c

θ̇
dc12

dθ
(c22X1 − c12X2) +

2
3∆c

θ̇
dc22

dθ
(c11X2 − c12X1).(5.41)

Due to (5.24), α̇1 and α̇1 can be excluded. Using the evolution equations for αj (cf. (3.17), (3.38),
(4.13), (4.22)), one gets an equation for the rate of the total inelastic strain.

Remark 5.4. If (5.24) is not fulfilled, one cannot resolve the system (3.5) with respect to α1 and α2.
Therefore, in this case, an analogous equation to (5.37) equation contains at least one αj .

6 An extension of 2M models

The 2M models described above are “in use” (besides the new proposal for the 2M2C-b model in (4.22),
(4.23)), or, they are simple extensions of such models. Besides, they have been applied to simulation
of ratcheting (cf. Säı et al. (2004), Taleb et al. (2006), Hassan et al. (2008) and the references therein)
as well as to modelling of material behaviour of steel undergoing phase transformations (cf. Wolff et al.
(2008) for details).

Now, we want to present a possible extension concerning the coupling between kinematic and isotropic
hardening. Again, we only deal with 2M models, remarking that the subsequent extension can be generally
applied to multi-mechanism models.

A general reference to coupling between kinematic and isotropic hardening can be already found in
Cailletaud and Säı (1995). Here, we want to give a more concrete example for this. We focus on 2M1C
models. Keeping the inelastic part of the free energy as a quadratic form, we propose

(6.1) ψin(α1,α2, q, θ) :=
1
3%
{c11(θ)α1 : α1 + 2c12(θ)α1 : α2 + c22(θ)α2 : α2} +

+
1
2%
{
Q(θ) q2 + 2 qQ1(θ) : α1 + 2 qQ2(θ) : α2

}
.

Besides the scalar material parameters cij as above, there arise two matrices Q1 and Q2 playing the role
of material parameters. Clearly, for all admissible θ, ψin must be a convex quadratic form of α1, α2 and
q with positive diagonal. The Sylvester criterion provides a sufficient condition for that:

c11 > 0, c22 > 0, c212 ≤ c11 c22, Q > 0,(6.2)

(6.3) Q (c11 c22 − c212) + ‖Q2‖ (|c12| ‖Q1‖ − c11 ‖Q2‖) + ‖Q1‖ (|c12| ‖Q2‖ − c22 ‖Q1‖) ≥ 0

for all admissible temperatures. Due to (6.1), there arise the subsequent coupled relations for backstresses
and isotropic hardening (cf. (2.27), (2.28)):

X1 =
2
3
c11α1 +

2
3
c12α2 + qQ1,(6.4)

X2 =
2
3
c12α1 +

2
3
c22α2 + qQ2,(6.5)

R = Qq + Q1 : α1 + Q2 : α2(6.6)

Now, one can propose evolution equations for ε1, ε2, α1, α2 and q as in (3.7), (3.10), (3.17). This
leads to the dissipation inequality (3.20), and Theorem 3.3 applies analogously.

Alternatively, one can propose several couplings within the evolution equations. For instance, besides
(3.7), there can be supposed:

α̇j = aj ε̇j − djXj λ−Dj Rλ (j = 1, 2)(6.7)
q̇ = r λ− bRλ−B1 : X1 λ−B2 : X2 λ.(6.8)
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(Dj and Bj are further (tensorial) material parameters.) Now, in comparison with (3.20), the dissipation
inequality has additional terms. Thus, an analogue to Theorem 3.3 requires more conditions.

Moreover, one needs conditions ensuring that R0 + R > 0. Clearly, this leads to further restrictions
for Qj as well as for the parameters in (6.7), (6.8).

Besides, from (6.4) - (6.8) one obtains quite complex Armstrong-Frederick relations, also in the case
of constant cij , Q, Q1 and Q2.

7 Mathematical problems for 2M models

We want to formulate mathematical problems resulting from the modelling given above. As usual in
structure mechanics, the mathematical challenge consists in determining the fields of displacements and
of temperature. Sometimes, there is an interest in finding other quantities like stresses. The modelling
of 2M models given above is quite complex. And thus, the resulting mathematical problems keep this
complexity. We will sketch this for 2M models under special conditions allowing to exclude the internal
variables.

