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Abstract

A stochastic model for the elastic tensor components of a texturized material
is presented. The model produces the distributions of the stiffness matrix
components for single grains, as a result of the preferred directions given by
the material texture.

Based on the resulting distributions, we simulate the responses of a rep-
resentative volume element under different loading modes. The simulation
of the responses uses a FEM solver for the elasticity problem and includes
the anisotropies due to the material’s texture as well as the ones arising from
the slightly different orientation of the different crystals.

With this method, the distributions of the strain and stress tensors com-
ponents can be obtained in practice by only knowing the texture of the mate-
rial. Specific examples of computed distributions for texturized Aluminium
will be shown, together with the resulting distributions of the FEM-calulated
mechanical responses of a polycrystal.

1. Introduction

Within the production of metallic micro-components, modelling of the
single grains composing the material pieces becomes important, as the local
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differences between them cannot be assumed to be small when compared to
the sizes of the complete work pieces.

In the case of texturized material, it is well known that all the grains
have a preferred orientation, but the actual orientation of a single crystal
cannot be determined a-priori. These uncertainties are here handled using
a stochastic model for the construction of the elastic moduli of the single
crystals.

While considering a two-scale modelling of the microcomponents, the
“micro” scale corresponds to a small material piece holding some grains of
the texturized material. The material response in the “macro” scale (the
complete piece, which is also of small dimension) will be strongly determined
by the anisotropic responses in the microscale. The importance of the mi-
croscale responses motivate this work, where we model the elastic components
of monocrystals stochastically and generate the FEM-simulated responses of
a representative volume element (RVE) of material.

The resulting responses on the microscale can later be used in a two-scale
simulation, in which usually the computation of a large number of micro-
problems slows the whole simulation process. The microscale responses pre-
sented here can be used as a module for computing a good approximation to
the solution in each micro-problem using a neglectible amount of computa-
tion time.

Section 2 presents the stochastic model for the monocrystals, together
with some examples of the resulting distributions for the stiffness matrix
components. Section 3 describes the simulation strategy for creating a ran-
domized geometry of a polycrystal RVE and presents the resulting distribu-
tions of stresses obtained for the different load modes of the RVE. Finally,
Section 4 presents a an example of two-scale simulation.

2. Stochastic model for the crystals in the texturized material

2.1. The problem

The elastic properties of a polycrystallite material are described by the
compliance tensor Sijkl or the stiffness tensor Cijkl (i, j, k, l = 1, 2, 3), [1, 2].
Because of the symmetry of strain and stress tensor, and for energetical con-
siderations both tensors can be expressed by symmetric matrices Sij and Cij
(i, j = 1, 2, ..., 6), respectively, each containing 21 independent components.
In the sequel we focus on the compliance tensor, the components of which
are termed elastic moduli.
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For anisotropic crystals the symmetry properties of the various crystal
systems reduce the number of independent matrix elements [1]. As an ex-
ample, there are only three independent elements for a cubic crystal system.

To describe a single crystal, an orthogonal coordinate system tightly con-
nected to the crystal axes may be chosen. Such a system is called a crystal
physical coordinate system. We choose the directions of the cube edges as
axes for a cubic crystal system. In this coordinate system the compliance
tensor may be represented in matrix form as

s11 s12 s12 0 0 0
s11 s12 0 0 0

s11 0 0 0
s44 0 0

sym s44 0
s44

 (1)

where s11 = s1111, s12 = s1122 and s44 = s1212.
Now we define an orthogonal coordinate system in the specimen. This

coordinate system may be chosen arbitrarily. We use the RTN (Rolling,
Transversal, Normal) system, which is commonly used for sheets and foils.
We describe the orientation of a crystallite in a polycrystal by a rotation
g, which maps the global reference system on the crystal physical system.
These rotations constitute the rotation group SO(3). For the tensor Sijkl in
the RTN system we have the tensor representation of the rotation group

Sijkl = gipgjqgkmglnspqmn (2)

where gij denotes the components of the rotation matrix and components
with repeated indices are added.

As crystallites in the polycrystal are randomly orientated, also the com-
ponents gij show a random variation, which induces random variations in
the values of the elastic moduli. If the orientations of the crystallites are
uniformly distributed, the corresponding polycrystal is quasi isotropic, and
if a principal orientation exists, we have a texture.

