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Abstract

We present a coupled simulation of the thermal and mechanical problems of the
laser welding process. The thermal simulation is based on anenergy balance idea
for the construction of the keyhole and its further use as theheat source shape.
The mechanical model includes the thermo-elasto-plastic solution, required for
the residual state computation.

The coupled model is described and some results of their implementation are
presented. The implementation was done using the Adaptive-FEM Toolbox AL-
BERTA, making use of a posteriori error estimation for the proper adaption of
the mesh with respect to the moving heat source. Further, thesimulated process
is shown to be in accordance with experimental results obtained with the same
process parameters.

Key words: welding, laser welding, aluminum alloys, plastic deformation,
residual stress
PACS:44.05.+e, 46.35.+z, 81.20.Vj

1. Introduction

As one of the most modern welding techniques, deep penetration laser welding
has strongly attracted the attention of the production and research communities
since the last decade. The research directions, guided by the industrial needs,
have tried to analyze and numerically simulate the welding process based in
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models already existent for other welding processes. However, in many of these
simulations the main characteristic of the deep penetration welding is underesti-
mated and the existence of a vapor channel, or keyhole, is notconsidered.

The main difficulties for the keyhole consideration arise from its own dimen-
sional size, being a very narrow and long channel created in the laser beam direc-
tion and shifted along the welding line in the material. Typical sizes of its radius
are in the order of 0.1mm, while its length is on the order of several millimeters.

On the other hand, part of the interesting features of the laser welding tech-
niques are their high welding speeds. This leads to a disputed situation because
a simulation must contain a high refinement to simulate the motion of the tiny
keyhole, and it must be fast to allow the computation of the large piece of welded
material.
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Figure 1: Schematic view of a laser welding process. The laser beam moves from left to right
melting the material and the weld seam is created after resolidification.

To overcome these difficulties, we present here a simulation based on Adap-
tive Finite Element Methods (AFEM). This implementation considers the ther-
mal evolution in the material piece, together with a mechanical model for the
computation of elastic and elasto-plastic deformations, strains and stresses.

The thermal and mechanical models are presented in Sections2 and 3, re-
spectively. Section 4 contains the details about the implemented simulation and
Section 5 presents some numerical results together with experimental compar-
isons. Finally, Section 6 summarizes the main ideas of this work and introduce
some further research needs.
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2. Thermal problem

The welding process is based in the melting and solidification of material
around the welding line. In order to obtain the heat necessary for the material
melting to occur, a focused laser beam is used as heat source.

After a very short instability period, a narrow and long holeis formed in the
material and, if the laser beam is translated along the welding line, this hole ac-
companies its motion (see Figure 1). Models for the keyhole formation exist in
many different levels of complexity, going from simple line sources (e.g. [1, 2])
to rather complex models which compute accurate keyhole shapes, as the ones
presented by [3, 4, 5, 6, 7]. The problem with the first ones is that they ne-
glect the keyhole existence, while the second ones need an extremely expensive
computational work.

Within this work, we take a keyhole model based on the energy balance idea,
as presented in [8, 9]. The main advantage of this idea is the possibility of
computing very fast the rough shape of the keyhole. This keyhole shape can then
be used as the heat source, assuming that the temperature inside the keyhole is
equal to the evaporation temperature of the material.

θ

2

d0

z0

y

z

Figure 2: Schematic laser beam focused inside the material piece.

The keyhole frontal shape can be obtained comparing the energy used to evap-
orate material with the energy contained in the laser beam inabsence of material.
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Without loss of generality, we assume that the laser beam is oriented in the
vertical direction, and is moving along thex-direction. Now, if we consider ay
coordinate close to the beam center, the penetration of the beam into the material
can be obtained (as in [9]) using the equation

vQ
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Figure 3: Computed keyhole shapes for different values of laser power and welding velocity.
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a =

√

d2
0

4
− y2, (2)

wherev is the welding velocity,Q is the energy used for evaporating a unit of
material volume and the laser beam is characterized by the waist diameterd0,
the divergence angleθ, and the focus vertical positionz0 (see Figure 2). Here,
we consider a laser beam of constant distribution, as can be observed from the
simple expression inside the integral of the right hand sidein equation (1). For
a Gaussian beam, the corresponding distribution must be substituted inside this
integral.