Taking (2.1), (2.4) – (2.6), (2.14), (2.20) into account, one gets the impulse equation in the displace-
ment formulation

(7.1) % ü− div(2µ ε(u) + µLtr(ε(u))I − 3K α(θ − θ0)I) = f − div(2µ (A1 ε1 +A2 ε2))

(µL = K − 2
3µ - 2nd Lamé coefficient). We re-write the heat-conduction equation (2.30)

% cd θ̇ − div(κ∇θ) =(σ1 −X1) : ε̇1 + (σ2 −X2) : ε̇2 +X1 : (ε̇1 − α̇1) +X2 : (ε̇2 − α̇2) +(7.2)

−R q̇ + θ
∂X1

∂θ
: α̇1 + θ

∂X2

∂θ
: α̇2 + θ

∂R

∂θ
q̇ + θ

∂σ

∂θ
: ε̇te + r.

(Using (2.14) and (2.25), the stresses σ and σj can be excluded.)

1) 2M1C models: The evolution of the inelastic strains is given by

(7.3) ε̇j = λnj

The common plastic multiplier λ has to fulfil

λ = 0, if f(σ1,σ2,X1,X2, R,R0) < 0,(7.4)
λ ≥ 0, if f(σ1,σ2,X1,X2, R,R0) = 0 (flow condition).(7.5)

As usual, λ can be determined by the flow condition (7.5) and by the consistency condition which follows
from (7.5). Usually, in numerical schemes, the plastic multiplier will be simultaneously calculated in each
time step.

Considering the “regular” case (5.24), the internal variables αj (j = 1, 2) can be excluded, and, one
obtains the evolution equations for the backstresses (cf. (5.27), (5.28))

(7.6) Ẋ1 =
2
3
c11a1ε̇1 +

2
3
c12a2ε̇2 − d1{(1− η1)X1 + η1(X1 : m1)m1}λ+

− c12

d2
c22{(1− η2)X2 + η2(X2 : m2)m2}λ+

+
1

∆c
θ̇
dc11

dθ
(c22X1 − c12X2) +

1
∆c

θ̇
dc12

dθ
(c11X2 − c12X1),

(7.7) Ẋ2 =
2
3
c12a1ε̇1 +

2
3
c22a2ε̇2 −

c12

d1
c11{(1− η1)X1 + η1(X1 : m1)m1}λ+

− d2{(1− η2)X2 + η2(X2 : m2)m2}λ+

+
1

∆c
θ̇
dc12

dθ
(c22X1 − c12X2) +

1
∆c

θ̇
dc22

dθ
(c11X2 − c12X1).

Moreover, the evolution for R is given by

(7.8) Ṙ(t) = Q(t) r(t)λ(t)−

{
b(t)λ(t)− Q̇(t)

Q(t)

}
R.
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2) 2M2C models: The evolution of the inelastic strains is given by

(7.9) ε̇j = λj nj j = 1, 2),

The plastic multipliers for both mechanisms λj ≥ 0 have to fulfil

λj = 0, if fj(σj ,Xj , Rj , R0j) < 0,(7.10)
λj ≥ 0, if fj(σj ,Xj , Rj , R0j) = 0 (flow conditions).(7.11)

Again, the multipliers λj can be determined by the corresponding flow conditions (7.11) and by the
consistency conditions which follows from (7.11).

Considering the “regular” case (5.24), the internal variables αj (j = 1, 2) can be excluded, and, one
obtains the evolution equations for the backstresses (cf. (5.27), (5.28))

(7.12) Ẋ1 =
2
3
c11a1ε̇1 +

2
3
c12a2ε̇2 − d1{(1− η1)X1 + η1(X1 : m1)m1}λ1 +

− c12

d2
c22{(1− η2)X2 + η2(X2 : m2)m2}λ2 +

+
1

∆c
θ̇
dc11

dθ
(c22X1 − c12X2) +

1
∆c

θ̇
dc12

dθ
(c11X2 − c12X1),

(7.13) Ẋ2 =
2
3
c12a1ε̇1 +

2
3
c22a2ε̇2 −

c12

d1
c11{(1− η1)X1 + η1(X1 : m1)m1}λ1 +

− d2{(1− η2)X2 + η2(X2 : m2)m2}λ2 +

+
1

∆c
θ̇
dc12

dθ
(c22X1 − c12X2) +

1
∆c

θ̇
dc22

dθ
(c11X2 − c12X1).