Here, we consider the distributions of the matrix elements of the compli-
ance tensor for a polycrystal that are induced by normal measures on SO(3).

2.2. Distributions on SO(3)

We consider distributions dµ = f(g)dg, g ∈SO(3), where dg is an in-
variant measure on SO(3). Parametrising the rotation g by Euler angles
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g = g(ϕ1, θ, ϕ2), θ ∈ [0, π], and ϕ1, ϕ2 ∈ [−π, π) we have

dg =
sin θdθ

2

dϕ1

2π

dϕ2

2π
. (3)

The texture function f(g) depends on the orientation [3], and may be
expanded as a series of generalized spheric functions

f(g) =
∞∑
l=0

l∑
m,n=−l

C l
mnT

l
mn(g), (4)

and if the polycrystal is quasi isotropic, then f(g) = 1.
An important distribution class on SO(3) is the class of normal distribu-

tions. We define these according to [4, 5] in the following way: a measure
µ on SO(3) has a normal distribution, if µ is infinitely divisible and not
idempotent, and if for each irreducible representation Tg of the group holds
that ∫

G

Tgdµ(g) = exp

[∑
i,j

αijAiAj +
∑
i

αiAi

]
, (5)

where Ai are infinitesimal operators of this representation, (αij) is a positive
definite symmetric matrix, and αi are real numbers. If αij = 0 for i 6=
j, we have a canonical normal distribution [6] with analytical probability
distribution

f(g) =
∞∑
l=0

(2l + 1) exp[−l(l + 1)p2]×

×
l∑

m=−l
exp[m2(q2 − r2)] exp[−im(ϕ1 + ϕ2)]P l

mm(cos θ).
(6)

Here, P l
mm(x) are Jacobian polynomials with parameters q, r, p and, although

we consider orientation distributions belonging to the family of canonical
distributions, equation (6) is not useful for our purpose.

Another way to derive the desired distributions lies in the application
of Parthasarathy’s central limit theorem for the rotation group [5]. We
need some additional notation for this theorem. Let gn =

∫
SO(3)

gdµn(g)

be the mean of the measure µn(g) for n = 1, 2, 3, . . . , µ∗nn with dµ∗22 (g) =∫
SO(3)

µ2(gg−1
1 )dµ2(g1), µn denotes the n-fold convolution and µn(SO(3)\Ue)

is the value of the measure µn(g) outside the neighbourhood Ue of the zero
element e of the group.
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Parthasarathy’s Central Limit Theorem (CLT) for SO(3) states that for
a given sequence {µn}, n = 1, 2, 3, . . . of distributions on SO(3), which con-
verges to a degenerate distribution in e as n → ∞, the sequence of con-
volutions µ∗nn converges to a normal distribution if and only if for n → ∞
holds

1. n(1− |gn|) <∞
2. nµn(SO(3)\Ue)→ 0

Further, if additionally holds that lim
n→∞

n(e − gn) = A, then the parameters

αij and αi of the distribution µ∗nn are given by

−A =
3∑
i=1

3∑
j=1

αijaiaj +
3∑
i=1

αiai (7)

with ai = lim
t→0

gi(t)−e
t

, where gi(t) are the one-parametric subgroups of SO(3).

2.3. Simulation of orientation distributions

Due to the CLT we may specify an order µn(g). We use the concept of
small rotations [7] for this purpose. The set of small rotations corresponds
to a certain set of Euler angles of the form

1− (e′z, ez) = 1− cos θ ≤ a
1− (e′x, ex) = 1− cosϕ1 cosϕ2 + sinϕ1 sinϕ2 cos θ ≤ b
1− (e′y, ey) = 1 + sinϕ1 sinϕ2 − cosϕ1 cosϕ2 cos θ ≤ b
0 ≤ a, b� 1

(8)

Here, (ex, ey, ez) form a basis before a small rotation and (e′x, e
′
y, e
′
z) therafter.