After some simple steps, the last equation can be transformed into

vQ
∫ z

0

√

d2
0 + θ

2(s− z0)2dz =
4ηP

√

d2
0 − 4y2

πd0
(3)

and this equation can be solved to get the pairs (y, z) describing the frontal shape
of the keyhole.

Figure 3 shows the different keyhole shapes obtained for different values of the
laser beam powerP and velocityv with a laser beam focused atz0 = −2.0mm
(slightly inside the material), and the other parameters taken asQ = 40J/m3,
d0 = 0.6mm,θ = 5.98◦, andη = 0.8.

As one would expect, the keyhole size increases when using higher values of
laser power, and decreases when using higher welding velocities. Note also that
for keyhole shapes large enough, the beam waist atz= −2.0mm is maintained.

For the welding simulation, we consider the domainΩ describing the material
piece for a butt weld and a time-dependent keyhole subdomainfor which the
temperatureθ is set at the evaporation temperature value, it is

∂θ

∂t
− ∂
∂x

(

κ(θ)
∂θ

∂x

)

=
f (x)
ρCe(θ)

in Ω̃ × (0,T), (4)

κ(θ)
∂θ

∂n
= δair(θ − θ0) on∂Ω × (0,T), (5)

θ = θ0 in Ω̃ × {0}, (6)

θ = θv in Ω\Ω̃. (7)

In this modified heat equation the heat diffusivity κ and the specific heat ca-
pacity Ce are considered temperature dependent, as their changing values for
different temperatures play an important role in the welding simulation due to
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the intrinsic nature of large temperature variations. The valuesθ0 andθv corre-
spond to the room and evaporation temperatures,ρ is the density, andδair is the
heat transfer coefficient between the material piece and the air around it.

A direct computation of the temperature on the keyhole subdomainΩ\Ω̃ is
difficult to perform, due to its very small size and fast motion. For this, a much
better idea is to assume evaporation temperature inside this subdomain and per-
form an adaptive computation in the rest of the domain as in equation (4).

We make use of the already existent a posteriori error estimators for the heat
equation, see e. g. [10] and the references therein. The use of an adaptive method
allows the fine computation in the moving region of the keyhole, while a coarser
computation is done for the rest of the domain.

3. Mechanical problem

The mechanical effects of the welding process are as important as the thermal
ones, being of special interest the deformations that occurin the material as it is
drastically heated and cooled.

In the case of thermal forces of moderate size, the mechanical equations to
solve are the ones of the thermoelasticity, given by

−div(σ) = fσ in Ω × (0,T), (8)

u = 0 onΓ0 × (0,T), (9)

n · σ(u) = 0 onΓN × (0,T). (10)

with u ∈ R
3 denoting the displacement field, and withε andσ being the strain

and stress tensors inR3×3, it is

ε(u) =
1
2

(

∇u + ∇uT
)

, (11)

σ = λtr(ε)I3 + 2µε − 3Bαθ(θ − θ0)I3, (12)

whereλ andµ denote the Laḿe constants,αθ is the thermal expansion coeffcient,
andB is the corresponding bulk modulus

B = λ +
2
3
µ. (13)

Solving equations (4)-(7) together with equations (8)-(12) in every time step,
would give a solution for the thermoelastic problem.
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However, the welding process we are interested in, producesvery large tem-
perature gradients. These gradients are then traduced in large strains and in plas-
tic stresses and deformations, for which an elastic approach is not enough (see
e.g. [11, 12, 13] for a complete explanation of the mechanical behavior during
welding).