Now, there are two isotropic hardenings Rj . In the “regular” case (5.10), there hold (cf. (5.13), (5.14))

(7.14) Ṙ1(t) = Q11(t)r1(t)λ1(t) +Q12(t)r2(t)λ2(t)− b1(t)R1(t)λ1(t)−Q12(t)
b2(t)
Q22(t)

R2(t)λ2(t) +

+
1

∆Q
θ̇
dQ11

dθ
(Q22R1 −Q12R2) +

1
∆Q

θ̇
dQ12

dθ
(Q11R2 −Q12R1),

(7.15) Ṙ2(t) = Q12(t)r1(t)λ1(t) +Q22(t)r2(t)λ2(t)−Q12(t)
b1(t)
Q11(t)

R1(t)λ1(t)− b2(t)R2(t)λ2(t) +

+
1

∆Q
θ̇
dQ12

dθ
(Q22R1 −Q12R2) +

1
∆Q

θ̇
dQ22

dθ
(Q11R2 −Q12R1).

The above equations must be fulfilled in a space-time domain Ω×]0, T [, where Ω is a bounded Lipschitz
domain describing the body (workpiece) in its reference configuration, T > 0 is the process time.

Finally, one needs initial and boundary conditions. We require, with given u0, u1, and θ0:

(7.16) u(x, 0) = u0(x), u̇(x, 0) = u1(x), θ(x, 0) = θ0.

Modelling heat treatment, homogeneous initial conditions for u seem to be reasonable. To obtain correctly
posed mathematical problems, there must be boundary conditions for u and θ prescribed, for instance,
mixed conditions for u:

(7.17) u = 0 on Γ1, σ ν = 0 on Γ2,

Γ1 and Γ2 are disjoint parts of the whole boundary ∂Ω of Ω. ν is the outer normal on Γ2. Concerning
the temperature, we put a boundary condition which models the heat exchange:

(7.18) −κ ∂θ
∂ν

= δ(θ − θΓ) on ∂Ω.

δ ≥ 0 is the heat-exchange coefficient, θΓ is the ambient temperature.
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Moreover, we put initial conditions for εj , Xj and R (or Rj):

(7.19) εj(x, 0) = 0 Xj(x, 0) = 0, Rj(x, 0) = 0.

In general, the system of equations and initial and boundary conditions listed above constitutes a
quite complex mathematical problem. To our knowledge, existence results are unknown. In Suhr (2010)
and Wolff et al. (2010b), a semi-implicit algorithm for numerical simulations for a special 2M model
describing the material behaviour of steel has been developed, and simulations have been performed.

8 Conclusion

In this study, we have dealt with two-mechanism models (2M models), focussing on their modelling in
the case of plastic behaviour. 2M models with one and with two yield criteria have been considered (see
Section 2).

• In Sections 3, 4 some results on thermodynamic consistency have been proved. When considering
non-standard cases without dissipation potentials, the proof of thermodynamic consistency is not
trivial.

• In Section 5, relations for backstresses and isotropic hardening have been derived generalizing the
classical Armstrong-Frederick relations. These relations are very useful for further mathematical
investigations including numerical simulations (cf. Wolff et al. (2010b) for a special case).

• In Section 6, an extension concerning coupling between kinematic and isotropic hardening has been
given. References to further extensions can be found in Taleb and Cailletaud (2010) and Säı (2010).

• In Section 7, some resulting mathematical problems have been formulated in short. Clearly, the
corresponding mathematical investigations remain for future work.

For further discussions and applications of multi-mechanism models we refer to the recent paper by Säı
(2010).
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Säı, K., Aubourg, V., Cailletaud, G. and Strudel, J. (2004). Physical basis for model with various inelastic
mechanisms for nickel base superalloy, Mater. Sci. Technol. 20: 747 – 755.
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Universität Bremen, FB 3, Mathematik / Informatik
Zentrum für Technomathematik
Postfach 330440
28334 Bremen, Germany
mbohm@math.uni-bremen.de

Prof. Dr. Lakhdar Taleb
Groupe de Physique des Matériaux
UMR CNRS 6634, INSA, Avenue de l’université, BP 08
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