Given that a, b� 1, Equation (8) simplifies to

θ2

2
≤ a ,

(ϕ1 + ϕ2)2

2
≤ b. (9)

and the set of small rotations now is represented by the region

Π(a, b) =
{

(ϕ1, θ, ϕ2) : θ ≤
√

2a = ā , |ϕ1 + ϕ2| ≤
√

2b = b̄
}

(10)

The sequence of measures dµn = fn(g)dg, with dg denoting the invariant
measure, fn the rectangular distribution in Π(an, bn), an = ā/

√
n, bn = b̄/

√
n

and

fn(ϕ1, θ, ϕ2) =

{
2

1−cos an
· 4π2

bn(4π−bn)
(ϕ1, θ, ϕ2) ∈ Π(an, bn)

0 (ϕ1, θ, ϕ2) 6∈ Π(an, bn)
(11)
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corresponds to the sequence of convolutions

dµ∗nn =

 ∫
SO(3)

dgn−1fn(gg−1
n−1)...

∫
SO(3)

dg1fn(g2g
−1
1 )fn(g1)

 dg , (12)

which according to [7] converges for t → ∞ to the canonical normal distri-
bution on SO(3) with parameters q2 = ā2/8 and r2 = b̄2/6.

The realisation of the random variable g ∈SO(3) with distribution (12)
is the product of the small random rotations g = g1g2...gn, where gi =
g(ϕi1, θ

i, ϕi2) ∈SO(3) with density (11). The Euler angles (ϕi1, θ
i, ϕi2) are given

by [7]:

ϕi1 =



−(π + bn) +
√
b2
n + 2bn(4π − bn)ξi1 ; ξi1 <

3bn
2(4π−bn)(

bn
4
− π

)
+ 4π−bn

2
ξi1 ; 3bn

2(4π−bn)
≤ ξi1 < 1− 3bn

2(4π−bn)

(π + bn)−
√
b2
n + 2bn(4π − bn)(1− ξi1) ; 1− 3bn

2(4π−bn)
≤ ξi1

θi = arccos (1− ξi2(1− cos an))

ϕi2 =


π − ξi3(bn + π + ϕi1) ; −π ≤ ϕi1 < bn − π

−ϕi1 + 2bn
(
ξi3 − 1

2

)
; |ϕi1| ≤ π − bn

−π + ξi3(bn + π − ϕi1) ; π − bn < ϕi1 ≤ π
(13)

where ξi1, ξi2, ξi3 are independent and uniformly distributed in [0,1].
In [7], it was shown that convolution parameters n ≥ 20 generate a good

agreement of µ∗nn with a normal distribution with density as in equation (6).
The distribution of crystallite orientations may be modelled by Monte

Carlo simulation and the material parameters of interest are subsequently
derived from these.

With θ denoting the nutation angle on the sphere, Figure 1 shows the
histogram for the distribution of the nutation angle projection obtained after
10000 realisations for the values of ā = 0.2, b̄ = 0.5 and n = 50.

For the case of polycrystal material having a texture g0 with main orien-
tation different from the cube coordinate edges, the resulting normal distri-
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Figure 1: Histogram of the nutation angle distribution for ā = 0.2, b̄ = 0.5 and n = 50.

bution (in the sense of SO(3)) for the nutation angle is shifted towards this
actual orientation.

2.4. Results for the elastic mouli

Equation (2) leads to the tensor (1) in the form

S11 = s11 − 2µs (g2
11g

2
21 + g2

11g
2
31 + g2

21g
2
31)

S12 = s12 + µs (g2
11g

2
12 + g2

21g
2
22 + g2

31g
2
32)

S44 = s44 + 4µs (g2
12g

2
13 + g2

22g
2
23 + g2

32g
2
33)

S14 = 2µs(g2
11g12g13 + g2

21g22g23 + g2
31g32g33)

S16 = 2µs(g3
11g12 + g3

21g22 + g3
31g32)

(14)

where µs = s11 − s12 − s44/2 is the measure of anisotropy and all other Sij
can be obtained from cyclical re-arrangement of indices, e.g. S66 = s44 +
4µs (g2

11g
2
12 + g2

21g
2
22 + g2

31g
2
32) .
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Figure 2: Histograms of the nutation angle distributions given a RTN texture. Left:
ā = 0.1, b̄ = 0.2; Right: ā = 0.2, b̄ = 0.4 and n = 100.

If the elements of the rotation matrix gij are parametrized by Euler angles,
the equations (14) may be written as

Sij = sij + µsCijΛij(ϕ1, θ, ϕ2).