In order to handle the plastic deformations together with the thermal compu-
tations, we make use of the radial return mapping proposed in[14] for elasto-
plastic problems. For the case of a thermo-elasto-plastic problem with isotropic
linear hardening, the radial return mapping with von Mises flow rule can be writ-
ten as the following algorithm (see e.g. [15]):

Radial Return Mapping with Linear Isotropic Hardening and von Mises
Flow Rule

1. Define the trial state as
strial

n+1 = 2µ (dev(ε) − εp)
2. Check the yield condition using the von Mises flow function

f̄n+1 =
∥

∥

∥strial
n+1

∥

∥

∥ −
√

2
3K̂(αn)

If f̄n+1 ≤ 0, then go to Step 3,
else, go to Step 4.

3. Point inside the allowable stresses.
Set

αn+1 = αn,
ε

p
n+1 = ε

p
n,

σn+1 = λtr(εe)I3 + 2µεe

−3Bαθ(θ − θ0)I3,
Go to Step 6.

4. Compute the normal direction

nn+1 =
strial
n+1

∥

∥

∥

∥

strial
n+1

∥

∥

∥

∥

.

Compute the new∆γ as

∆γ =

∥

∥

∥

∥

strial
n+1

∥

∥

∥

∥

−
√

2/3(σY+Kαn)

2µ+ 2
3 K

.
Update the equivalent plastic strain

αn+1 = αn + ∆γ.
5. Update the values plastic strain and stress as

ε
p
n+1 = ε

p
n + ∆γηn+1,

σn+1 = λtr(εe)I3 + 2µεe

−3Bαθ(θ − θ0)I3 − 2µ
(

ε
p
n + ∆γη

)

.
6. Exit
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This is an algorithm of the general predictor-corrector type ([14, 16]) in which
the state of strain and plastic strain are computed such thatthe stress never lays
outside the space of allowable stresses under the corresponding yield valueσY.

ε

σ

slope E

slope m = KE

K+E

Figure 4: Strain-stress diagram for a material with linear elastic and linear plastic behavior. The
plastic modulus is obtained from the slopem.

The linear hardening rule used in Step 2 is

K̂(α) = σY + Kα, (14)

whereK is the plastic modulus of the material obtained from an approximated
material behavior as the one in Figure 4

Other more general models for computational plasticity canbe found in e.g.
[14, 17, 18, 19], where nonlinear models are presente and also models including
kinematic hardening are considered.

According to [20, 2], for all the welding processes based on the motion of a
heat source, the mechanical behavior experienced in the material can be schemat-
ically described using the diagram in Figure 5. In this figure, several states of
the mechanical effects are represented for different positions around the welding
point. The dashed line indicates the positions of maximum temperature along a
longitudinal cut on the weld. This line separates the zones of compression and
shrinkage, which are obtained as result of a negative and a positive gradients in
the longitudinal (or welding) direction.

From the well established computational welding mechanicstheories, it is
known that there is a value below the melting point at which the mechanical
behavior is affected by viscoplastic phenomena.

The use of material properties which are cut off at this value is known to
be a solution to the lack of viscoplastic computations, allowing the use of a

8



simple elasto-plastic computation for the materials at high temperatures (see e.g.
[15, 2]).

For Steels, [20] mentions that proper cut-off temperatures are found around
two thirds of the melting temperature measured in Kelvin, i.e.θc ≈ 1200◦C. For
aluminum, our experimental tests have shown that values ofθc ≈ 600◦C are well
suited.

If one considers a small piece of material close to the welding line, the expe-
rienced mechanical effects ilustrated in Figure 5 are:

• After being far enough from the heat source, the metal is suddenly heated
up and the thermal expansion from points around the heat source generate
forces from left to right and compressive effects take place, being first of
elastic and later of elastoplastic nature. The sign of stress in this compres-
sive zone is negative.

• In a small region between the line of maximum temperatures and the shrink-
age region, the temperature does not change drastically andthe small cool-
ing releases elastically the compressive forces from the previous stage.

• Inside the shrinkage region, the material pieces are cooleddown very fast
and this cooling causes a new plastic deformation of positive sign.