Here, we have a normal distribution of g = g(ϕ1, θ, ϕ2) on SO(3) around a
preferred orientation g0 = g(ϕ0

1, θ
0, ϕ0

2).
We consider Aluminium as example of polycrystal material with s11 =

1.57, s12 = −0.57 and s44 = 3.51 (all units: 10−11 Pa−1) [8] and a rolling
texture (1,1,2)[1̄,1̄,1]. The main representation matrix for this orientation is

− 1√
3

1√
2

1√
6

− 1√
3
− 1√

2
1√
6

1√
3

0
√

2√
3

 . (15)

The parameters ā and b̄ define the strength of the texture: smaller pa-
rameters indicate crystallites lying closer to the main orientation. Figure
2 allows the comparisson of the nutation angle dispersion corresponding to
various ā and b̄ for the same given RTN texture. Obviously the dispersion
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of Λij and Sij depends on the strength of the texture and increase with its
decrease.

For further insight into the relation between ā and b̄ and the correspond-
ing distributions of the various Sij quantities we performed Monte Carlo
simulations with 10000 realisations for several values of (ā, b̄). The resulting
Sij distributions are shown in Figures 3 and 4.
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Figure 3: Distributions of various Sij for ā = 0.1 und b̄ = 0.2.

Obviously, with increasing parameters ā and b̄ the set of small rotations
Π(a, b) increases to the full set {0 ≤ θ ≤ π; −π ≤ ϕ1;ϕ2 ≤ π} and the
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Figure 4: Distributions of various Sij for ā = 0.2 und b̄ = 0.4.

distribution of orientations becomes a uniform distribution on SO(3).
Using the distributions of the elastic moduli we are able to derive the

distributions of the Young’s modulus in arbitrary directions Eαα, the Shear
modulus Gαα and the Poisson’s ratio ναα. As an example we have

EWW = 1/S11 , GWQ = 1/S44 , νWQ = −S12/S11. (16)

Figure 5 displays parameter distributions under two different textures,
each obtained for ā = 0.15, b̄ = 0.3 and n = 100, based on 10000 Monte
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Figure 5: Histogram of the distribution of various elastic parameters for ā = 0.15, b̄ = 0.3,
and n = 100. Left column: texture (1,1,2)[1̄,1̄,1], right column: texture (1,1,0)[1,1̄,2].
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Figure 6: Histogram of the distribution of the distribution of the Young’s modulus EQQ =
1/S22 for ā = 0.15, b̄ = 0.3 and n = 100.

Carlo realisations. Figures in the left column contain EWW , GWQ and νWQ

for the texture (1,1,2)[1̄,1̄,1] from above, while the right column of figures
refers to the texture (1,1,0)[1,1̄,2].

Having determined the distributions of interest by Monte Carlo simulation
we can derive descriptive quantities for this distribution. As an example, we
have for the Shear modulus in the left column of Figure 5 (all values in GPa)

Mean SD Min Q1 Median Q3 Max
26.54 0.40 25.08 26.27 26.54 26.81 27.87

Figure 6 displays the distribution of EQQ = 1/S22, again for the texture
(1,1,2)[1̄, 1̄, 1].

The matrix entries Sij are complicated functions of the Euler angles which
cannot be described by simple standard distributions. However, we can ob-
tain all characterizing quantities of these distributions up to a histogram or
density estimate of the complete distribution in a relatively simple way. As
additionally all distributions have compact support, an approximation by
polynomials or mixtures of these may be considered.

For strongly textured material (ā ≤ 0.2 and b̄ ≤ 0.3) the distributions of
some Sij may well be approximated by normal or log-normal distributions.
A more precise description of the Sij distributions can be obtained by mix-
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tures of distribution. This aspect, however, lies outside the scope of this
contribution.

A further problem is the determination of the parameters q and r (corre-
sponding to ā and b̄) of the canonical normal distribution (6) for a material
measured experimentally. These can be derived from the pole figures [6].

3. Finite element simuations

3.1. Simulation strategy

The stochastic models from the previous section were used as inputs for
a series of finite element simulations on RVEs. This makes possible the
analysis of the different responses of an RVE under single mechanical loads.
All the performed simulations use the resulting distributions from section 2,
coresponding again to Aluminium with the texture (1,1,2)[1̄,1̄,1].

From this texturized material, an RVE was defined as a cubic microcell
of size equal to the thickness of the Aluminium foil under consideration, it
is a cell of size 0.45mm× 0.45mm× 0.45mm.

In order to create a polycrystal inside this RVE, we take a number of ran-
domly distributed points inside it and consider each of them as the center of
one single crystal. The complete geometry insde the RVE is then partitioned
using the Voronoi diagram of these centers. Finally, once the geometry of
each single crystal is known, a thetrahedral mesh is constructed using the
algorithms from [9].

With this, the resulting mesh has the property that every single thetrahe-
dron belongs exclusively to one crystal in the RVE and the crystal boundaries
are perfectly approximated by thetrahedral faces. Figure 7 shows three ex-
amples of this process, the upper row shows the Voronoi tesselations obtained
for three different sets of random centers, while the lower row shows their
corresponding meshes fitting to the geometry of the RVE.

Once the RVE’s internal geometry has been meshed, the simulated elastic
properties from Section 2 can be used in each single crystal. This is done
by assigning one realisation of the 21 elastic constants of the stiffness matrix
into each crystal, it is, one matrix for each mcrystallite inside the RVE.

The FEM simulation of the mechanical loads into a microcell is then
performed by solving the elasticity problem

−div(σ) = f, (17)
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Figure 7: Examples of simulated microcells. The upper row shows Voronoi tesselations
and the lower row shows their corrsponding meshes fitting to the geometry of the RVE.

with the tensors for stress and strain given as

σ(x) = C(x) ε(x), (18)

ε(x) =
1

2

(
∇u(x) +∇u(x)T

)
, (19)

respectively, and with u denoting the deformation as fuction of the position
x.

All the FEM simulations were performed using an anisotropic imple-
mentation for the elasticity problem in the Toolbox ALBERTA [10], which
is based on the previously existent isotropic implementation of the elastic
solver.

It is important to note that the resulting system to solve the elasticity
problem must be able to handle the full local anisotropies in each crystal
(given by a full stiffness matrix C in every point of the cell) as well as the
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different values of the elastic properties existent among the different crystals
conforming the RVE. At this point, the correct construction of a mesh fitting
the monocrystal boundaries becomes important, as there is no thetrahedra
having quadrature points belonging to different crystals.

3.2. Responses of an RVE for the different deformation modes
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Figure 8: Distributions of volume averaged stresses [Pa] in the microcell under an applied
strain of εxx = 0.01.

To analyse the microcell’s responses to a given mechanical load, we per-
form a single mode analysis in which the cell is only affected by a mechanical
strain with one component diferent from zero, it is

ε = γei, (20)

where ei denotes a unitary vector in R6.
The value of the factor γ represents the amount of strain applied in the

corresponding component and, for the simulations performed here was taken
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Figure 9: Distributions of volume averaged stresses [Pa] in the microcell under an applied
strain of εxy = 0.01.

as 0.01, (this means that the cell is strained by 1%). The actual problem
solved for this analysis considers a right hand side f = 0 and boundary con-
ditions of Dirichlet type for the inclusion of the strain in equation (20). For
example, for including a shear strain of size γ in the xy-plane, the boundary
conditions for the deformation look like

u(x) =

 0 γ 0
γ 0 0
0 0 0

x, (21)

for all points x ∈ R belonging to the microcell’s boundary.
Such boundary conditions result in an elongation of the microcell’s ge-

ometry in the cases where γ appears as diagonal entry of the matrix. In case
γ appears in the off-diagonal elements of the matrix, as in equation (21), the
microcell will present a shear in the ij-plane.

With this ideas, we can decompose every strain affecting a microcell as
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Figure 10: Distributions of volume averaged stresses [Pa] in the microcell under an applied
strain of εxz = 0.01.

the sum of the 6 components of strain and, in the case of linear elasticity,
the resulting stress can be easily computed as the sum of the corrsponding
elastic stresses for each component.

The stochastic response of a microcell was computed using a number of
1000 FEM simulations for each of the strain modes. Each of the simulations
was performed using the same procedure for the creation of the microcell’s
geometry, its voronoi tesselation, the mesh and the assignment of local elastic
properties of every single crystal.