The creation of the new plastic effects is of much smaller size as the com-
pressive part. However, this effect happens during a much longer period of

σ

ε

θ = θc

heat source

compressive plastic zone

shrinkage plastic zone

Figure 5: Plastic zones of compressive and tensile type during the creation of a but-weld. The
dashed line corresponds to the set of maximum temperatures along a horizontal line (longitudinal
direction) in the figure. Modified from [2].
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time and, in the end, the sum of the effects can be expected to be of high
tensile nature.

As a result, after the weld is finished and the material has a homogeneous
temperature, the plastic strains created during the welding process remain. In
the final state, after the welding and cooling processes are finished, the material
piece contains not only residual strain, but also plastic deformations and their
corresponding residual stresses.

4. Simulation setting

The thermal and mechanical models from the previous sections have been
implemented in the AFEM Toolbox ALBERTA (see [10]) and used tosimulate
a butt-weld in which two pieces of size 100mm× 65mm× 3mm are welded as
depicted in Figure 6, where also the weld seam and the starting and ending points
are indicated.

xy

z

3mm65mm

10
0m

m(15,0,0)

(85,0,0)

Figure 6: Material piece geometry with start and end points for the butt-weld.

The thermal computations include the a posteriori error estimation for the ther-
mal problem. This error estimation allows a mesh adaption for the better defini-
tion of the computations around the dynamic position of the keyhole subdomain
Ω\Ω̃ from equations (4)-(7). For every time-step, the computations assume that
inside this subdomain the temperature equals the evaporation temperature. A
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similar error estimation technique for the mechanical problem was not consid-
ered.

The considered material piece has a full size of 100mm× 130mm× 3mm and
is discretized by an initial mesh with 36000 elements and 8364 DOFs.

This mesh was constructed in two steps, first dividing the geometry in 50×
40× 3 cubes for thex, y, andz directions, and then dividing each of these cubes
into six tetrahedra.

Material: Aluminum alloy AA6082-T6
Evaporation energy 40 Ws/mm3

Melting temperature 650◦C
Evaporation temperature 2600◦C
Density ρ = 2.7× 10−6 g/mm3

Specific heat capacity∗ Ce = 800 J/gK
Thermal conductivity∗ k = 0.16 W/mmK
Heat-transfer coeff. (air)∗ δ = 2.5× 10−6 W/mm2K
Thermal expansion coeff.∗ αθ = 24× 10−6/K
Poisson ratio ν = 0.33
Young modulus∗ E = 72× 103 MPa
Yield stress∗ 280 MPa
Plastic modulus K = 1380MPa
Cut-off temperature 600◦C

Table 1: Material properties at room temperature for the aluminum alloy AA6082-T6. The stars
indicate that the material properties were considered temperature dependent, with the values in
[15].

Distribution type Constant
Focal length f = 450 mm
Focal diameter d0 = 0.06 mm
Last mirror diameter D = 47 mm
Focal height z0 = −2 mm
Laser efficiency η = 0.85

Table 2: Laser beam parameters fixed for all simulations.

Table 1 shows the material parameters used in the simulationfor the room
temperature of 25◦C. For the temperature dependent parameters in the thermal
an mechanical equations, the values are the ones in [15].
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The laser beam parameters used for the simulations are the ones shown in
Table 2.

The implemented models also include the measurement of the meltpools dur-
ing the welding time, allowing the measurement of the resulting weld seam width
w and heighth. Further, the mechanical computations are used to get the defor-
mation 300 seconds after the welding is finished.

After this cooling period (tcool = 300s), the temperature in the welded piece
is practically homogeneous, experiencing only small changes due to the heat
transfer from the piece into the surrounding air. At this last simulation time,
no more plastic deformations can occur and the measurementsfor the residual
displacement and the out-of-plane angle in the material canbe performed.

Considering the starting and end points from Figure 6, the total weld length is
70mm, and the corresponding welding time istw = 70mm/v, with v denoting the
welding velocity. The final simulation time is thenT = tw + tcool.

5. Simulation results and comparisons with experiments

Using the models in Sections 2 and 3, and the specifications inSection 4, we
present now the results of the simulated weld using the laserpowerP = 3000W
and the welding velocityv = 75mm/s.

The results of the ALBERTA implementation are presented along with the
welding results obtained experimentally.

The experimental welds shown here were obtained using the same conditions
as the ones assumed for the simulated welds, with the intention to reproduce the
experimental weld using the computational model.

5.1. Thermal results

Once the temperature fields are computed, the isoline of the melting temper-
ature determines the line at which the solid–liquid phase change line is located.

Figure 7: Experimental and simulated meltpool.
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Figure 7 shows the meltpool obtained for the simulated and the experimental
welds for the specified laser power and velocity.

The simulated meltpool size was computed using the locations of the extreme
values of the melting temperature isoline. These measurements of the meltpool
give a top widthw = 2.657 mm and a vertical penetrationh = 1.958 mm.

For the experimental piece, several samples were welded, giving sizes of the
meltpool with top width between 2.06 and 2.15 mm, and height values between
1.92 and 2.30 mm.

It is important to notice, that a direct comparison of the keyhole top radius
or penetration is not possible due to the non-available measurements for these
dimensions. However, the meltpool dimensions computed using the evaporation
temperature of 2600◦C inside the moving keyhole result in very similar dimen-
sions for simulated and experimental welds.

Top surface temperature Adapted mesh

Cuts in thex-direction
  

25 181 338 493 650 ◦C

Figure 8: Temperature field and adapted mesh att = 0.88 s. The maximum temperature value is
2600◦C and the colorscale is limited to the temperatures below themelting point.
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There exist some small discrepancies between simulated andexperimental
meltpools, but they can be accepted to be part of the non-modelled phenomena
taking place in the process, as could be the convection of liquid material.

Another possible source of experimental discrepancies is the fact that slight
changes in the focal heightz0 can represent considerable changes in the keyhole
formation and the exact experimental realization of this focal height is always
subject to some small error.

The temperature values are presented in Figure 8 for the timeat which the
laser beam is located atx = 80 mm. The top surface plot and the cuts in thex
directions make possible to see the dimensions of the moltenarea, which has a
wider diameter in the longitudinal direction due to the motion of the heat source.

Note that for the plots in Figure 8, the color scale is finishedat the melting tem-
perature. However, the temperature field reaches its maximum value of 2600◦C
at the center of the meltpool, where the keyhole is located.

The shape of the temperature plot on the top surface shows thehigh gradients
in the region inside and close to the meltpool.
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Figure 9: Temperature history for a selection of traversal points on the top surface.

The plots in Figure 9 show the temperature values for a selection of points
on the top surface. All the points are located at the longitudinal middle of the
plate, and the center of the laser beam reaches this location(x = 50 mm) at time
t = 0.480 s.

It can be observed that the maximum temperatures are obtained at the moment
of the laser beam action if the point locations are close to the welding line. For
points away of this line, the maximum values are obtained later. This is a clear
effect of the heat diffusion, reaching the neighboring material to the welding line
after some affection time. The set of these maximum temperatures is exactly the
set depicted as a dashed line in Figure 5.
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The meshes presented in Figure 10 show the changes in the meshfor different
times of the simulation. In this way, the adaptive process based in the thermal er-
ror estimation makes possible an accurate approximation ofthe thermal process
at the time-dependent laser beam location. For a region in the material where
the weld already took place, the refinement is gradually decreased and the mesh
tends to be coarsened as the time advances.

It is necessary to mention that all meshes have a predefined refinement area
close to the region where the weld line is located. This is done in order to avoid
an excessive coarsening of elements in this region during the cooling time, which
would lead to a poor approximation of the mechanical computations.

Independently of this predefined refinement in the mesh, the obtained element

t = 0.20 s t = 0.96 s (welding end)

t = 0.987 s t ≥ 1.347 s

Figure 10: Top view of the adapted meshes at different times.
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sizes obtained with the error estimation at the points around the keyhole position
are much smaller than this initial refinement size.

For this simulation, the system reaches a maximum of degreesof freedom at
the last welding time step, i.e. att = 0.96 s. After this, the mesh returns very fast
to its minimal configuration, which is reached at the timet = 1.347 s.