The results of the 1% strain applied to the RVE in each of the modus
are presented in Figures 8–13 as histograms of the resulting stress values.
The horizontal axis represents the value of the stress component and the
vertical one is the probability density of obtaining this value. The presented
values for the stress correspond to the volume averaged values over the three
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Figure 11: Distributions of volume averaged stresses [Pa] in the microcell under an applied
strain of εyy = 0.01.

dimensional microcell, it is

σ̄ij =
1

V

∫
Ω

σij, (22)

where V denotes the volume and Ω ⊂ R3 represents the RVE’s domain.
Figure 8 shows the resulting distributions for an elongation of the mi-

crocell in the x direction. In this figure, it can be observed how the xx-
component of stress results in the highest values in the order of 103, while
almost all other components are on the order of 10−1, with the only exception
on the xy component. The higher values in the xy component are an inter-
esting feature that indicates that the material presents strong connections
between the mechanical responses in the x and y directions.

Figures 11 and 13 show the corresponding responses for the elongation
modes in the y and in the z direction, repeating the general result of having
the largest values in the yy and the zz components, respectively. Figure 11
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Figure 12: Distributions of volume averaged stresses [Pa] in the microcell under an applied
strain of εyz = 0.01.

confirms the close relation between the x and y directions, with the xx and
the xy components having the largest volume averaged stress values (after
the yy component itself).

Note that although the applied strain was of 1% in all cases, for the shear
modes xy, xz and yz there are much lower values in the responses. All the
values are about one order lower that the maximum values obtained for the
tensile modes xx, yy, and zz.

It is interesting to observe that the obtained distributions cannot be as-
sumed to be of the same kind, even for the same component of the stress
tensor. Example of this are the components yz of each response (fifth sub-
plots in Figures 8–13).

As already mentioned before, we claim that the complete response of the
material behavior can be modelled as sum of the six modes presented here.
Thus, the stress responses of the material correspond to a weighted sum
of modal distributions, which makes the complete-response distributions far
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Figure 13: Distributions of volume averaged stresses [Pa] in the microcell under an applied
strain of εzz = 0.01.

from being trivial, specially for texturized materials.

4. Conclusion and future works

The methods presented here are an effective way of calculating the me-
chanical responses of texturized materials under given loads, including the
uncertainities of the single crystal orientations and the anisotropies from the
polycrystals’ stochastic geometry.

From the stochastic models in Section 2, it is worth to mention that they
can also be used for the calculation of further material parameters that allow
representation by tensor quantities.

Although these models are useful for the simulation of many effects in
polycrystals, it must be noticed that they were obtained without considering
the possible correlations between properties of different crystallites. Includ-
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Figure 14: Small plate computed with the expectation values and three stress responses.

ing such correlations into the consideration will become important while try-
ing to analyse multiphase polycrystals and will be part of our future works.

The mechanical responses in form of probability densities can be used
as part of a two-scale method similar to the ones presented in [11, 12]. For
these methods, the solution of the mechanical problem in a complete piece
requires the solution of micro-problems on RVEs for each quadrature point of
the macroscale mesh (often on the order of thousands). Using the distribu-
tions to calculate the stress effect for given strains would avoid the expensive
computation of all the microcell problems and derive in a much faster two-
scale simulation, where the microscale already contains the uncertainities and
anisotropies of the texture.

Another possibility is to use the stiffness tensor’s expectation to compute
the macroscale simulation. Using the results for this simulation, the values of
strain can be taken as inputs of the microscale response and the uncertainity
belonging to each quadrature point on the macroscale can be easily assigned.

Following this last idea, Figure 14 shows the computed deformation on a
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Figure 15: Stress response distributions obtained for one of the points shown in Figure
14. Point 1: (0.1875, 1.1875, 0.3750).

small plate of size 2.0mm×2.0mm×0.5mm in which the sides corresponding
to the planes x = 0 and y = 0 were fixed, while the boundary corresponding
to the plane x = 2 were artificially set as

u(x, y, z) =

 0
0

sin(2y)

 . (23)

The responses at three different points are also schematically shown in
Figure 14, and the detailed values of this points are included in the corre-
sponding Figures 15, 16, and 17. Here is important to recall the fact that for
an already known set of mechanical responses, the computational costs for
obtaining th values shown in Figures 15–17 are practically the same as the
costs of the macroscale computation alone.

Regarding the inclusion of the stochastic models for the polycrystal con-
stitution into the FEM simulations, both the two-scale computation and the
local response strategies will be followed in our future research.
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Figure 16: Stress response distributions obtained for one of the points shown in Figure
14. Point 2: (1.8125, 0.9375, 0.1250).
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