Figure 11 shows the evolution of the number of degrees of freedom used for
the adapted mesh for every computed time step. The maximum of21295 DOFs
is reached at the end of the welding time, while the original mesh size with 8364
DOFs corresponds to the final welding time and the cooling times.

It is interesting to observe how the amount of degrees of freedom (and hence
the discrete system and the computation time) is strongly reduced at the moment
when the weld is finished and the keyhole disappears.
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Figure 11: Degrees of freedom evolution for the first two simulated seconds (after this time, the
mesh has the original size of 8364 DOFs).

5.2. Mechanical results

For the mechanical results, we are mainly interested on analyzing the stress
development in the material, and the plastic effects resulting from the fast heating
and cooling processes.

Figure 12 shows the residual deformation in the experimental and the simu-
lated pieces (both exaggerated by a factor of 30), where it ispossible to observe
the out-of-plane angle. For the simulated weld, additionallines show the original
size and position of the material piece.

According to the existent knowledge from welding mechanics, the main two
reasons for the material to maintain this semi-folded shapeare the non-full pen-
etration of the weld and the ‘triangular’ shape of the melting pool.

These two factors create differences on the plastic strains for the top and bot-
tom of the plates, causing also differences in the amounts of residual plastic
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Simulated

Experimental

Figure 12: Final deformation of the welded piece. Exaggerated 30 times.
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Figure 13: Experimental measurements of the deformation angle for the differentx-coordinates.

deformations and stresses and, in the end, bending the plates to equilibrate these
internal forces.

The angle of deformation of the simulated weld on the middle of the plate is
0.9520◦, while the measured value of the experiment is 1.003◦.

The experimental values for the angle deformations are obtained via a post-
process measurement of the deformation and, once the deformation is known, a
simple geometric relation gives the information about the angle for the different
x-coordinates. The obtained measurements are as the ones shown in Figure 13,
from where the experimental value mentioned before was taken.

Figure 14 shows the values of the equivalent stress for differentz-layers of the
material piece att = 0.7733 s. At this time, the laser is still acting on the piece (at
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z= 0 mm, top layer z= −1 mm

z= −2 mm z= −3 mm, bottom layer
  

0 35 70 105 140 175 210 245 280 MPa

Figure 14: Equivalent stress distribution for different vertical layers of the material piece at
t = 0.7733 s, when the laser beam is located atx = 72 mm.

x = 72 mm) and there is a molten region where the weld seam is beingformed
and most of the mechanical changes can be observed.

At temperatures above the melting point, the equivalent stress is nearly zero.
This results in the blue spots located in the molten regions of the top and−1 mm
layers in Figure 14. The same spot cannot be found in the bottom layer due to
the fact that the weld penetration is slightly less than 2mm and thus the material
is solid at this bottom part, being able to contain mechanical stress.

In the same figure, the regions of high compressive stress in front of the weld-
ing point can be observed, having similar stress values, butdifferent extensions
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and shapes for each of the four layers (compare with Figure 5).
Note that the compressive zone in front of the molten area is very thin, due

to the extremely steep temperature field, being almost at room temperature and
suddenly heated up when the laser beam reaches a neighboringlocation.

For regions behind the welding point, the cooling process istaking place, and
if the distance to the laser location is large enough, the formation of the final
stress can be already observed.

As expected, the thermal vertical difference produces different behaviors of the
equivalent residual stress, as can be observed in Figure 15.This plots correspond
to the timeT = tw + tcool.

z= 0 mm, top layer z= −3 mm, bottom layer
  

0 35 70 105 140 175 210 245 280 MPa

Figure 15: Equivalent stress distribution for the top and bottom of the plate after cooling of the
welded piece.

The evolution of the longitudinal strain, plastic strain and stress are presented
in Figure 16 for a selection of points over a logarithmic scale of the time interval
[0,300]. The points are chosen to belong to the middle of the plate on the vertical
direction (z= −1.5mm) and have coordinatex = 30mm.

The plots show the time marks for the moments at which the laser beam is
located atx = 30mm (t = 0.2133 s), the half time of the welding process (t =
0.48 s), and the last time at which the laser beam heats the material (t = 0.9467 s).
There are several interesting things to observe from Figure16 as we will mention
now.

A common feature of all the components of strain is that they are different from
zero at every time step where the temperature distribution is not homogeneous
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Figure 16: History of longitudinal strain and stress for points of the form (30, y, −1.5).

and reach maximum values for points close to the welding line. This shows
the transference of the mechanical effects, while the thermal strain affects other
locations than the observed ones.

Contrary to this, the plastic strain only appears when the high temperature gra-
dients and values of strain occur. In other words, if the laser beam would never
reach the coordinatex = 30mm, the deformations will disappear inmediately
after the loads (thermal or mechanical) are removed.

The plastic strain changes only in size as the material coolsdown, but remains
different from zero forever, even though the temperature distribution returns to a
homogeneous state. This is due to the fact that only high temperature changes
can produce a thermal strain for which the corresponding stress is outside the
yield point for an elastic behavior.

The stress evolution can be observed to be the result of the combination of
strain and plastic strain, and it is interesting to see how the stabilization of its
values takes place only after the material is released from new heat inputs and
cools down. The only release of the material from the heat input does not finish
the strain and stress evolution. This is why the simulation of the cooling stage is
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very important.
It is also possible to observe some jumps during the stabilization process be-

fore the weld ends. This is the result of the cooling process,as during this time
the material suffers a decrease in temperature from its melting point to about
250◦C, which is also the temperature intervals where most of the material prop-
erties have large changes.

As an example of such changes in the material properties, theyielding stress
σY used for the simulations has a value of about 200 MPa at 250◦C and is de-
creased to 40 MPa at 600◦C. More details about this changes, can be seen from
the material properties in [15].

Figure 17 presents similar plots to the ones in the previous figure, but for points
located along the traversal line with coordinatex = 50mm.

The behavior in Figures 16 and 17 is very similar. There are two main things
where a difference can be observed, namely the periods at which each phe-
nomenon occur, and the extreme values obtained at the momentof highest tem-
perature.

The differences in the extreme values are due to the different geometric lo-
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Figure 17: History of longitudinal strain and stress for points of the form (50, y, −1.5).
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cation of the measuring points. Points belonging to the middle of the plate are
more restricted to move and present a higher plastic strain.The size of the plastic
strains can be observed to be larger for the points atx = 50 mm, compared to the
ones atx = 30 mm. The opposite can be observed for the strains.

The overall process shown in Figure 17 repeats the behavior for the new coor-
dinatex = 50mm, and every plot has a shape similar to the correspondingplot
in Figure 16, changing only the times at which the single changes occur.

In Figure 17, the time where the maximum effects occur in the new plots
equals the middle of the welding time. However, the stabilization part is qualita-
tively the same, and the final values are also very similar. This is then reflected
in the residual equivalent stress shown in Figure 15.

It is important to remark that Figures 16 and 17 present only the plots for the
longitudinal component, which is the common way to analyze the mechanical
behavior in the computational welding mechanics community.

Although the plots containing all the components could havealso been consid-
ered, the amount of components and different locations would make any attempt
of analysis very confusing. See [15] for an example of such analysis.

The specifications in Table 3 show the computational expenses to get the re-
sults presented before, including all numerical computation time from the key-
hole formation to the mechanical calculation during the cooling time and the
measurements of the residual stresses and deformation angle.

Additionally, Table 4 contains the characterizing numbersfor the simulated
weld. In this table, the value assigned as equivalent stresscorresponds to the
L2-norm of the equivalent stress over the whole plate at the endof the simulation
(t = tw + tcoolT), divided by the piece volume.

Processor: AMD-Athlon 64 Dual-Core, 2.0GHz
Installed RAM: 2.0GB
Total computation time: 2.67 hrs. (100%)
Computation time for welding: 2.18 hrs. (82%)
Minimum system DOFs: 8364
Maximum system DOFs: 21295
Number of time steps: 272

Table 3: Summary of computational expenses
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Simulated Experimental
Laser power (P) 3000 W 3000 W
Welding velocity (v) 75 mm/s 75 mm/s
Meltpool top widthw 2.657 mm 2.06− 2.15mm
Meltpool heighth 1.958 mm 1.92− 2.30mm
Equivalent stress atT 0.584 MPa
Out-of-plane angle 0.9520◦ 1.003◦

Table 4: Main simulation results

6. Discussion

The overall process of the laser welding process includes many physical ef-
fects and, consequently, many process variables are neededto obtain a signifi-
cant model. The modeling proposed here is not the first for thelaser welding
application, but includes several features that have not been used in combination
for this kind of applied process.

6.1. Approximation of thermal fields

The efficient simulation of the thermal problem was attained very well, consid-
ering the obtained general shapes of thermal fields, and the numerical quantifica-
tion of the molten region sizes and their comparison with experimental data. In
addition to the comparisons presented in Section 5, there are other examples of
successful simulation–experimental comparisons of our model in [21] and [15].

Regardless of the very simple and fast way of constructing thekeyhole and
assign its shape to the heat source, this approximation allows a computation of
the thermal fields with enough precision. However, it must bealso said that the
approach used in this work is not suited for a detailed simulation of the complete
keyhole dynamics.

Furthermore, it is remarkable the good results of simulating with an adaptive
procedure, making the large computational expenses to be taken in the areas of
higher thermal changes, while producing a lose resolution in other less important
areas.

However, attention must be paid to the corresponding adaptivity tolerance,
which controls the level of refinement and its selection is not a trivial task. A
slightly small tolerance can result in a high refined mesh, slowing down the sim-
ulation, while a large tolerance can lose the necessary refinement level in the
heat input areas. Different material sizes and geometries can also require very
different tolerances.
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6.2. Mechanical calculations

The high strains created during the welding process lead to permanent defor-
mations and thus the use of a plastic solver is necessary. To solve the plastic
problem, the radial return mapping was successfully implemented for the com-
putation of residual strains and stresses on the material.

As shown in Section 5, the deformation computed using our elasto-plastic im-
plementation leads to good results when compared with the experimental mea-
surements for the deformation.

Based in the existent computational welding mechanics literature, the com-
puted stress tensor behaves as expected, and the plastic zones due to the welding
temperature gradients can be well identified.

The residual deformation was measured and also used to determine the ex-
perimental deformation angle. A good accordance between experimental and
simulated out-of-plane angles was also achieved.

However, in order to better calibrate the mechanical model,a precise mea-
surement of the displacement during the welding process or of the stress in the
residual stress would be necessary.

Practical experience with the simulation code has shown that the size of the
elements around the welding line, the symmetry of the mesh toboth sides of this
line, as well as the cut-off temperature used for the material properties, influence
the mechanical results in a complicated manner. A detailed study of their single
influences has not been done until now.

7. Conclusion and prospects

The results of the welding simulations can be considered in general as very
efficient and realistic, but also as expandable and with large possibilities of en-
hancement.

After an experimental comparison, it can be said that the simulation purposes
have been achieved and that this model can be used to simulatethe welding
process within a practical range of process parameters.

The implemented methods allow their use into similar tasks.Examples of it
are the diverse thermal driven joining techniques, thermalforming applications,
or mechanical load and unload processes, among others.

It must be also said that the modular ALBERTA implementation allows for
expansions in a natural way, making possible a future inclusion of new ingredi-
ents into the model, as could be the computations for the liquid motion, the use
of different error estimators, or other mechanical solvers.
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Furthermore, it is important to remark that ALBERTA is an opensource tool-
box and that all our implementations are self contained and independent of any
kind of commercial software.

Although the simulations have been successfully carried out, there are still
some open questions, like the way of best selecting the adaptive tolerance or the
real effects of the liquid convection.

Further ideas to improve the simulated welds are to include the fluid dynamic
computations for the meltpool, to include a hot-crack prediction submodel, or to
use different material parameters for each of the welded pieces.
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